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Thermal Expansion of Elastic-
Plastic Compaosite Materials

Exact relationships are derived between instantaneous overall thermal stress or
strain vectors and instantaneous overall mechanical stiffness or compliance, for two
binary composite systems in which one of the phases may deform plastically. Also,
the local instantaneous thermal strain and stress concentration factors are related in
an exact way to the corresponding mechanical concentration factors. The results de-
pend on instantaneous thermoelastic constants and volume fractions of the phases.
They are found for fibrous composites with two distinct elastically isotropic or
transversely isotropic phases, and for qny binary composite with elastically isotropic
phases. The results indicate that in the plastic range the thermal and mechanical
loading effects are coupled even if the phase properties do not depend on changes in
temperature. The derivation is based on a novel decomposition procedure which
shows that spatially uniform elastic strain fields can be created in certain
heterogeneous media by superposition of uniform phase eigenstrains with local
strains, caused by piecewise uniform stress fields which are in equilibrium with
prescribed surface tractions. The method is extended to discretized microstructures,
and also to the analysis of moisture absorption and phase transformation effects on

i. J. Dvorak

Department of Civil Engineering,
Rensselaer Polytechnic Institute,
Troy, NY 12180

Fellow, ASME

1 Introduction

The response of elastic composite materials to spatially
uniform changes in temperature is well understood. An essen-
tial contribution to the solution of this problem was made by
Levin (1967), who found that macroscopic thermal expansion
coefficients of a composite medium, consisting of two distinct
isotropic phases of arbitrary shape, depend in a unique way on
overall elastic moduli of the aggregate and on thermoelastic
constants of the phases. Thus, if the elastic moduli are known,
the thermal expansion coefficients can be calculated. This line
of inquiry was extended by Shapery (1968), who derived
bounds on thermal expansion coefficients of multi-phase com-
posites with isotropic phases, while Rosen and Hashin (1970)
applied Levin’s approach to binary composites consisting of
anisotropic phases, and they also found bounds on overall
thermal expansion coefficients of multiphase materials. Bu-
diansky (1970) gave self-consistent estimates of several ther-
mal and thermoelastic properties of multiphase isotropic mix-
tures. Among the more recent contributions to the subject are
the papers by Laws (1973) and Craft and Christensen (1981).

The response of elastic-plastic composite materials to
uniform thermal changes has been explored only to a limited
extent. This is a more difficult problem because at least one of
the phases is inelastic, and the deformation of the phases and
of the composite is affected both by the overall thermal

Contributed by the Applied Mechanics Division for publication in the Jour-
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overall response and on local fields in the two composite materials.

change and by the current macroscopic mechanical loading. In
the plastic state the thermal and mechanical loading effects are
coupled, even if the mechanical properties of the phases do
not depend on temperature. The problem is, of course,
nonlinear and must be solved in an incremental way.
Therefore, the connection between the two effects must be ex-
amined within a combined load increment. A representative
volume element of the composite is first subjected to a certain
uniform initial macroscopic stress or strain and to a uniform
thermal change; then, both the stress or strain and the
temperature experience a small simultaneous change to
another uniform state. Overall instantaneous stiffness and
compliance, and thermal stress and strain vectors are sought.

Earlier solutions of problems of this kind have been limited
to simple loading situations in fibrous composites, such as
pure thermal change (De Silva and Chadwick, 1969) or ther-
mal change combined with axisymmetric mechanical loads
(Dvorak and Rao, 1976). More recently (Dvorak, 1983) it was
shown that the total overall strain increment caused in a
prestressed fibrous composite by a small uniform thermal
change can be related in an exact way to thermoelastic con-
stants of the phases and to instantaneous overall compliance.
No restrictions need to be imposed on the type of prestress or
on the matrix constitutive law except for plastic incom-
pressibility, but the fiber must be isotropic or transversely
isotropic and remain elastic. This result has been applied in
analysis of a composite cylinder element (Dvorak and Wung,
1984) subjected to axisymmetric mechanical loading, uniform
thermal changes, and variations in matrix yield stress.

The present paper develops the connections between overall
instantaneous mechanical and thermal properties in a more

DECEMBER 1986, Vol. 531737
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general way. First, it is shown that the overall thermal stress
and strain vectors for an elastic fibrous composite with
transversely isotropic phases can be obtained through super-
position of certain uniform fields in the phases, and local
fields caused by a uniform stress or strain. A similar result is
derived for any composite consisting of two isotropic phases.
These results are then utilized to find instantaneous ther-
moplastic properties and local fields of these composite
systems for simultaneous mechanical and thermal load in-
crements. Extensions of the results to discretized microstruc-
tures, and to additional load effects, such as phase transfor-
mations and moisture absorption, are discussed as well.

2 Elastic Fibrous Composite

A binary composite material consists of a matrix reinforced
by aligned and bonded cylindrical fibers. Both phases are
assumed to be homogeneous and transversely isotropic about
the fiber direction x,. In the transverse x,x, plane, the cross
sections and distribution of the phases can be arbitrary pro-
viding that the composite is statistically homogeneous,
transversely isotropic, and free of voids.

A representative volume element V of the composite is
selected and subjected to a certain loading or deformation
history which is imposed through application of uniform
overall stresses ° or strains &° to the surface S of volume V.
Also, a certain uniform thermal change has been applied such
that the current temperature in V is constant and equal to 6,,.
At this particular point of the loading sequence simultaneous
increments of dé and df, or de and df, are applied to V.,

The response of the composite to these load increments is
described by constitutive equations:

dé=Mds+mdf, de=Lde—1d0, 1)

where L,M are (6x6) overall stiffness and compliance
matrices, and m,l are (6 X 1) overall thermal strain and stress
vectors.!

While M and L are known, we wish to determine the vectors
m and L. To this end it is necessary to specify the constitutive
equations for field averages of the phases:

de,=M,do, +m,df, de.=L,de.~1.d0 (r=fm) (2)
which are analogous to equation (1); f,m indicate the ““fiber’’
and “matrix’’ phases. In elastic composites, these phases are
interchangeable and f,m are used merely for convenience of
notation,

Since both the composite and each of the phases are
transversely isotropic about x5, it is possible to write a subset
of equations (1) and (2) which relates the first two stress and
strain invariants. With top bars and subscripts r, f,m omitted
in equations (1) and (2), one obtains (Dvorak and Bahei-El-
Din, 1979):

del} 1 n ~{]( do, o 7 3
=— +
de, ) KE [—e J d"z} {6}
{dal} {k L’J{del} {ka—f—fﬁ:‘
= - de 4)
do, in de, b+ 13

where k,f,n are Hill’s (1964) elastic moduli, £ = n — (2/k, «
= 207, 8 = o, and ar and «; are linear coefficients of ther-
mal expansion in the transverse plane and longitudinal direc-

tion, respectively. The strain and stress invariants are defined
as:

TWe use the customary notation (Hill, 1963; Laws, 1973) where, except as
noted, (6% 6) matrices are denoted by lightface uppercase Latin letters, and
(6x 1) vectors by boldface lowercase Latin or Greek letters. Top bars denote
overall volume averages.

738/ Vol. 53, DECEMBER 1986

de, =dey +dey, de, =dess (5)

do, =% (do,, +doy,) do, =doy; 6)

With appropriate values of elastic moduli and coefficients
o,f3, equations (3) to (6) can be applied either to the composite
medium or to each of the two phases.

As long as M,L do not depend on 4, m on 4, and 1 on g, the
thermal and mechanical contributions to dé and dé in equa-
tion (1) can be found separately and superimposed. By
assumption M and L are known, hence the first terms on the
right-hand side of equation (1) are evaluated without difficulty
for any given da or dé. To find m and I, and the second terms
in equation (1), we utilize the decomposition procedure of
Dvorak (1983).

In the first step of the procedure the fiber and matrix phases
are separated and surface tractions which preserve the current
local stresses o and strains €2 are applied to each phase r =
Jf,m. Alternatively, surface displacements corresponding to €?
may be prescribed to preserve ¢2. In addition, a uniform ther-
mal change df is applied to both phases. The local strains
caused by df would make the phases incompatible if the com-
posite was to be reassembled. Therefore, uniform stresses dé},
doh of as yet unknown magnitude are applied to the phases
simultaneously with df. (The top hats indicate auxiliary
uniform fields used in the decomposition and reassembly of
the composite.) This leads to the following uniform strain in-
crements in the separated phases:

dél = (n,def, — ,dob)/ kB, + o pdd

del = (—bds] + k,do5)/ kB + B,

el = (M, 87 — 0, d63") /K,y + t,y B
et = (=, &7 + Ky d63') /Ky Epy + B0

In the second step of the procedure, the stresses dé} and dé}
must be adjusted to assure compatibility of the phases and
equilibrium of these stresses at phase interfaces and on the sur-
face S of the representative volume V. The strain and stress in-
crements in equation (7) obviously satisfy the equations dé] =
2dé}, = 2dé5, and doé] = dé}; = d6%, in each phase r = f,m.
Shear components vanish in V, except in the immediate vicini-
ty of fiber ends. Since the magnitude of average fiber diameter
is assumed to be very small, the shear components may be
neglected. Therefore, compatibility and equilibrium condi-
tions for the increments can be written in terms of the in-
variants as follows:

M

dep =def, dey=dé ®
d&] =do} =dSy ©)
¢ dé+ ¢, doy =dS,. (10)

The dSr and dS, are surface stresses which need to be added
on S to preserve overall equilibrium of ¥ while dé] and dé% are
applied to the phases. The magnitudes of phase volume frac-
tions ¢, + ¢, = 1 need also be known at this point; ¢, > 0.

All strain and stress increments in equation (7) are uniform
and transversely isotropic, hence equations (8) to (10) are ex-
act for any transverse plane geometry. These relations suggest
that spatially uniform strain fields can be created in certain
heterogeneous media by superposition of uniform eigenstrains
a,df, B8,df in the phases, with local strains caused by piecewise
uniform stress fields which are in equilibrium with surface
stresses dS,, dSq.

Internal equilibrium and compatibility of the phases in V
depend only on the eight unknown strains and stresses déj,
dé,, déf, ¢6%, and not on dS,, dS;. These unknowns can be
determined from equations (7), (8), and (9), when an addi-
tional constraint is imposed.

A particular choice which will be useful in the sequel is:
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déy =pds™,
where p # 01is a constant.

Now, dS; and dS, follow from equation (7), after a
substitution of equations (9) and (10), and from equation (8):

(11)

aldST+azdSA +a3d0=0 (12)
b,dSy+b,dS 4 + b3df=0 (13)
where:
a = nf _ Ry I:cmff + Zm :l
""" KE;, k,E, kB kyE,
1
a = —c—fw y 3=0p—ay
4 ! C 1
b, = S m + [ m + ]
\" kB, knE, 'LcE, " E,
1
by=— cfEf ’ by= —ﬁf+18m
and:
dST=STd0, dSA :SAdB (14)
St={(ayb; —asb,)/(a;b, —ayb;) (15)
s4=(asby —a,b3)/(a b, ~ a,b,) (16)

At this point we change from the invariants (5), (6) to the
(6 x 1) stress and strain vectors and write

1
daél, =dé£2=7 dé{=g,db

a7
d‘—3§3 =dé}=g,df
1
délt = dey, =——2— dét=hdo
(18)

dély =deg = h,db
From equation (7), with equations (8) to (10), (15), and (16):
1 1
&= |5 =10/ (B Jsr+— o

& =I(—b+vks)/(kEp)lsr+ By

1 1 (19)
hy= [—- (n,, -—pfm)/(k,,,E,,,)]ST+— (e
2 2
h2 = [(_fm +pkm)/(kmEm)]sT+Bm
where
¥ = (84 ~pCnST)/(C57), (20)
and, according to equation (8):
g1=h1, g2=h2. (21)
Analogous results for stresses are:
dé{, = déd, = do{ =s,db
An ‘féz 1=S7 2)
ddly =ddh =ysrdo
dol =deh =det =s,db
11 22 1 T (23)

Aot =dey = pspdo

In the final step of the decomposition procedure, the com-
posite is reassembled and the surface stresses dS;, dS, re-
moved. Of course, the local strains and stresses (17) to (23)
already assure that the phases are compatible and in internal
equilibrium; in fact thet are equal to local fields caused in the
composite by simultaneous application of d@, dS,, and dS;.
They must now be added to local fields caused in the com-
posite by surface stresses —dS,, —dSA-

The final results assume a concise form with the definitions

Journal of Applied Mechanics
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h={h A, h,000])7
Sa=Isr57r5,00017

y=[114000]"

p=[11p000]7
where [ 17 denotes a transpose and the coefficients appear in

equations (11), (15), (16), and (19) to (21).
Therefore, forda = 0,d8 # 0in (1)):

dée=mdo (25)
m=h-—Ms, (26)

where m is the overall thermal strain vector and M is the
known overall compliance.

Also, suppose that the local stresses in the phases are written
in terms of concentration factors:

24

de,=B,da+b,db, (r=f,m) ()]
and that B,,, B, are known.
With regard to equations (22) and (23) one obtains:
b,=sry—Bs
f Y Pa (28)

bm =STp _Bmsa

Similar results can be found for a fully constrained com-
posite subjected to a uniform thermal change. Recall that the
strains (17) and (18) are actually equal to overall strains under
df, dS,, dS;. This follows immediately from equations (8)
and (21). These overall strains must be removed, and the local
fields adjusted accordingly.

Therefore, for dé = 0, df # 0in (1,):

da= —1do

29
1 =—s,+Lh 29)

where 1is the overall thermal stress vector, and L is the known
overall stiffness.

Also, if the local strains are written in terms of concentra-
tion factors:

de,=A,dé—a,db, (r=fm) 30)

and if 4,,, A, are known, one obtains with the help of equa-
tions (17) to (21):

a,=(A;—~Nh, a,=(A4,—-Dh 31
To facilitate applications we note that
' m=[araro;, 000]7 (32)

where a7, o are linear coefficients of thermal expansion in
the transverse plane, and in the longitudinal direction.
For any binary fibrous composite with known phase proper-

‘ties and phase volume fractions, the effect of thermal change

is reduced to equivalent mechanical loads and to certain
uniform fields in the phases, Thus m and I are found in terms
of Mand L, and a,, b, in terms of A,, B,. All these relations
are exact. While the constant p is a free parameter, none of the
results actually depend on p. For each p one obtains by super-
position a solution to the same boundary value problem. Ac-
cording to the uniqueness theorem in the theory of elasticity,
all such solutions must coincide. This can be verified by
numerical calculations.

3 Two Isotropic Elastic Phases

Suppose that a composite aggregate consists of two perfect-
ly bonded elastic phases, which are distinct but isotropic. The
microstructural geometry can be arbitrary, providing that the
composite is statistically homogeneous and free of voids. The
composite itself need not be isotropic, it can be reinforced by
aligned, braided, or otherwise distributed continuous fibers,
short fibers, particles of any shape, and by combinations of
such reinforcements.

DECEMBER 1986, Vol. 53/739



Assume that the overall constitutive relations are again
given by equation (1) and that the overall compliance M and
stiffness L are known. Also, let local fields be described by
equations (27) and (30), and assume that 4,, B, are known. As
in the previous section we utilize the subscripts f,m to identify
the two phases, even though we no longer require that either
phase be of cylindrical shape. Local phase properties need be

known only in terms of bulk moduli X, K,,, and linear ther-

mal expansion coefficients oy, .

We again pose the problem described in the previous sec-
tion: The composite has been loaded by a certain uniform
overall stress °, or strain &, and uniform temperature 6,,.
Simultaneous increments da and d@, or dé and df are applied.
The response of the aggregate is sought in terms of the overall
thermal strain and stress vectors m and 1, and phase concentra-
tion factors a,, b,, (r = f,m).

As in Section 2, the phases are first separated, and loaded
by df and by certain unknown tractions which correspond to
isotropic stresses dé,. The nonvanishing stress and strain in-
crements are

déf, =dot, = adl; =dS;

doT, = det = dot =dS,,

33
dé, =déhy = dély =dS;/BK;) + a,df - (33)
dét =def, =déf =ds,,/(3K,,) + o, d0
To assure equilibrium and compatibility:
ds;=dS,, =dS, de;=dey, (34)
ad  gS—sdh, s=—3a—an)/(1/K—1/Ky)  (35)

The composite is now loaded by three equal overall normal
stresses dS, and by df. Local strain and stress fields follow
from equations (33) and (34).

Finally, the composite is reassembled and surface stresses
dsS are removed.

Let

g=s/(3K;) +a;=5/(3K,;) + o,
q=q[111000]7
s=s{111000]7

In analogy with equations (25) to (30), one obtains

Forda = 0,db # 0, in equation (1)

dé=m df
m=q-—Ms

do,=b,d0 (r=f,m)
by=(—By)s, b, =(I—-B,)s

For dé = 0, df # 0in equation (1):

dao= —1dé
I=—-s+Lq
de,=a,df (r=f,m)
af=(Af_I)q, amz(Amhl)q

If the composite is macroscopically anisotropic, then M and
L can depend on up to 21 elastic constants, and

(36)

(37

(38)

(39

(40)

C3))

where o to og are overall linear thermal expansion coeffi-
cients, defined by (1) at dé = 0. For a fibrous composite
which is transversely isotropic one recovers equation (32). For
an isotropic composite all « in equation (32) become equal to

(ay—ay) 1 1

om0 (1)
(1 1 > ‘K K,
Kf K,

where K is the overall bulk modulus.

m=[o; @ o3 @ a5 ag]”

(42)
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This last equation was derived in a different way by Levin
1967).

4 _Elastic-Plastic Composites

() Fibrous Composites. Consider again the fibrous com-
posite system of Section 2. Suppose that the matrix phase is
elastic within a certain stress region, but becomes elastic-
plastic when a given yield condition has been satisfied. The
fiber remains elastic until failure. This suggests a metal
matrix, which is usually elastically isotropic. Thus the matrix
elastic moduli in equations (3) and (4) become related as
follows:

by =Ky — 1y, Py =Ky + My, Emznm_grzn/km
n,  2(1=v,) g, . 2u, 2 “3)
= s = , O, =
k.E, E, L E,. " "

where E,,, »,, are the isotropic constants, and §,, is the linear
thermal expansion coefficient of the matrix.

In the plastic range the matrix response is assumed to be
piecewise linear and given by equation (2), but M,, and L,,,
m,, and 1, are now instantaneous compliance and stiffness
matrices, and thermal vectors, at a particular point of a
loading path. We assume that M,, and L, are symmetric,
satisfy the requirement of plastic incompressibility of the
matrix, and do not depend on #; m,, and 1,, are piecewise con-
stant, within each d#, but their values may change with 6.

Furthermore, we assume that the response of the composite
to any purely mechanical loading by uniform dé or by de is
also piecewise linear and described by equation (1). Suppose
that instantaneous overall properties M and L in equation (1),
as well as instantaneous phase concentration factors 4,, B, in
equation (27) can be evaluated for any given mechanical
loading step. The instantaneous thermal properties m, 1, and
concentration factors a, and b, are to be determined.

Therefore, we again pose the problem stated in Section 2: A
representative volume V of the composite has been subjected
to a certain loading or deformation history such that the cur-
rent overall stresses and strains in V are uniform and have
magnitudes ° and &°. Also, the current temperature in V is
constant and equal to 8,. At this particular point of the
loading sequence we apply simultaneous increments of da and
de, or dé and df in V, and wish to evaluate instantaneous
values of M, L, m, 1, and of the concentration factors 4,, B,,
a,, b, during the loading step.

This problem is solved by the decomposition procedure of
Section 2. Initially, the composite is subjected to the pre-
scribed thermal change df and to simultaneously applied sur-
face stresses dS; and dS, given by equations (14) to (16).
These thermal and mechanical loads create local strain in-
crements dé,, in equation (18) and stress increments dé,, in
equation (23). In general, these strain increments may be in-
clastic. However, since the matrix is plastically incompressi-
ble, it is possible to assure that these increments correspond to
purely elastic deformation in both phases under df, dS, and
dS;. This is obviously the case when one chooses p = 1 in
equation (11), so that the stress and strain increments in the
matrix are isotropic.

The stresses dS, and dS; must now be removed. This may

- lead to plastic straining in the matrix, which corresponds to or

is caused by df. Also, if an overall stress increment da is ap-
plied simultaneously with df, then dS,, dSr, and dé must be
added and applied together.

The final results for a plastically deforming composite can
now be written on the basis of equations (24) to (31). Withp =
1 in equations (11) to (23), we retain the definitions (24) of vec-
tors h, s, and y and of their components but replace that of p
with
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1=[111000]". 44)
For loading by do and d, the overall strain increment dé is:

de=hdb+M(do—s,dd). (45)
A comparison with (1,) again yields the form (26)
m=h—Ms, (46)

We note that for p = 1 and an isotropic matrix one obtains
from equations (19) and (43) the following expression for h in
equation (24): ‘

h=hl é7)

where
h=h,=h,=5s:/(3K,;) +B,,,

and s is given by equation (15).

Therefore, the first term in equation (45) is an overall
isotropic strain increment, and, according to equation (18), it
is equal to the matrix strain increment. The loading vector da
— s, df represents total mechanical load that must be applied
to the composite to reflect the effect of simultaneous applica-
tion of da and df. M is the instantaneous overall compliance
corresponding to this loading vector.

The stresses caused in the phases by simultaneous applica-
tion of da and df are:

do;=57vd0+ B, (do—s,df)
do,, =s;1d0+ B, (do—s,df)
where B;, B, are the instantaneous concentration factors for
the overall mechanical load increment dé — s,df. If these in-

crements are described by equation (27), then the instan-
taneous thermal stress concentration factors become:

(48)

by=s7v—Bs, @9)
b, =571 _Bmsa

Equations (45) to (49) convert in an exact way the ther-
momechanical problem into a mechanical loading problem
along the incremental path dé — s, df.

Next, consider loading by dé and df. The composite is first
subjected to loading by df, dS,, and dS;, which causes
isotropic strains h d¢ in both the composite and matrix. Since
the overall strain increment is now prescribed, the h df and
any additional overall strains must be equal to dé. Hence, the
overall stress increment is:

do=s, df+ L{de—h df) (50)
A comparison with (1,) again yields (29):
1=—s,+Lh. (51)

While s, is not isotropic, together with df it causes an isotropic
stress increment s+ 1 df in the matrix. This is found from
equation (23) at p = 1. Accordingly, plastic loading of the
composite is caused only by the second term in equation (50).
The overall mechanical strain is equal to dé — h d4. L is the in-
stantaneous overall stiffness corresponding to this strain
mcrement.
The strain increments in the phases are:

de,=h df + A, (dé —hdb)
de,,=h do+ A,, (dé— hdb)

where A;, 4, are instantaneous strain concentration factors
for overall strain dé — hd8. If equation (30) is used, then the
instantaneous thermal strain concentration factors are:

af=(Af—1)11
a, = (Am _I)h

(52)

(33

Inasmuch as the instantaneous M and L may have as many
as 21 independent coefficients, the vectors m in equation (46)
and 1 in equation (51) may have 6 independent coefficients.
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For example, m assumes the form (41), with o; (i = 1 to 6)
representing instantaneous thermal expansion coefficients of
the composite.

As in the previous case, equations (50) to (52) convert in an
exact way the thermomechanical problem into a mechanical
deformation problem along the path dé — hd#. It is seen that
in both cases the thermal and mechanical effects are coupled,
even though phase mechanical properties do not depend
directly on temperature.

(fi) Two-Phase Composites. Finally, we consider the
two-phase composite with isotropic phases of arbitrary
geometry, Section 3. The reinforcement phase (f) is assumed
to remain elastic, while the matrix phase () may become
elastic-plastic when a given yield condition has been satisfied.
In the plastic region, the matrix constitutive relation is de-
scribed by equation (2), with M,, and L, replaced by instan-
taneous compliance and stiffness. Again, M, and L, are
assumed to be piecewise linear, symmetric, and satisfy the re-
quirement of plastic incompressibility of the matrix. Also, we
assume that overall instantaneous properties M and L of the
composite, as well as the instantaneous concentration factors
A,, B, can be evaluated for any purely mechanical overall
stress or strain increment in the elastic and plastic range.

To find instantaneous thermal properties m, 1, and the con-
centration factors a,, b,, we again consider a representative
volume V of the composite which has been loaded to current
uniform overall stress &°, strain &°, and temperature §,. The
volume V is now subjected to additional increments of dé and
de, or de and df. As in Section 3, we apply overall increments
of temperature df and of isotropic stress dS, with dS given by
equation (35). Resulting phase stresses and strains follow from
equation (33), they are isotropic and by assumption cannot
cause plastic deformation in the matrix. The surface tractions
or strains must now be adjusted to satisfy the prescribed da or
dé at the boundary S of V.

For the case df and da applied simultaneously one obtains
the overall composite strain increment

dé=qd0+ M (dé—sdf) 54
where q and s are given by equations (35) and (36), and M is
the overall instantaneous compliance for the mechanical stress

increment dé — s df. '
A comparison with (1,) again yields the form (37)

m=q—Ms (55)
The stresses caused in the phases are:
do,=sdf+B,(do—sdb
o 7 (do—s db) (56)

do,=sd0+B, (do—sdf)

where By, B,, are instantaneous stress concentration factors
for the overall mechanical load increment dé — s df. From
equations (27) and (56), the instantaneous thermal stress con-
centration factors are:
b,;=(I-Bf)s, b,=(—B,)s (61))
For the case of db and de applied together, one obtains the
overall stress increment
do=sdf+ L(de—qdb) (58)
and
(59)
where L is the instantaneous composite stiffness for the
overall strain increment dé — q d@, and q is given by equation
(36). The phase strain increments in this case are
de;=qdi+ Ap(dé—qdb)
de,,=qdf+A, (de—qdb)
and the instantaneous concentration factors:

I=-s+1q

(60)
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a,=(A4,~Dq, a,=(A,-Dq (61)

where A;, A, are instantaneous strain concentration factors
for an overall mechanical strain increment equal to dé — q db.

Equations (54), or (58), again convert in an exact way the
thermomechanical loading problem into a mechanical one
along a loading path dé — s d@, or a strain path dé — q db,
respectively. As in the case of a fibrous composite, the thermal
and mechanical loading effects are coupled in the instan-
taneous M, L, and A4,, B,.

5 Discretization of the Phases

Results of the previous sections depend on the availability
of overall instantaneous mechanical stiffnesses, compliances,
and phase concentration factors in each loading step. These
quantities need to be evaluated for a certain model geometry
of the composite material. An important consideration in the
choice of a material model is the fact that the thermal loading
paths dé — s, df in equation (45) and d& — s df in equation
(54), as well as the thermal strain paths dé — h df in equation
(50) and dé — q df in equation (58), may have a significant
isotropic component. That is easily seen from the definitions
(24), (36), and (47) of s,, s, h and q. It follows that the
material model chosen for analysis of the mechanical response
must give reasonably accurate predictions when the composite
is loaded by isotropic overall stresses or strains. This restric-
tion may exclude certain models which are primarily useful in
predicting the behavior of a fibrous lamina under in-plane
loads, such as the VFD model (Dvorak and Bahei-El-Din,
1982).

Another important consideration in the choice of a material
model is the fact that when the matrix phase becomes plastic,
the local properties (2) are stress-dependent, and therefore, L,,
and M,, are no longer spatially uniform. Even if (2) are
regarded as relations for averages in the phases, the phase
properties need to be determined for the actual local fields or
their approximations. This excludes application of certain
averaging techniques, such as the self-consistent method,
which assume that phase fields are uniform.

These considerations suggest that the chosen composite
model should be based on a specific representative geometry
of the microstructure, which allows for discretization of each
phase into a number of subelements with locally uniform
fields. An example of such an approach was outlined by
Dvorak and Teply (1985). In general, if the representative
volume of the composite and the phase geometry in this
volume are specified, then each phase can be subdivided into a
certain number of finite elements, and the overall properties
L, M, local properties in the plastically deforming
subelements, as well as the concentration factors for each
subelement can be calculated for any load or strain increment.

Suppose that the subelement stresses, strains, as well as the
stiffnesses and compliances of plastically deformed
subelements have been found for a certain increment dé or de
applied to the representative volume at df = 0. Let subscripts
i, and j, denote subelements in the matrix and fiber, respec-
tively. If the partial contributions of each row of do or dé are
identified, one can write the uniform subelement fields in the
form

do;, =B, do de;;=B;do

de;, = A;,da de;r=A;dé

where the A, B are instantaneous subelement concentration
factors.

One can also write the following relations between the

overall averages and the uniform local fields in the
subelements of the representative volume:

do=Lc,do,, +Lc;do,

(62)
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(63)
dé=Tcde,, +Ie;dey

where ¢;, ¢; are subelement volume fractions such that
Z:ci = cm 3 (64)

Using equations (62) and (63) one can obtain the average
phase concentration factors

Lci=cp CrtCy=1

1 1
Ay = Ec;Ajp, B, = c Lc; By,
m m 65)
1 1
Af=—————- EC,»A” Bf=— ECij-f
r r

From the local instantaneous L;,, M, in the plastically
deforming subelements, known L,,, M,,, L, M, in the elastic
subelements, -and equations (62) to (65), one can find the
overall instantaneous properties as:

L=5¢;LyA i +Ec; LAy
M=Xc;M,,B,,, +Xc;M B,
The local thermal strain vectors m,, and m, remain constant in

each subelement, at least for a given df, and equal to those of
the elastic phase. These thermal stress vectors are:

(66)

(67)

The decomposition procedure can now be applied to the
discretized representative volume. The results follow from
those presented in Section 4.

In the fibrous composite one obtains: For da # 0, df # 0,
the overall strain increment dé, and overall m, follow from
equation (45) and (46), with M taken from equation (66). The
local subelement stresses and thermal stress concentration fac-
tors are, in analogy with equations (48) and (49):

d6,7=57yd0+ B,y (do—s,d0)
d,, =s71d8 + By, (d5 —s,d0)
by =577 =B,

Ly =L m,, lf=Lfmf

(68)

bim =SrYy _’Bimsa
For de # 0 df # 0, the overall stress increment ds and
overall 1, follow from equations (50), (51), and (66), and the
local fields and thermal strain concentration factors are as in
equations (52), (53):

dé;;=hdf + A (dé—hdb)
dé,, =hdf+ A,,, (dé—hdo)
a;=(A;,;~1h
8y = (A —Dh

These results can be utilized to find average instantaneous
thermal strain concentration factors in the phases as:

(69)

1 1
af="—c}"‘ Ecjajf bf:'—gf— Ecjbjf
(70)
a,= L Lc;a b, = L Zc;b
m = C 1%im m= C iYim

6 Related Applications

- In addition to mechanical and thermal loading, the com-
posite may also undergo a phase transformation such that one
or both phases, if free, experience a volume change over an in-
crement of temperature df:

dvV,/V=del, =3w,d0 (r=Ff,m) (1)

Furthermore, composites with polymer matrices may absorb
moisture. This causes swelling of the unconstrained matrix
material. If the moisture concentration is uniform, then
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dell = 3~,,dc (72)

where v, is the linear swelling coefficient and c is moisture
concentration. If the matrix remains elastic in dilatation, and
inviscid, then the above theory may be applied with the
following adjustments.

Suppose that df and dc are applied simultaneously and that
a free phase r undergoes total volume change

dely, = (dely +del, +defi,), (73)

If this superposition holds in a piecewise linear manner,
then one can write in phase r for each loading step

dely =3, + Ew, + {ry,)do (74)
where, in a particular loading step n:
h= (el /deli),s = (dely/defy),
are known distribution coefficients. Hence,
dely, =31+ &+ &) e, db. (75)

This suggests that for each loading step # one can evaluate a
certain multiplier of 3d8 that can be substituted for the instan-
taneous linear thermal expansion coefficient of phase r in
equation (2). Indeed, even in the case of thermal loading alone
it may be appropriate to change «, with temperature, and that
is obviously possible in the present theory.

7 Discussion

Although the results are valid only for the two binary
systems, they apply to most composite materials of practical
interest. For the composite systems in question, the elastic
values of m and 1 found from equations (26) and (29) are iden-
tical with those that can be calculated from Levin (1967) for-
mulae, or equation (2.20) in Rosen and Hashin (1970) and
equation (33) in Laws (1973) which are all similar and valid
only for elastic composites. However, the methods used in
deriving these equations, and their internal structure, are en-
tirely different from those in the present paper. The decom-
position used herein makes it possible to find overall ther-
momechanical response of the composite in the plastic range
in terms of instantaneous overall mechanical properties and
thermoelastic constants of the phases. Also, average instan-
taneous phase stresses and strains are found in terms of
mechanical concentration factors. All these relations are ex-
act. They make it possible to convert any available facility,
such as a computer program for analysis of isothermal elastic-
plastic behavior of the two composite systems to one which
can analyze the effect of both mechanical loads and uniform
changes in temperature, as well as other transformation
strains in the phases.

It has not escaped our attention that equations similar to (7)
to (10) can be written for three-phase fibrous composites. The
resulting system has at most one solution, and if it exists it
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leads to evaluation of overall thermal vectors and local ther-
mal concentration factors for the elastic three-phase materials
which are analogous to those derived in Section 2. However,
no additional constraints are allowed in this case, hence equa-
tion (11) cannot be introduced, and, therefore, it is not possi-
ble to analyze elastic-plastic deformation of the three-phase
aggregate by the method of Section 4(7).
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Calculation of Interlaminar
Stresses in Composite Materials

A simple and efficient method is presented to determine the interlaminar stresses in a

symmetric composite laminate under uniaxial loading. Expressions for the in-
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terlaminar stresses are assumed in terms of exponentials based on shapes that the in-
terlaminar stresses must take in order to assure overall (integral) force and moment
equilibrium. The boundary conditions and the traction continuity between plies are
satisfied exactly. The exponential terms in the stress expressions are determined by

minimizing the laminate complementary energy. Typical results are presented and
compared with previous results found in the literature. The current method is shown
to efficiently deal with the problem including the ability to perform the analysis of
thick laminates (100 plies or more) with relative ease and cost-effectiveness.

1 Introduction

It is well-established (Pipes and Pagano, 1970) that at free
edges in composite laminates, interlaminar stresses arise due
to a mismatch in elastic properties between plies. Thus, in this
region near the free edge known as the boundary layer,
Classical Laminated Plate Theory is not valid and a full three-
dimensional state of stress is present. These interlaminar
stresses can lead to delamination and failure of the laminate at
in-plane loads which are significantly lower than the loads at
which the laminate would fail if only in-plane fracture were
the failure mechanism (e.g., Lagace, 1983).

Numerous investigators have used a variety of methods to
attempt to calculate these interlaminar stresses at straight free
edges. These methods include finite difference (e.g., Pipes and
Pagano, 1970), finite elements (e.g., Rybicki, 1970, and Wang
and Crossman, 1977), and stress potentials (e.g., Wang and
Choi, 1982a). There are two main problems in the current
methods used to calculate interlaminar stresses. The various
methods often yield different results for the same problem
(Whitcomb et al., 1982). In addition, the methods require
large amounts of computer storage and computer time and are
therefore not cost-effective. In addition, some of these
analyses do not exactly satisfy the boundary condition that the
free edge is stress free.

The computation limitations are inherent in the methods
which are utilized. Finite difference methods involve the solu-
tion of very large systems of equations and require tedious ex-
trapolations. Pipes and Pagano (1970) report using 120 CPU
seconds on an IBM 360-365 to solve the 1200 by by 1200
problem for a simple four-ply laminate. Finite element

lCurrently Research Assistant, Beech Aircraft Company, Wichita, KS.
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methods require the use of meshes with a large number of
elements even for the case of four-ply laminates. Other
methods proposed are also limited to few plies either because
intermediate numbers generated are so large that most com-
puters cannot store them (Pagano, 1978) or involve the use of
unknown parameters, the value of which cannot be determin-
ed exactly (Hsu and Herakovich, 1977). The eigenfunction
method developed by Wang and Choi (1982a, 1982b) involves
the solution of a complicated and tedious eigenvalue problem
and requires the use of a collocation technique at every ply in-
terface in order to satisfy traction continuity. This limits the
application of this technique to relatively thin laminates.

These limitations make it hard for the methods to deal with
laminates that have more than ten to twelve plies. Thicker
laminates generally cannot be handled by the methods
developed or require an inordinate amount of computer time
and storage, and thus cost. In the preliminary design phase, it
is necessary for the designer to have access to an efficient
means to analyze laminates in order to select a few for final
consideration. Current restrictions on analysis limit the
laminates which can be considered.

There is only one method, to the authors’ knowledge, that is
capable of analyzing thick laminates. This is a global-local
model developed by Pagano and Soni (1983). However, this
method involves substituting part of the laminate with an
equipollent system. The solution is very sensitive to the
substructuring scheme and the results may differ significantly
from one scheme to another. Furthermore, a different ‘‘lump-
ing”’ scheme is required for different plies in the same
laminate which makes the procedure inefficient in that it must
be repeated for different plies within the same laminate and
there are no specific guidelines as to how this ‘““lumping’’
should be done.

The solution method presented herein, based on overall
force and moment equilibrium and the principle of minimum
complementary energy, calculates the three-dimensional stress
state in laminated plates. The analysis is meant to fulfill the
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Fig. 1 Geometry for problem of a laminated plate under uniaxial
toading

Fig. 2 Free body diagram of a section of a laminate at the free edge

need for a simple, efficient, and cost-effective technique to
calculate interlaminar stresses which the designer can use,
especially in preliminary design stages, to avoid delamination-
prone laminates.

2 Formulation

A composite laminate under uniaxial load is illustrated in
Fig. 1. The out-of-plane direction is denoted by z, as opposed
to x;. In order to determine the three-dimensional state of
stress in the laminate, three assumptions are made. One, each
ply is treated as macroscopically homogenous and is
represented by its three-dimensional elastic constants. This ef-
fective modulus approach has the effect of ‘‘smearing out”’
the individual behavior of the fiber and matrix and is valid
over distances sufficiently larger than the size of an individual
fiber (0.0076 mm for typical graphite). Two, far from the free
edge, the classical laminated plate theory solution is recovered
and the interlaminar stresses are thus zero. Three, away from
the effects of load introduction, stresses do not depend on the
longitudinal direction x;. .

In addition to these assumptions, the stress field must
satisfy several boundary conditions. One, the top and bottom
surfaces of the laminate at z equal to =h/2, where # is the
total laminate thickness, are stress free. Two, the x, faces of
the laminate at x, equal to +&, with 25 as the total laminate
width, are stress free. Three, the boundary condition in the x,
direction is that there is some applied uniform traction &,,.
Four, traction continuity must be satisfied from ply to ply.

Journal of Applied Mechanics

3 Solution

The solution is based upon the qualitative description of the
interlaminar stress field obtained by enforcing overall
equilibrium (Pagano and Pipes, 1971) and the application of
the principle of minimum complementary energy. By
judiciously placing a rectangular parallelepiped element so
that its x, faces correspond with the stress-free edge and center
plane of a laminate, as shown in Fig. 2, six general equations
are derived from overall force and moment equilibrium con-
siderations (Lagace and Kassapoglou, 1985):

SZ‘*‘ Ulzdx_ SZ_ Ulzdx— SZ‘“ Glzdz=0 (1)
- Sz— 0ydz+ §Z+ Oy, dx — Sz* 05, dx=0 ?)
Sz+ 0 dx— Sz— 0,dx=0 3)

Sz— 05,2d7— §z+ O, XdX + Sz* azzxa'x—hSZJr 0,,dx=0 (4)
- SH oy, dxdz— Sz— anzdz+hgz+ o, dx=0 (5)

S1+ o1,dxdz — SZ+ o, (b—x)dx+ Sz_ o, (b—x)dx=0 (6)

where the subscript on the integral sign represents the face
over which the integral is taken as referenced to Fig. 2. For
convenience, a coordinate transformation has been
introduced:

x=b—-x, @

such that the origin of x is at the free edge. The choice of x;
faces for this parallelepiped is arbitrary due to the assumption
that there is no variation of stress in the x, direction. The z
faces can also be chosen at any location. The location choice
will depend on the z location which is to be considered. It will
later be convenient to choose ply interfaces as z face locations.

Given these equilibrium equations, the solution procedure is
a three step process: one, stress shapes are chosen that satisfy
equilibrium on an integral (equations (1) through (6)) as well
as differential basis; two, the specified boundary conditions
and traction continuity at ply interfaces are satisfied; and
three, the remaining unknown parameters are determined by
minimizing the complementary energy of the entire laminate.

3.1 Choice of Stress Shapes. It is assumed that for each
stress (except o{F) the x, dependence and z dependence can be
functionally separated. Using the axis transformation of equa-
tion (7), the stresses in the kth ply of an n-ply laminate can be
expressed as (with no sum on / and j):

o) =fiF (x)eff) (z) ®)

given that the stresses do not depend on x;. The f{}’ (x) and
2§ (z) are functions to be determined for each ply. It will
later be shown that the longitudinal stress off) can be ex-
pressed as a combination of the other stresses. For simplicity,
the laminate will be assumed to be symmetric and balanced.
However, the analysis can easily be generalized to other types
of laminates.

The use of these expressions in the three equations of dif-
ferential equilibrium yields equations for the unknown func-
tions which can be placed in four functional groups:

SE _

DLy ©
dr are
Y o, B _pp 10)
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03))

e =22 g - (12)
Thus, the minimum number of functlons that must be as-
sumed is four, with the remaining functions determined using
equations (9) through (12).

Consider the g’ (z) functions first. The assumption that
far from the free edge the classical laminated plate theory
solution is recovered shows that #% and &{§ are constants

outside the boundary layer in a given ply. (Note that the ~

denotes the in-plane stress value determined from classical
laminated plate theory). This implies that the g,(j"’ (z) func-
tions corresponding to these two stresses are constants. Using
this fact and equations (11) and (12) yields the basic expres-
sions for the five g,g-") (z) functions:

g% (z) =B (13)

gi¥) (z) =B§p (14)

gi¥ (2) =B{z+B{® (15

g8k () =B§"’z+B£"’ (16)

g ()= B§") +B§k>z+3§k> an

where the Bf*) are constants to be determined for a specific
ply.

The determination of the f{¥ (x) requires the well-known
fact (Pagano and Pipes, 1971) that o,, must cross the x axis at
least once and must decay to zero away from the free edge in
order to satisfy overall equilibrium. To satisfy these condi-
tions, /3§’ (x) is chosen to be a linear combination of two ex-
ponential functions in x. Exponential functions are needed
since o,, must drop rapidly to zero away from the free edge.
The algebra is more straightforward if, instead of a shape for
A (x), a shape for f1£) (x) is assumed:

S0 (x) = AR e=x 4 AP e—Mx 4 40 (18)

where the A{%*) and N\ and ¢ are unknown constants to be
determined. The constant A is introduced so that far from
the free edge the constant value of 5% predicted by classical
laminated plate theory can be recovered. The dimensions of ¢
are 1/length and A is dimensionless. The exponents \ and A¢
are assumed in that particular form since the final form of the
equations for A and ¢ becomes less cumbersome.

As previously noted, the requirements of integral
equilibrium imply that o,, must cross the x axis at least once.
However, this does not preclude multiple crossings. For each
additional crossing, another exponential term would be
necessary, although additional exponential terms would not
guarantee additional crossings. The solution for the unknowns
will be obtained by minimizing the complementary energy of
the laminate. A mode which has more crossings of the x axis
intuitively represents a higher energy mode. This is analogous
to higher modes in plate vibration and buckling, Thus, the
assumed mode with two exponentials and only one crossing
represents the lowest energy state while still satisfying the re-
quirements of overall equilibrium. It is thus proposed that if a
solution exists using this mode, it represents the minimum
energy and is thus the proper solution.

Similar requirements lead to an assumed shape for f{§ (x):

SB () =AfP + AR e (19
The same exponent is used for f§(x) as is used for fi (x).
This is mandated from the following argument. If the assump-
tion that stresses do not depend on x, is relaxed and a more
general problem is considered, the stresses o{f) and off
become coupled via the equations of differential equilibrium.
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Maintaining the assumption that the functional dependencies
are separable implies that ¢4 and o{%) must have the same
form for their x dependency. The case considered here is a
degenerate case of the more general problem. However, this
argument should still apply and thus the same exponent can be
used for fI§ (x) as for /1§ (x).

The utilization of equations (9) and (10) enable the deter-
mination of the remaining f{*’ (x) functions:

) (x) = A g o 4 N2 A e 20)
T (x) = — AR pe=#* —NpAfH e Mo @1
S (x) = —pAfR e~ (22)

The choice of stress shapes is now complete.

3.2 Boundary Conditions and Traction Continuity. The
AP for each ply can be expressed in terms of the stresses
determined from classical laminated plate theory by applying
the traction free condition at x equal to 0:

~ (k
AP = --(l)‘\ij% (23a)
P i
A =2 (23b)
AfP = 64 (230)
A0 =afp @30)
AP = —5( (230)

The B{® are determined by applying traction continuity at ply
interfaces starting from the bottom surface of the laminate
and proceeding towards the midplane (as defined in Fig. 1). At
the interface between ply k+1 and ply k, the three in-
terlaminar tractions (stresses) a,,, 0y,, and ¢,,, must be con-
tinuous. The constants Bf¥) are determined in succession by
this process by utilizing the traction free condition at the top
and bottom surfaces of the laminate. The Bf*) for a particular
ply will therefore be dependent on the value of B{® in all the
plies below that particular ply:

Bb =1 (24a)

B = E o) (24b)
J=k+1

B{9 =1 (240)

Bﬁk)= E 5%”0) (24d)
J=k+1

B9 = E tD g4 {_1_,«(1)+ E t(m)} (24¢)
J=k+1 m=k+1

where both B{** and B{** can be set to one without loss of

generality. The £® are the thicknesses of the individual layers.
The final general expressions for the stresses in the kth ply

can now be summarized using the results for B{*), A%,
(k) (z) andf(k) (x)

o =atp [1--2 (e-W———e-W)] (25)

o =gt (xe—W—e ) (s 5“
I -
o =g (o4 em) (52 + BP0 ) @7
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off) = ge=o* (s 2+ B ) (28)

off =519 (1-e=) 29)
The constants B{¥) contain the stacking sequence information
in their expressions. :

Different values for A and ¢ could have been assumed for
each ply. However, the condition of traction continuity at
each ply interface would result in A and ¢ being constant
throughout the laminate as is assumed here. To illustrate this
concept, consider the o, stress at any ply interface defined by
some value of z. Since o, must cross the x axis in order to
satisfy integral equilibrium, o, will equal zero at some point
x. This point must be the same within two plies in order to
satisfy the requirements of traction continuity. This can only
be satisfied if A and ¢ are the same throughout the laminate.
Similar arguments can be made for the o}, and o, stresses as
well.

Since it was assumed that stresses do not depend on x,, ¢{f)
dropped out of the equilibrium equations. To determine the
expression for o{¥) in each ply, the stress-strain and strain-
displacement equations are utilized. This procedure, presented
in Appendix A, results in the equation:
ofp =g {sth ot +stpagp + sipoip )

1
~ {sthot ~stpo® ~spoib | | (30)
where the S§ are the ply compliances.

The expressions for the stresses in each ply are now com-
plete and all the constants can be found except for A and ¢.
All the requirements of equilibrium have now been satisfied.

3.3 Minimization of the Laminate Complementary
Energy. The remaining two undetermined constants A and ¢
are found by minimizing the complementary energy of the en-
tire laminate. The expression for the laminate complementary
energy, II., is the sum of the contributions of each of the in-
dividual plies:

"o
= —_— TQ (k) _ T
¥y > SHW)« SWedy HA TTadA 31

where ¢ is the stress vector, S is the compliance tensor, V) ig
the volume of the kth ply, A, is the area over which
displacements u are prescribed, and T is the traction vector
corresponding to those displacements.

Due to the geometrical symmetry about the x, plane at x,
equal to zero (or x equal to the width b), only half of the
laminate need be considered. In addition, the current analysis
is restricted to the case of midplane symmetric laminates. The
problem is the same independent of which outer z face is con-
sidered to be the ‘‘top’’ or ‘‘bottom’’ of the laminate. Thus,
only one-half of the stacking sequence need be considered in
minimizing the energy. Finally, since stresses do not depend
on x|, the expression for II, can be evaluated per unit of length
without changing the final expressions for A\ and ¢.

The stress expressions of equations (25) througli (30) are
used in the equation for the complementary energy. It is as-
sumed that the laminate is wide enough so that e~ and e—#?
are approximately zero. This is valid if the thickness to width
ratio of the laminate is less than 0.1,

The value of II, is made stationary by taking partial
derivatives of the expression for II, with respect to the two
unknowns A and ¢ to yield the two equations:
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SN+ IV, + X2 2 Sy )

FGQf 1 s~ 20— M) | AN+ 85 +6F)

+2fc +4fs+3f1=0 (32)
and
Al
—&{= 39N, + 82 {)\z(ﬁs +2f11 + 3= 2f 10— 2f5) + )\f4}
N4 6y 3, + 2065 41)]
N[ 8+ 36,4205 + 209
+4f5+3f1 +2f,=0 33)

which are to be solved simultaneously for \ and ¢. The f; are
coefficients given in Appendix B.

Both equations (32) and (33) are biquadratic in ¢. This
makes their solution simpler and is a direct consequence of the
way the exponential terms were assumed in the expressions for
AF) and f4). In general, there are sixteen pairs of N and ¢
values which satisfy equations (32) and (33). From these, only
the pairs with real and positive A and ¢ are admissible and, if
there are more than one such pair, the one that minimizes IT, is
the correct solution pair. Since equation (33) is cubic in A,
there is at least one real A value that is a solution to both equa-
tions for a given value of ¢.

It is important to point out that the procedure used here is
general and that other stress expressions could be used and
results obtained provided that these stress expressions satisfy
the requirements of integral and different equilibrium. It was
felt that the two-exponential form of the expressions best
represented the physical reality of the situation. It is also im-
portant to note that in assuming stress shapes, interface
displacement continuity is not satisfied. It is felt that this is not
a serious drawback since the interlaminar stresses are the im-
portant factors in delamination.

4 Computer Implementation

The two resulting equations for A\ and ¢ must be solved
numerically. This involves a five-step process:

(1) A starting value is picked for ¢. An order of magnitude
analysis shows that the product ¢# is of order 1, where % is the
total laminate thickness. This fact was used in arriving at the
expression for the starting value of ¢ of 4.4/h.

(2) 'This initial value of ¢ is substituted into equation (32)
and solutions for A (both real and complex) are obtained using
the Newton-Raphson method.

(3) The A value which, along with the ¢ value utilized,
minimizes II,, is substituted into equation (33). This equation
is quadratic in ¢2, and thus relatively easy to solve for ¢.

(4) Of these solutions for ¢, the one which, along with the
A value utilized, minimizes the complementary energy is used
as the corrected value for ¢ in repeating this process beginning
with step two.

(5) The procedure is repeated until a predetermined degree
of accuracy for ¢ and A is achieved.

In this investigation, the scheme was considered to have con-
verged if the ¢ values for two successive iterations differed by
less than one part in a million.

The above scheme was implemented in FORTRAN on a
PDP-11/34 computer. The computer program uses the
laminate information (ply orientations, ply thicknesses, elastic
constants for each material type) and the classical laminated
plate theory solution as input. The output consists of the com-

DECEMBER 1986, Vol. 531747

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 1 Computation times for various laminates

Number of Number of CPU Time On Actual Run Time On
Plies Iterations VAX 11/782, seconds PDP-11/34, seconds
4 0* 0.20 2
6 8 1.01 15
12 15 2.66 30
50 50 3.29 80
100 69 5.37 120
*Solution is obtained in closed form.
14
14| [+45/0/90]
[£45/0/90] i . ¥ .
2 o @ +45/-45 Interface
@ 0/90 Interface s
1o} - 1or
[(+]
o 8| 9 81
g - Present ol —— Present l
Py v | !
o 6 —.— Wang & Crossman, Ref [5] NG 6 Wang & Crossman, Ref [5] |
— N
* a4l 5 4t
X
R T
b
0 e 1 1
-'\_/ 0.2 0.4 0.6 0.8 1.0
-2t X, /b
-al Fig. 5 Interlaminar shear stress ¢, at +45/—45 interface of
[+45/0/90]4 laminate
-6 ™ . . . v .
1 1 1 1 L ) 1 1 1 using this procedure. The computer program is very efficient
0.2 0.4 0.8 0.8 1.0 and convergence is generally achieved after relatively few
Xp/b iterations (see Table 1). There are some cases where no itera-
tions are needed and the running time for the program is very
Fig. 3 Interlaminar normal stress o,, at 0/90 interface of a [+45/0/90]s  gmall,
laminate In order to gain some insight into the accuracy of the ap-
proach and program, similar cases to those reported in the
al + literature were analyzed. Specifically, the case of a
[-—45/ o/ 90]3 [ +£45/0/90]; graphite/epoxy laminate under uniaxial loading
was analyzed. The following basic ply properties were used:
2 =
5 @ 0/90 Interface E, =138 GPa G,,=5.9GPa »,=0.21
s E;,=145GPa Gy =59GPa »;=0.21
g E;;=145GPa G =5.9GPa  »y; =0.21
o This laminate, with these ply properties, was analyzed by
- Wang and Crossman (1977) using a finite element scheme with
v constant strain triangular elements and 792 degrees of
~ freedom.
& -8 P ¢ The current technique yields a solution in under 15 seconds
resen of run time on the PDP-11/34 computer. The resulting values
-gl == Wang & Crossman, Ref [5] for ¢ and A are 42.91 1/m apd 2.381, respectively. Generally,
the two methods yield relatively the same results. Three ex-
ok . . . amples of the results for the interlaminar stresses are presented
0.2 o . L L L L L in Figs. 3, 4, and 5 to illustrate the similarities and differences
' 4 0.8 0.8 "0 in the solutions. The results presented in Figs. 3, 4, and 5 are
X /D for the interlaminar stresses o,, and o,, at the 0 deg/90 deg in-
Fig. 4 Interlaminar shear stress oy, at 0/90 interface of a [+45/0/90] ¢  terface and for ¢;, at the +45deg/—45 deg interface,

laminate

pliances for each ply, the value of X and ¢, and the constants
in the stress expressions of equations (25) through (30) for
various z locations (chosen as the ply interfaces in this case).

5 Results

Many different cases with laminates of different thicknesses

and different materials (within the same laminate) were solved
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. respectively.

For the interlaminar normal stress, the two techniques yield
virtually the same result as evidenced in Fig. 3. However, the
results are not as similar for the interlaminar shear stresses as
evidenced in Figs. 4 and 5. For these cases, the two methods
produce similar results away from the free edge, but diverge
slightly as the free edge is approached. In the case of o5, at the
0 deg/90 deg interface, the current solution technique exactly
satisfies the traction free boundary condition, while the finite
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element technique of Wang and Crossman predicts a finite
value at the free edge. Several other previous solution pro-
cedures also do not exactly satisfy the traction free boundary
conditions. .

This may be related to the existence of a weak stress
singularity at the free edge. This is suggested in the solution of
Wang and Crossman for ¢;, shown in Fig. 5 while the current
technique does not capture this behavior. S. S. Wang and
Choi (1982b) have shown that the stress field is indeed singular
at the free edge based on the assumption that a composite ply
can be represented by effective elastic moduli (i.e., ‘“‘smeared”’
properties). However, Soni and Pagano (1982) have noted that
these free edge stress singularities simply represent an artifact
of the effective modulus approach. It has been further noted
by Wang and Crossman (1977) that these singularities would
probably dissipate themselves into the laminate resulting in
stress redistribution and/or relaxation. Furthermore, the
strength of the stress singularities reported by Wang and Choi
is so small that it becomes dominant over a region that is so
close to the free edge (a few fiber diameters away) that the
assumption of material homogeneity breaks down. This does
not invalidate their solution, but it also means that methods
which do not predict/incorporate a stress singularity, such as
the present technique, are equally valid. In that small region
very close to the free edge, any analysis that treats the material
as homogeneous is not truly valid and a modified theory that
accounts for the bimaterial nature of the laminate must be
used. However, over the remainder of the boundary layer, all
these analyses are valid.

Thus, especially in a solution technique oriented toward
preliminary design, the exact value of the stresses at the free
edge is not important. This is further emphasized by recent
results on delamination reported by Kim and Soni (1984)
where they suggest that delamination is controlled by the
stresses averaged over some distance from the free edge.
Therefore, the current technique provides sufficiently accurate
results for the purpose intended, and these results do exactly
satisfy the stress-free boundary conditions.

6 Efficiency of Solution Technique

The efficiency of the present method was better assessed by
transferring the program to a VAX-11/782 computer so that
CPU time measurements could be made. Cases ranging from
four to one hundred plies were successfully run. It should be
noted that for all cases, the stacking sequences were chosen in
such a way that no simplifications could be made by lumping
part of the laminate or treating a sequence of plies as a single
ply. For the fifty and one hundred ply cases, more than fifteen
different ply orientations were used. The CPU times needed to
obtain solutions for the various laminates are shown in Table
1. The approximate run times (actual and not CPU time) on
the PDP-11/34 computer are also given.

Previous investigators have reported CPU times for their
analysis techniques. Pipes and Pagano (1970) report using 120
CPU seconds on an IBM 360-365 for the analysis of a simple
four-ply laminate using a finite difference scheme. Wang and
Crossman (1977) report using 12 CPU seconds on a
UNIVAC-1108, again for the same four-ply laminate using a
finite element method.

Three different computers were used in these three cases,
VAX-11/782, IBM 360-365, and a UNIVAC-1108. Thus, a
direct comparison of CPU time cannot be easily made.
However, these three computers are of relatively the same
class and thus order-of-magnitude comparisons can be made.
The CPU times reported in Table 1 show that the current solu-
tion technique is more efficient than the other techniques.
Even for one hundred ply laminates, the CPU time used by the
present method is still less than that reported for four-ply
laminates in the two other cases. Furthermore, doubling the
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number of plies increases the computation time in the current
case by less than double indicating that laminates with even
larger numbers of plies can be efficiently analyzed.

The actual run times on the PDP-11/34, a much less power-
ful computer, are also small. Furthermore, the program re-
quires relatively little memory space for operation. This im-
plies that the program can be successfully and efficiently im-
plemented on personal computers. Thus, the technique allows
a cost-effective method for the calculation of interlaminar
stresses in composite laminates.

7 Summary

A simple and efficient method was presented to determine
the interlaminar stress field at straight free edges in symmetric
composite laminates under uniaxial load. The method is based
on assumed stress shapes suggested by the considerations of
integral equilibrium and the final solution is obtained by the
minimization of the complementary energy of the entire
laminate. The solutions obtained compare well with a previous
solution in the literature which utilizes a tedious finite element
analysis.

The present method is at least an order of magnitude more
efficient (in terms of CPU time) than previous analyses
reported in the literature. Solutions were obtained for
laminates of up to one hundred plies, and even thicker
laminates could be solved with relative ease. This efficient
analysis technique gives the designer the ability to cost-
effectively perform parametric studies early in the design pro-
cess and to look at the effects of various parameters such as
ply thickness, material type, and stacking sequence on the in-
terlaminar stress state and, ultimately, on delamination. This
results in greater flexibility in design without a substantial in-
crease in effort or cost. The adaptability of the computer pro-
gram to personal computers also makes it a valuable research
and teaching tool.

The present analysis is limited to the case of a straight-edged
laminate under uniaxial load. However, the approach is
general and could be adapted to more complex situations such
as the interlaminar stress field around a hole in a laminate.
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APPENDIX A

Since it was assumed, in the main text, that the stresses do
not depend on x,, the longitudinal stress o{f> drops out of the
equilibrium equations. To determine o{f? in each ply, the
stress-strain and strain-displacement equations are utilized.
The general stress-strain relations can be inverted and placed
in the strain-displacement equations to yield:

1 7/ du ou; ..
Eij:SUk’ak’:—Z_( 6xl. + 6xj. ) iikil=1,23 Al
j i

where the S, are the material compliances. These equations
can be integrated (engineering notation is now used for the
compliances) to give the general expressions:

u= (81104 + 51205 + 8130, + 8160120 +F(x3,2) (A42)
U= S12 Salzde + Szz Sazzde + 823 Sazzde

+ 85 S"lzdxz‘*‘G(xl »2) (43)
and
W=S13 S(I”dz+ S23 Sazzdz+ 833 So'zzdz

-+ S36 S(ledz+H(xl ,x2) (A4)

where the F, G, and H are unknown functions. These expres-
sions are substituted in the equations which relate the shear
strains to the displacements in order to obtain the two
equations:

] oF oG
xla_xz_<Sll‘711 +512022+3130zz> +7x—2_+5;1—
=816011 + 52602 + 5360, + Se6012 (A5)
and
V] oF
xla_z(SuUu + 81202+ 5130, + 516012) +—5%—
oH
+6_)q=S45023 + 855071, (A46)

which are valid for any ply.
Functional dependencies are now matched and the assump-
tion that stresses do not depend on x, is utilized to yield:

SR (P +SE ol + S o) + 8,0l =KW A7

for any ply, where K*) is some unknown constant. This equa-
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tion can be solved for ¢{f’ and matched with the classical
laminated plate solution for {§ in order to determine K®,
This results in the following expression for o{f) in each ply:

1
S| stpatp

~ {stotp —spow — st ]|

The oy; are the stresses in the kth ply as defined in equations
(25) through (29) in the main text.

k)
01(1)—

+SHa0 + 510 |

(48)

APPENDIX B

The values for the f; of equations (32) and (33) are:
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Effect of Fiber Anisotropy on
Thermal Stresses in Fibrous
Composites

An elasticity solution is utilized to analyze an orthotropic fiber in an isotropic matrix
under uniform thermal load. The analysis reveals that stress distributions in the fiber
are singular in the radial coordinate when the radial fiber stiffness (C,) is greater
than the hoop stiffness (Cgyy). Conversely, if C.. < Cyy the maximum stress in the
composite is finite and occurs at the fiber-matrix interface. In both cases the stress
distributions are radically different than those predicted assuming the fiber to be
transversely isotropic (C,, = Cgyy). It is also shown that fiber volume fraction great-
ly influences the stress distribution for transversely isotropic fibers, but has little ef-

fect on the distribution if the fibers are transversely orthotropic.

I Introduction

High axial stiffness in graphite fibers is obtained by process-
ing the fiber precursor such that the stiff basal planes of the
graphite crystals (Fig. 1) are oriented nearly parallel to the
longitudinal axis of the fiber (Johnson, 1982; Reynolds and
Sharp, 1974; Diefendorf and Tokarsky, 1975; Brydges, et al.,
1969; Kirk-Othmer, 1978). In the transverse direction,
however, the orientation of the basal planes can result in many
different microstructures. Examples of four types of
microstructures observed in graphite fibers are shown in Fig.
2. In Fig. 2(a) the basal planes are arranged circumferentially
around the fiber. This structure is commonly called an
‘“‘onionskin’’ structure, and it would be expected that E, >
E,. In Fig. 2(b) the basal planes are arranged radially, for
which E, > E,. Figures 2(c) and 2(d) show combinations of
radial and circumferential microstructures. Figure 2(c) shows
a radially oriented core with an onionskin sheath. Figure 2(d)
shows a random core with a radially oriented sheath. The
structures shown in Figs. 2(¢) and 2(c) are normally associated
with polyacronitrile-based (PAN) fibers and the structures
shown in Figs. 2(b) and 2(d) are commonly associated with
pitch-base fibers (Lemaistre and Diefendorf, 1973; Bennett
and Johnson, 1978 and 1979; Guigon and Oberlin, 1983; Ng et
al., 1983).

The elasticity formulation used in this paper follows the
previous works of St. Venant (1865), Voigt (1866), Mitinskii
(1936), Lekhnitskii (1950, 1957), and Cohen et al. (1984a,b,c).
Lekhnitskii (1950) provides the form of the solution for a
variety of loading conditions on solid and hollow cylinders
possessing ‘‘cylindrical anisotropy.”” Cohen and coworkers
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Fig. 1 The graphite crystal structure

provided explicit forms of the equations for laminated com-
posite tubes subjected to thermal loading,.

In this paper, the anisotropic elasticity solution is used to
explore the interrelationshp between fiber orthotropy, as ex-
hibited by the transverse microstructures, and the stress
distributions in a fiber-matrix composite under uniform ther-
mal load. As will be shown, the type of orthotropy radically
affects the thermal stress distribution in the fiber. In par-
ticular, radial orthotropy (C,. > Cj,) in the center of the fiber
(Figs. 2(b)-2(c)) results in singular stresses at the center of the
fiber for all three normal components of stress. This has ob-
vious negative consequences for the development of damage in
the form of fiber splitting and fiber breakage.

The results of this analysis provide helpful insight into the
structural integrity of the fiber as a function of microstruc-
ture. Such insight may prove helpful in choosing a fiber for a
particular application, such as in carbon-carbon composites,
which are subjected to large thermal loads. In addition, the
results may aid in guiding fiber development for improved
properties.
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Ortho'fropic_

{a) Circumferentially
Orthotropic

{c) Radiaily Orthotropic Core; (d) Transversely Isotropic
Circumferentially Core; Radially Orthotropic

Orthotropic Sheath Sheath
Fig. 2 Transverse microstructures of graphite fibers

II Mathematical Formulation

Consider a long fiber of radius a in an isotropic matrix of
thickness b —a under uniform thermal load (Fig. 3).

Due to axial symmetry the hoop displacements are zero,
stresses and strains are independent of 6, and there is no shear-
extension coupling. Therefore, the thermoelastic stress-strain
relations are

o, Cy Cy C,, ey — o, AT
op =1 Co Coy Cy €9 —ogAT M
a, Crx Cn9 Crr E,—O[,.AT

70 =CwYws T =CxVxrs Tox = GoxYox

where Cj; are stiffness coefficients and [C] represents the ap-
propriate matrix for the three normal components of stress, «;
are coefficients of thermal expansion, and AT is the uniform
temperature change. The nonvanishing equilibrium equations
for this axisymmetric problem are

do,

A |
—é-;-+"r—(0'r—0'0)=0 (2a)
or,, 1
— = 2
o + . T =0 (2b)
The strain-displacement relations can be written
ow
= 3
&= (3a)
e =—r (3b)
r
du 3e)
€y =——
o ox
Vo= (3d)
du
Yar =5 (3e)
Yox = 0 (3f)

where u, v, and w are axial, hoop, and radial displacements,
respectively.
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x(u)

Matrix
Fiber

Fig. 3 Composite geometry and coordinate system

Substituting equations (3e)-(3f) into equation (1) and
substituting the resulting equations into the equilibrium equa-
tion (2q) yields the governing differential equation

C

r

itw 1 ow w
[ |-cu

72

1
or? r o Tr (Cor = Crex

1
+T(C,j—C,,j)oszT )

for generalized plane strain with uniform axial strain ¢,. Here
and throughout the paper repeated subscripts 7, j are summed
over x, r, and 6. Equation (4) may be solved for the case of ap-
plied thermal load or the case of applied axial strain.

The general solutions to equation (4), following Cohen and
Hyer’s (1984b) treatment of an orthotropic tube under
uniform thermal load are:

a) transversely orthotropic fiber (Cy # C,,),

w(r) =A;rM +A,r*2 + Hye,r+ HyATr (5a)
where
Cﬂx - Crx
H=— (5b)
! Crr - CBI)
C,—Cy)a;
= ( ri 01)0‘1 (5C)
(Crr - COG )
b) transversely isotropic fiber (Cy = C,.),
w(ry=A M +A,M2+Gerinr+GATrinr  (6a)
where
Ce—C,
G, =X % 6b
1 2Co, (6b)
(Cri—Coi)oy
Gym=—————— 6
2 2Cy 6¢)

In both of the above displacement fields (5 and 6a), \, , are

defined
. C
A= } % 7
2= % C )

r

The solution of the second equilibrium equation (2b) is

-X ®
Txr = P
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Fig. 5 Thermal stress distribution in a composite with a radially or-
thotropic fiber .

where K is a constant of integration determined from the
boundary condition on 7,, at r = b.

For a composite with an orthotropic fiber and an isotropic
matrix the equations for the radial displacements are

W (r) = Al + ALPS + Hife r+ HEATY %9a)

Journal of Applied Mechanics

Table 1 Fiber and matrix properties
Radiatly Circumferentially Transversely Matrix
Orthotropic Fiber Orthotropic Fiber Isotropic Fiber

£, (6Pa) 220 220 220 34.5
Ee(GPa) 27.5 220 27.5 34.5
E.(GPa) 220 27.5 27.5 34.5
Yya 0.20 0.20 0,20 0.2
Yy 0.25 0.25 0.20 0.12
Vor 0.025 0.25 0.25 0.12
uX(IO'G/DC) 0.28 0.28 0.28 1.11
ue(IO'G/OC) 5.56 0.28 5.56 1.11
ur(IOS/OC) 0.28 5.56 5.56 1.1
" _Am Am 1 9b

Wi (r) =Alr+ Ay — b)

where the superscripts f and m refer to the fiber and matrix,
respectively, N7, = + 1, and GI' = G} = O for a material
wich is transversely isotropic in both elastic and thermal
constants.

The equations for the normal components of stress, for the
fiber and matrix, can be obtained by substituting equations
(5)-(6) into equations (3a@)-(3b) and then substituting the
results into the constitutive relations (equation (1)). The
resulting equations are:

q) transversely isotropic fiber (G, = Cjp, Ny, = =1),
1
of = A{(Ch + O} + A5(Cl— C)~
r
+Cle, — CliodAT
b) transversely orthotropic fiber (C/, # Cf),
of = AL (Cly + CLN)rM =" + ALY
+ G2~ + Lie, + NIAT

(10a)

(10b)
where
Li=CL+H{(Ch+CL)
N{ = H§(Cly + Cl,) — Gl
¢) isotropic matrix,

1
o' =AY (CH+C) + AT (CE—C)—

r (10c)
+Clle,, — Clo” AT

L/ at)
The five constants A{, A4, AT, A¥, and ¢,, are determined

from the following five conditions:

1) The radial displacement w must be zero at r = 0. This
condition, plus the fact that M < 0 (equation (7)), requires A4
be zero to avoid a singularity in w at » = 0 for both transverse-
ly orthotropic and transversely isotropic fibers (equations (5)
and (6)).

2) Continuity of w at the fiber-matrix interface w/(a) =
w' (@) requires that: ,

a) for a transversely orthotropic fiber (G, # Cf),

1
AlaM + a(Hie, + HEAT) = A7a+ AL — (11a)
a
b) for a transversely isotropic fiber (Cf, = Cfy)
Ala=Ala+ Ay — (1156)

3) Continuity of the radial stress ¢, at the fiber matrix inter-
face, ¢/(a) = o/ (a) requires that:

a) for a transversely orthotropic fiber
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A{(Cly+ ChN)aM =1 + Lfe, + NIAT
(12a)
: 1
=AY (Cj+ Cp) + AY (Clj = Cif)— = Clog" AT+ Clie,

[/ har ]

or

b) for a transversely isotropic fiber

A{(Cly+ Cl) + Cle, — CLiof AT+
(12b)

1
= A (Cj+ C) +AF (Cl = C)—-+ Chie, = o AT

4) Since there are no tractions applied at the outer bound-
ary of the matrix o,(b) and 7,, (b) equal zero. The condition
on g, requires that

1
AP (C+ CR) +AY 5 (Cl = C7) + Crrey = G AT =0

(13)

The traction free condition on 7, requires that X in equation
(8) equal zero. Thus, there are no shear stresses in the fiber or
matrix.

5) The final condition for the case of pure thermal loading
is that the net axial force P on the fiber-matrix composite be
zero. This is expressed mathematically as

b
P=27rS0 o rdr=0 (14)
and for a transversely orthotropic fiber results in the condition
£
N +1

A{(Cly+ CLN,
1( X0 xr l) )\{+1

+AT(C) (b —a?)
1
+T[C,’x:"x (2 —a?)

1
+ L@ e, +—~[N@ = Claf (b7~ ?)AT=0 (15a)

For a transversely isotropic fiber (¢, = Cl,), the form of
equation (14) is:

1 1
A{—-Z—(cgg +CL)ya* + AT - Cr(b?—a?)

1 1
+ T[Cg\, (b2 - a2) + Cﬁxazlex -T[Céjafaz

+Clial' (b2 —a®)]AT=0 (15b)

The constants Af, A7, A, and e, are obtained by solving
equations (11)-(13) and (15) simultaneously. It is noted that
the axial loading case can be considered for a given axial strain
€, or a given axial force P. In addition, the radial loading case
may also be considered by appropriate modification of equa-
tion (13). .

IIT Results and Discussion

Thermal stress distributions were determined for three types
of fiber properties: (1) transversely isotropic (C,, = Cg); (2)

circumferentially orthotropic (C,, < Cy); (3) radially or--

thotropic (C,, > Cy). The matrix was considered to be
isotropic. The fiber and matrix properties used for the calcula-
tions are given in Table 1. A uniform temperature increase of
1°C was used for loading. Results for a fiber volume fraction
V; = 0.623 are presented in Figs. 4-6 and results for variable
V' are presented in Figs. 7-9. .

Transversely Isotropic Fiber (C,, = Cy). The stress
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Fig. 6 Thermal stress distribution in a composite with a circumferen-
tially orthotropic fiber

distributions for the case of a transversely isotropic fiber (Fig.
4) exhibit a uniform positive axial stress and uniform com-
pressive hoop and radial stresses in the fiber. These distribu-
tions can be explained by examining the equation of the stress
distribution in a transversely isotropic fiber (equation (10a)).
Recalling that 45 = 0 in order to eliminate singular w
displacements at r = 0 allows equation (10a) to be restated as

of = A{(Cly + Cf) + Clye, — CjodAT (16)

It is evident from equation (16) that the fiber stresses are in-
dependent of radial coordinate. The stress distributions in the
matrix are described by equation (10c). A relatively large,
positive hoop stress is present in the matrix. The hoop stress
attains a maximum at the fiber-matrix interface (Fig. 4). The
decay in the magnitude of the radial and hoop matrix stresses
with radial coordinate can be explained by examining the AJ
term in equation (10c). The stresses decay as a function of
1/r%. The axial stress is constant in the matrix because C% =
Crwheni = x. Thus the A} term in equation (10¢) is zero and
there is no axial stress dependence on the radial coordinate.
For these stress distributions, fiber failure (if present) is ex-
pected to be an axial tensile fracture,

Radially Orthotropic Fiber (C,, > C). Figure 5 shows the
thermal stress distributions for the case of a fiber with radial
orthotropy. All three components of stress are positive and
singular at the center of the fiber. These distributions can be
explained by examining equation (105). For radial orthotropy
C,. > Cg and M is less than unity. Defining 6 = (1 — M), and
recalling once again that 44 = 0, equation (10b) can be
written

of = A{(C, +C{,)\{)%+L{6X+N{AT (17)
For the example problem considered here M{ = 0.343 and § =
0.657. Therefore, a stress singularity of order § existsat » = 0
for M < 1.0. It should be noted that § is a function only of the
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Fig. 7 Effect of volume fraction on thermal stress distributions in a
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fiber properties G/, and Cf,. The term A (Cf, + CL M),
which defines the strength of the singularity, is a function of
fiber and matrix properties, fiber volume fraction, and
boundary conditions.

A similar singularity was shown by Lekhnitskii (1957) to ex-
ist in an anisotropic disk under radial compression. Lekhnit-
skii also notes that for the limiting case » = 0 there is no dif-
ference in material properties between the r and 6 directions;
therefore, the fiber must be transversely isotropic at r = 0.
Such a condition precludes the existence of a mathematical
singularity at the center of the fiber. (This point is also men-
tioned in a latter paper by Olson and Bert, 1966.) However,
the singular nature of the stress distributions as r approaches
zero remains valid for the actual case.

The potential failure mode of the fiber can be addressed by
examining the relationship between the orientation of the
graphite crystals in the fiber and the mechanical properties of
a graphite crystal. For a radially orthotropic fiber, the basal
planes of the graphite crystals (Fig. 1), which exhibit max-
imum strength (Kirk-Othmer, 1978) are oriented parallel to
the radial and axial directions. Thus, the direction of
minimum strength is in the hoop direction. Therefore, fiber
splitting due to ¢, is a potential failure mode for a radially or-
thotropic fiber which exhibits singular hoop stresses.

Circumferentially Orthotropic Fiber (C,, > C,). Stress
distributions for circumferentially orthotropic fibers are
shown in Fig. 6. The stresses in the fiber are governed by the
reduced form of equation (10b), which is now written in the
form

of = A{(Cly+ CLM)M =1 + Lie, + NIAT (18)

and it is noted that M — 1 > 0. Comparison of the stress
distributions in Figs. 5 and 6 (or comparison of equations (17)
and (18)) shows that the distributions in fibers with cir-
cumferential orthotropy (Fig. 6) are completely different from
those in radially orthotropic fibers (Fig. 5). The distribution of
axial and hoop stresses in circumferentially orthotropic fibers
varies uniformly from compression along the centerline (r =
0) to tension at the fiber-matrix interface. The radial stress is
compressive throughout the fiber. For this case M = 2.876;
therefore, equation (18) reveals that the stresses have a power
function distribution. The matrix exhibits compressive radial
and axial stresses, but positive hoop stresses. All matrix
stresses are relatively small in magnitude.

In the circumferentially orthotropic fiber, the basal planes
are oriented parallel to the axial and circumferential direc-
tions. Thus, the directions of maximum fiber strength are ex-
pected to be in the axial and hoop directions with minimum
fiber strength in the radial direction. Therefore, the maximum
tensile stresses are in the directions of maximum strength. The
direction of minimum strength is under compression
throughout the fiber. For this type of fiber orthotropy,
failure, should it occur, would be expected to be via fiber split-
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ting at the fiber-matrix interface. It is interesting to note that
under a uniform temperature decrease the signs of the stresses
will change, resulting in a positive radial stress. In this case the
maximum tensile stress will be in the direction of minimum
strength. Therefore, the fiber may be more likely to fail during
a cooling cycle than a heating cycle.

It is noted that the solution presented here for a fiber in an
isotropic matrix is quite different than that of Chen and
Diefendorf (1985) for a single fiber.

Influence of Fiber Yolume Fraction. The influence of fiber
volume fraction on the distribution of thermal stresses is
demonstrated in Figs. 7-9. Figure 7 shows the results for a
transversely isotropic fiber, Fig. 8 for a fiber with radial or-
thotropy, and Fig. 9 a fiber with circumferential orthotropy.
The fiber volume fraction was varied by changing the
thickness of the matrix layer surrounding the fiber and
holding the fiber radius constant. Results are presented for
fiber volume fractions in the range 0.391-1.0.

These figures show that the axial component of stress is a
function of fiber volume fraction for all three types of fiber
microstructure. This is a direct consequence of the equilibrium
requirement of zero axial force for pure thermal loading.
Equilibrium must always be satisfied regardless of material
properties. A somewhat surprising result is the fact that the
distributions of radial and hoop stresses are essentially in-
dependent of fiber volume fraction for both types of
transversely orthotropic fibers considered (Figs. 8b-c, 9b-c),
but the distributions of these two stress components varies
considerably with fiber volume fraction for the case of a
transversely isotropic fiber. These results can be explained by
considering the equations for the stress distributions in each
type of fiber (equations (16)-(18)).

In the transversely orthotropic fibers, Af is relatively in-
dependent of volume fraction, differing by less than 4 percent
in the volume fraction range 0.391-1.0. In contrast, e, differs
by more than 30 percent in the same volume fraction range.

DECEMBER 1986, Vol. 563/ 755

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Detailed examination of the equations shows that the hoop
and radial stresses are a strong function of the term containing
A{ and a weak function of the term containing e, since (Cf, +
M CL) is large and L; is small for i = r or 6. Thus, it can be
concluded that in transversely orthotropic fibers the hoop and
radial stresses are relatively independent of fiber volume frac-
tion. The axial stresses in the transversely orthotropic fibers,
however, show a greater dependence on fiber volume fraction.
In this case (Cf, + M C/,) is smaller and L, is more than two
orders of magnitude greater than the corresponding terms
mentioned above. Consequently, the axial stresses are a
stronger function of fiber volume fraction through the term
associated with axial strain. In transversely isotropic fibers,
however, both 4{ and ¢, are strong functions of fiber volume
fraction. A and e, vary by approximately 23 and 40 percent,
respectively, in the fiber volume fraction range 0.391-1.0.
Thus, all stresses will be greatly influenced by fiber volume
fraction.

An equally surprising result is that the stresses in transverse-
ly orthotropic fibers are nonzero for a fiber volume fraction of
1.0, which corresponds to a fiber with no matrix surrounding
it. The physical explanation is that as the fiber expands radial-
ly it also expands in the hoop direction; however, if there is a
mismatch in the thermal expansion coefficients in the radial
and hoop directions the expansion in the hoop direction can’t
compensate for the radial expansion. Thus, an internal con-
straint exists which gives rise to internal stresses. It should be
noted that the presence of nonzero stresses in a single fiber is a
function of the mismatch in radial and hoop thermal expan-
sion coefficients only and not a function of material stiffness
coefficients.

IV Conclusions

The distribution of thermal stresses in a fiber reinforced
composite material is affected significantly by the microstruc-
ture of the fiber. If the fiber exhibits radial orthotropy, the
distributions of all three components of normal stress exhibit a
singularity of type r~® where the order of the singularity is a
function of the radial and circumferential stiffness coefficients
of the fiber. For circumferentially orthotropic and transverse-
ly isotropic fibers there is no singularity in the stresses.

Fiber volume fraction has essentially no influence on the
radial and hoop stresses in orthotropic fibers. The axial
stresses in orthotropic fibers and all three components of nor-
mal stress in transversely isotropic fibers are a function of
fiber volume fraction.

Single fibers exhibit nonzero stresses when there is a
mismatch in the radial and circumferential thermal expansion
coefficients.
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Stresses and Deformations in
Composite Tubes Due to a
Circumferential Temperature
Gradient
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University of Maryland, posite tubes subjected to a circumferential temperature gradient of the form AT, +
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Mem. ASME the wall. Temperature-independent material properties are assumed and a displace-
ment approach is used. The results are limited to tubes with the fibers in each layer
D.E. Cooper oriented axially or circumferentially, so-called cross-ply tubes. It is shown that for

both single layer and multiple layer tubes, one constant characterizes overall ben-
ding of the tube and one constant characterizes overall axial deformation.
Numerical results show that fiber orientation strongly influences the stresses in a
single layer tube. When the fibers are aligned axially, all components of stress in the
tube are small. When the fibers are aligned circumferentially, the hoop stress
becomes large. This is due to the large difference between the radial and cir-
cumferential coefficients of thermal expansion when the fibers are oriented cir-
cumferentially. Also, for a single layer tube constructed of a material with no ther-
mal expansion in the axial direction, the overall change of length of the tube due to
the temperature gradient will be zero only if the material is transversely isotropic.
However, even if the material is transversely isotropic, the tube will still experience

Structures Technology,
Boeing Aerospace Company,
Seattle, WA 98124

overqll bending.

Introduction

Considerable work has been done to understand the
response of single and multiple layers of fiber-reinforced
material in tubular form to bending, torsion, and tensile loads
(Whitney and Halpin, 1968; Pagano and Whitney, 1970; Riz-
zo and Vacario, 1970; Pagano, 1971; Whitney, 1971; Whitney

et al., 1972; Rizzo and Vacario, 1972, Pagano, 1973). This

work was done in conjunction with the possible use of tubular
specimens, rather than traditional flat coupons, to study the
mechanical behavior of fiber-reinforced materials. To a lesser
extent some work has been done to understand the thermally-
induced stresses in single (Kalam and Tauchert, 1978) and
multilayer tubes (Whitney, 1971; Birger, 1971; Tauchert and
Hsu, 1977; Tauchert, 1980; Hyer et al., 1986). This paper
summarizes a portion of the analytical work developed to help
understand the response of fiber-reinforced tubes exposed to a
temperature change that varies sinusoidally with the cir-
cumferential coordinate but does not vary with distance along
the tube or through the tube wall. The analysis is limited to
tubes with the fibers in each layer aligned either axially or cir-
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cumferentially, so-called cross-ply tubes. Numerical examples
are presented for a single layer and a specially-constructed
three-layer tube.

In this work each layer is idealized as a homogeneous or-
thotropic material with respect to the global geometry of the
tube. The material properties are assumed temperature-
independent. An elasticity approach, as opposed to a shell-like
approach, is used. An elasticity approach is used because tube
radius to wall thickness ratios less than 10 are of interest.
While radial stresses are expected to be small, radial thermal
expansion effects can cause axial and circumferential stresses
in the tube wall. A higher-order shell theory (Whitney, 1971)
could be used to account for the through-the-thickness effects
but an elasticity approach is felt to be more direct. Since in-
terest centers on the behavior of the tube away from the ends,
a planar elasticity approach is used.

The limitation of a temperature-independent theory is
fully appreciated. However, there is little documentation on
the variation with temperature of the nine elastic constants
and the three expansion coefficients of fiber-reinforced
materials. Developing an analysis which required data that
was unavailable was not felt to be a useful first exercise in
understanding tube response. A forthcoming publication,
however, examines the issue of temperature-dependent pro-
perties. In addition to providing valuable insight into the ther-
mal response of cross-ply tubes, the solution presented here
served as a basis for that temperature-dependent work.
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Problem Definition and Derivation of the Governing
Equations

A cylindrical coordinate system is used, x being the axial
coordinate and 0 and r being the circumferential and radial
coordinates, respectively. The inner and outer radii are
denoted as r; and r,, respectively, and r, is the radial location
of the interface between the kth and (k+1)—st layers.
Pagano’s (1972) most general work, though addressing neither
thermal effects nor layered tubes, was consulted frequently
and so the nomenclature and approach used here somewhat
parallel that work. In this work the temperature variation
around the tube is given by

AT, =AT+ AT, cos(d), e

AT, and AT, being constants representing the temperature
change measured relative to some reference temperature. The
specific reference temperature will be discussed further when
numerical examples are presented.

For the cross-ply tubes being considered, the constitutive
behavior for each layer can be written in the form

(Ux b Cy Cp C3 O 0 0 |
Ty CIZ C22 C23 0 O 0
oy Csy Cy Cy 0 0 0
< =
Tor 0 0 0 Cy O 0
Tyr 0 0 0 0 Css O
\ Ty K 0 0 0 0 Ces |
(e, — o, AT
Eg-agAT
e, —a, AT
> @)
Yeor
Yxr
. Yx0 Jy

where the C; are the elastic constants and the «’s the thermal
expansion coefficients of the layer. Since the study focuses on
tube response away from the ends, and in light of the in-
dependence of temperature on the axial coordinate, it is
assumed that the stresses are independent of x. With this
assumption, the equilibrium equations become

aa, 1 1 97y,
+— - — =0
o T orme) T
0Ty, 1 o1 1
—— +— —_ 0 3
ar | r 96 Tr @
a7, 4 1 do, + 2 -0
ar r a0 "
The strain-displacement relations for the problem are
ou 1 ( ov +u)
— € —_—— —
= ar "= \ag
ow 1 ou av
=— =(——v+ 4
& ox Yor r<60 ”’ar> @
_ow 4 du _dv + 1 ow
Y =T T e T ax  r 68

where u, v, and w are the r, 6, and x components of
displacements, respectively. Finally, the rotations are given by
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w_l(law 6v). __I(Bu
0 r dx ox /7 T2 \ax

_L( 1 a(rv)__l au> )
Cor =5\ Tor r a0/

For this class of problems Leknitskii (1963) has shown that
the displacements in each layer have the following form:

6w>'
ar /°

1
u(x,0,r)y=U(0,r) = x2(b,cos6 — b,sinf)
—X(w,8inf —w,cos0) + u,cosd + v,sinfd

1
v{x,0,r)=V(0,r) — x2(b,sinf+ b,cosh)

+xbyr—x(w,cos + w,8inf) — u,sinfd + v,co88 + w,r

(6)
w(x,0,r) = W(0,r) —rx(b,cosf — b,sinf) + b,x + v, rsind
—w, o8+ w,.

Lekhnitskii shows this for the case of no thermal expansion ef-
fects. However, it can be shown that the form holds when
thermal expansion effects are present. The physical interpreta-
tion of some of the constants in equation (6) is interesting and
will be emphasized when numerical examples are presented.
Of course the rigid body displacement terms are u,, v,, W,,
w;, wy, and w;. The constant b, represents displacements due
to overall bending of the layer and the constant b, represents
axial expansion. For a layered tube there is a set of constants
Uyy . . ., by, by, and a set of functions U, V, and W for each
layer.

Using a displacement approach, the equilibrium equations
lead to the following three governing equations for U, V, and
W for each layer:

oo (LY 4L 20y, Cu BU_Cy
B\arr 7 r or T L
Cy+Cyp\ 02V Cp+Cy\ 0V
(Er) (e
r orop r a0
PW 1 W  Ce¢ PW
Css ——+— —+ —= =0
o T r ar P o @
(Cy+Cy) PU  (Cyuy+Cyp) U
r arag r a6
RV 1 Vv VN Cp &V
+C, (—+——————> — < =P3
“Norr " r ar P o

where

1 - N
Pi@r) =—{(Cpp = Ciy)by + M1 + [(2013 —C)b, +7] cosf

N ®)
N
PO == [Ciby+—]
and
N=[(Cj3— Cpp)a, + (Cp3 = Cpp)ag + (Cy3 — Cy3)er, ]AT,
M=[(Ci3 — Cp)ot, + (Coz = Cp)aty + (Cy3 — Cy)ex,1AT,
)]

N=(Cpa, +Cpay+ Cpa,)AT;.

It should be noted that the equation governing the axial
displacement component, W, is uncoupled from the other two
equations. For layers with fibers other than circumferentially
or axially oriented, there would be coupling of all three
displacement components.

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Solution of Governing Equations

Since each layer in the tube is orthotropic in the x-0-r
system, and since the temperature distribution is an even func-
tion of 6, it is to bé expected that in each layer u and w will be
even functions of 4 and w will be an odd function of 6.
Therefore, in equation (6) .

(10)

More importantly, solutions for U, ¥, and W in the form

b2=w1=vo=b3=w3=0;

o

U8,ry= ), U,(r) cosnf+U,(8,r)
n=0

V(b,r)= V, (r) sinn+V, (0,r) a1
n=0

W(b,r)= W, (r) cosnd.

n=0

will be sought. The functions U, and V,, are the particular
solutions for U and V due to P, and P,. The summation in
each expression represents the homogeneous solution to the
governing equations. Recall that there is a solution of the
above form for each layer.

Homogeneous Solution. The homogeneous solution to the
governing equations has several special features corresponding
to the n=0 and n=1 cases. These special features deal mainly
with the presence of repeated eigenvalues and the fact that
some of the solutions represent rigid body motions already ac-
counted for in the general form equation (6).

If the rigid body terms are eliminated (because they are ac-
counted for in equation (6)), the n=0 solution leads to

UO (r) =A01r)‘1 +A02r_)\l

12)
Wy (r)y=Dgylnr.
Ay, Ay, Dy, being constants and
Crn
A= 13
Vg -

The solution for n=1 leads to the eigenvalues
Cy3Cyy = C3 —2Cp3C4y + C33Cay + C22C44) 12
Cy3Cy

A, =0,0,+ (
(14)

for the u and v displacements. If the rigid body motions are
eliminated from the n=1 solution, U and V take the form

U(n=Anprz +A,r™™

(15)
Vi(r)=o13A3r'2 + A r ™2
where
bpa= Cy + Cyy ~ C33N
P (Cp+Cihy — (Cp + Caa) (16)
CuN—Cy—Cy
D14

C (Cpy+Cyy +(Cpy + Cag)

A\, being the nonzero eigenvalue from equation (14).
The solution for n=2 for U and V and for n=1 for W
follow regular patterns. For W the solutions for n=1 are

W, (ry=D, rin+D,,r n, an

Y szEGL
" Css
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(18)

The U and ¥V solutions for n=2 are of the form

4 4
Uy (ry= Y, Apt™s; V,(r)= Y, Byyrns, (19)
s=1 s=1

The \,, are eigenvalues and A4, and B, are related through
the eigenvectors, i.e., B,; = ¢,.4,,. As will be seen, the solu-
tions for n=2 are not involved in predicting the response of
the tube.

It can be shown that the particular solutions are

U, = (r*As +rAycosd+r(a by +Dy)

(20)
V, = (r*H; +rH,)sin8,
where
C,-C M
a, = 12 13 : D4 (21)
Cyu—Cy Cy—Cp
and
Ay =(CpuN+ (Cp — C)N) /A,
Hy=((Cy;— Cp = Cy)N—= (Cp3 +2Cyy + C1)N) /A,
As=ash,, Hy=hsb,, (22)
where
a5 =((Cp ~3Cy)(2C,; — C1y) — C5(Cyy
+2C — Cyp))/A,
(23)
hs=((4C33 = Cyy —Cp)C —2C,3 - Cp)X3C
+2C5 +Cp))/4,
and
A =(Cyy = Cpn = Cyg)Cpp —(Cys — Cp)(2C 4 + Cyp + Cy3)
Ay =(4C5; — Cyy — Cp)(Cy —3C4) (24)

—(BCu +2C;5 + CpNCyy +2C5; — Cp).

The complete solution for the three components of displace-
ment is:

U=AgrM +Agpr ™ + (A3 + A, r~2)cosh

o 4
+ E ( E A,,sr*ns) cosnf+ (r*As +rA,)cosh
n=2 “s=1

1
+r(a;b, +D4)+T x*b, cosf+ xw, cosfd+u, cosd (25a)
v= (1341372 + ¢4 A 45 2)sind
= 4
+ E < E B,,srkns>sinn9+ (r*Hs + rH,)sinf
n=2 s=1
Lo, . . .
> b, sinf —xw, sind—u, sing (25b)
w=Dg,inr+ E (D, 1n +D,,r=7n) cosnd
n=1
—byrx cosf+ byx—w,yr cosd+w,,. (25¢)

From the expressions for the displacements, expressions for
the strésses in terms of the unknown constants can be deter-
mined. With these displacement and stress expressions,
boundary and interface continuity conditions can be applied
to a particular problem. In addition, because of the planar
nature of the analysis, there are certain integral conditions
that must be satisfied. The totality of the conditions lead to a
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set of linear algebraic equations for the unknown constants in
each layer.

Application to a Single Layer

Because of orthotropy, a single layer tube provides an in-
teresting numerical example of the theory with which the ef-
fect of fiber orientation can be studied. In addition, a single
layer tube can be used to study the consequences of having the
coefficient of thermal expansion of the tube material in the ax-
ial direction being zero. For some applications of composite
tubes, the condition of no axial dimensional changes due to a
temperature change is desirable. Usually, this condition is in
the context of a uniform temperature change of the tube.
Since graphite fibers contract when heated, they can be com-
bined in the proper proportion with a matrix material that ex-
pands when heated so that in the fiber direction the composite

e
e
B 90
05

180

1.0

o
o

axial stress, MPa

o
o

0.04

180

0.02

90

o
o

0.5

radial stress, MPa

-0.02

o004l N

has a coefficient of thermal expansion of zero. It is interesting
to study the response of such a material in tubular form to a
circumferential temperature gradient condition.

For a single layer tube the inner and outer surfaces are trac-
tion free, i.e., )

ai(e’ri) ZO',.(G,I'O) =T{)r(07ri) :Ter(eara)

=7,(0,r;)=7,.(0,r,)=0. (26a-1)
In addition, the following integrals must be satisfied:
27 r
So S * ordrdd=0 (27a)
2 To
50 S o,r* cosfdrdd=0. 27b)

i

The first integral represents the fact that the net axial force on
the cross section of the tube must be zero. The second integral
expresses the zero moment condition on the cross section.
These conditions must be enforced because there are no net
loads acting on the tube. Two other integral conditions, one

2

&
.S_ /
g‘ / 90
) 0 <
£ /o 10 P
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180
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Fig. 1. Stresses in a 0 deg tube
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representing another cross-sectional moment and the other
representing torsion acting on the cross section, can be writ-
ten. However, for this problem those conditions are
automatically satisfied. To complete the statement of the
problem, rigid body translations and the rotations are
specified at some point. Here the motions at the point (x, 9, r)
= (0, 0, r,), a point at the outer radius of the tube, are chosen
to be zero. Because of the assumed functional form of the
displacements, equation (10), some of the six rigid body condi-
tions are automatically satisfied.

When applying the traction boundary conditions, equation
(26), it can be shown that for a single layer

A,=0,s=14andn=2;D, =D, =0,n=1 (28a)
and
D()z =0, (28b)

Thus harmonics =2 do not appear in any of the displace-
ment components and W (8, r) of equation (6) is identically
zero. Also, the shear stresses 7,, and 7, are identically zero
throughout the tube.

4
[V
0.
=
P
o
7]
g
x
«
-4
2_
S 180
=
3 yd 90 \_
I % N\
© e T
" // o=0 \
0 + + .
‘ 0.5 10 P

Suppressing axial rigid body translation and rotation com-
ponent w,, at (x, 6, r) = (o, o, r,) requires

W, =w, =0, (29)

The remaining unknown constants u,, Ay, A, By, A1z, A1ss
and b, are determined by using equations (26a) and (26b) and
equations (27) for the harmonics that do remain in # and v.
These lead to seven simultaneous algebraic equations for the
unknowns. (Actually, the seven equations separate into one
group of three and another group of four equations. The
group of three represent the response to the tube to a uniform
temperature change AT,. The group of four represents the
response to the temperature change AT, cos(f)). Equations
(26¢) and (26d) must also be enforced, but when doing so they
provide the same information as equations (26a) and (26b) and
so are not used.

Figure 1 shows the four nonzero components of stress for a

graphite-epoxy tube with all the fibers oriented axially. The
tube has a mean radius to wall thickness ratio of 10 and is sub-
jected to the temperature condition

AT = —177 + 100cos8. (30)

100

hoop stress, MPa

-50 {

180

-100

/— 6=0,180
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0.5 /.0 [

shear stress, MPa
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o
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//
\

-0.6 -

Fig. 2 Stresse:. in a 90 deg tube
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Specifically, the mean radius is 10 mm and the wall thickness
is 1 mm. This tube will be referred to as a 0 deg tube. The tube
is made of a material which is assumed to cure, and be free of
stress, at 177°C. This will be the reference temperature in all
examples. With equation 30, at § = 0 deg the tube
temperature is 100°C, while at § = 180 deg the tube

temperature is — 100°C. Table 1 lists the material properties -

used in the examples. The subscript notation in the table
follows the usual notations for fiber-reinforced materials, i.e.,
1 being the fiber direction, etc. Because the. temperatures are
measured relative to the stress-free state, the stresses can be in-
trepreted as residual stresses.

In the figures the stresses are plotted as a function of non-
dimensional distance through the wall at =0 deg, § =90 deg,
and 6 =180 deg. The nondimensional distance p is defined to
be

r—r;

p= (3D
ro—T;

As can be seen, the stresses are quite small when the fibers

Table 1 Material properties

E, =147 GPa G, =4.27 GPa
E,=9.10 GPa G\3=4.69 GPa
E;=9.93 GPa Gy =593 GPa
V12=D13 =0.3 LX) =0.49
a;=-0.077 x 107%/°C
oy =y =33.7 x 1078/°C
3
/ =0
//
/
g —
I —/
= 0 == X, m
o 0.25 0.50
£
3
s - — 90
Q
2]
2
8 -3
©
g
-6 { 180
3
£
E‘ /—— e:O
E 0 + + X, m
£ 0.25 0.50
[
3
a —— ————————— 90
@
Gl
S -3 180
o
-6

are aligned axially. The axial and hoop stresses vary nearly
linearly with distance through the wall. In addition, the max-
imum value of the axial stress at #=0 deg is very close to the
maximum value at § =180 deg. The same is true of the hoop
stress. The other two stress components-vary in a nonlinear
fashion. It should be noted that although they are negligible,
the axial, hoop and radial stresses are not zero at =90 deg. If
the tube was transversely isotropic, then these three com-
ponents of normal stress would be exactly zero at §=90 deg.
In all cases the shear stress is exactly zero at =0 deg and 180
deg.

The stresses in the 0 deg tube are in sharp contrast to the
stresses in the 90 deg tube shown in Fig. 2, a tube made of the
same material and subjected to the same temperature gradient
except that the fibers are in the circumferential direction. The
axial stresses for this case, though still low, are nonlinear func-
tions of distance through the wall. The maximum values at
0=0 deg and 6= 180 deg are not equal. However, the most
significant contrast with the 0 deg case is with the hoop
stresses. These stresses are much larger than in the 0 deg tube
and are due to the difference between the radial and cir-
cumferential thermal expansions coefficients when the fibers
are oriented circumferentially. These stresses are not actually
of concern because they are in the fiber direction and are much
below the material failure level. However, a comparison of
Figs. 1 and 2 illustrates the strong influence of fiber
orientation.

Returning to the 0 deg tube, Fig. 3(a) shows the radial and
tangential displacements at various circumferential locations
as a function of length along the tube. The displacements
shown are the displacements at the outer radius at the par-
ticular 8. The tube is assumed to be perfectly straight and cir-
cular at the stress-free temperature. The parabolic shape of the
displacements, with the axial coordinate, is due to the con-

/— 8=0,180
£ 0.0 X, m
£ 0.25 0.50
E :‘\\
% \\\\
g SO
> -1.5 \ \
'-6 \ ~
3 AN AN 45,135
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) AN
«
h -3.0 \ 90
— 6=0,180
€ 0.0 + X, m
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c
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Fig. 3 Radial and tangential displacements in a 0 deg tube:

@ oy #0;(0) oy =0
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stant b, and the figure indicates b, =0. This is due to «, being
negative. In particular, b; = 0.761 x 10~®mm~!. Comparing
the displacements at § =0 deg, 90 deg, and 180 deg, the figure
indicates the tube cross section shortens along the 0-180 deg
diameter about the same as it does along the 90-270 deg
diameter, the cross section remaining almost circular. Since
the tangential displacements are zero at =0 deg and 180 deg,
the displacements at §# =45 deg, 90 deg and 135 deg are shown
in Fig. 3. For this tube the quantity b, is positive, namely b, =
13.7 x 10—, This means the tube has expanded axially, in ad-
dition to bending. The expansion, relative to the stress-free
state, is again due to o, being negative.

It is interesting to consider the case of a material with no
thermal expansion in one direction. Figure 3(b) shows the
displacements for the 0 deg tube subjected to the thermal con-
ditions under discussion, but with the coefficient of thermal
expansion «, arbitrarily set to zero. Being a 0 deg tube, this
means the tube is made of a material with no thermal expan-
sion in the direction aligned with the axial direction. The
figure seems to indicate that, relative to the a, # 0 case, there
is no variation in the displacements along the length and so the
tube remains straight. However, the figure must be viewed
with caution. For this «, = 0 case, the values of b, and b, are

100
[ 180
& s0f ] - 90
s
%)
3
= ——- 0=0
[72)
«
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® 0.5 10 P
50
4
S 2
s
é
[77]
o
7
s
g p
ol

actually 1.48 x 102! mm ~! and —0.854 x 10~20, respectively.
These nonzero values mean that the tube actually bends and
changes length, even though the deformations are orders of
magnitude less than for the «, # 0 case. The tube must be
transversely isotropic in the 0r plane with «, = 0 if the tube is
to not change length. However, the tube will still bend. The
bending effects will be quite small and like the tube of Fig.
3(a), the cross section of the tube will decrease in diameter but
remain almost circular. In the numerical examples presented
here, the material is very close to being transversely isotropic
and so the variations of the deformations with x in Fig. 3(b)
are imperceptible.

As a matter of comparison, for the 90 deg tube b, =
—332x10"*mm~! and b, = —5980x10-°.

Application to a Multilayer Tube

For a multilayer tube, the displacements of equation (25)
are used but with the superscript k£ added to the nomenclature
to denote that the displacements are associated with the kth
layer, e.g., A§9, AR, AP L, bR, L
D ... wih. The apphcatlon of the theory to multrple
layers is straightforward Here application will be limited to
three-layer tubes but the extension to more layers is obvious.
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T~ 180
~400
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Fig. 4 Stresses in a (80/04/90) tube
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For a three-layer tube the following conditions must be
satisfied at the inner and outer boundaries.

0'r(l)(eiri) - Ur(3)(0’ro ) = Tﬂr(l)(e’ri)
=75, 0,r,) =7,00,r;) =7,30,r,) =0.
(32a-/)

In addition, three of the six components of stress and the
displacements must be continuous across the layer interfaces,
namely,

0,8 (8,r) =0, 0(0,r) )
7y ® (0,7 =74, <D (6,7)
7,8 (0,r) =71, 5 D(0,r)

u® (x,0,r) =u*+V(x,0,r)

\@r=r,, k=1,2 (33a-)

v® (x,8,r) =v* D (x,0,r)

w® (x,0,r) =wk*D(x,0,r) |

Equations (27a) and (27b) must also be applied to the
multilayer tube, the integration involving the cross section of
all the layers. Finally, as with the single layer case, rigid body
translations and rotations are set to zero at (x,0,r) = (0,0,r,).

Application of the above conditions leads to several impor-
tant conclusions. They are:

1) A, % =0, n=2,s=1,4

2) Dy, =0, D,,*¥ =D, =0, n=1, k=13 34)
3) w0 =, )

4) bP=bO=bp®=b b0=p®=b=h,.

The first three conclusions parallel the findings for the single ‘

layer case. The fourth conclusion indicates that even for the
multilayer tube the planar cross section of the stress-free
underformed tube remains planar after deformation. This is
true despite the fact the material properties change from layer
to layer. Because of this, the constants b, and b, describe the
deformations of the tube as-a-whole, as they did for the single
layer case. The remaining 17 constants, A§, A%, u{, A9,
AP, k=13 and b, and b, are determined by enforcing
equations (32a) and (32b), equations (33a), (33d), and (33e),
equations (27a) and (27b) and the condition

u®(0,0,r,) =0 (35)

for the harmonics that do remain in # and v. As with a single
layer tube, application of equations (32¢) and (32d), and equa-
tion (33)) for the harmonics that remain lead to redundant in-
formation and are not used.

Figure 4 illustrates the stresses in an 8-layer (90/04/90) tube
subjected to the temperature gradient of equation (30). The six
0 deg layers, called the core, are treated as a single layer and
hence the tube is analyzed as a three-layer tube. The inner and
outer circumferential layers are referred to as skins. As with
the single layer examples, the stresses are illustrated as a func-
tion of nondimensional wall thickness at several circumferen-
tial locations. Like the single layer case, 7, is the nonzero
shear stress. ' '

As can be seen, three of the four components of stress have
their largest magnitude at 0 =180 deg, where the tube is the
coldest. The two major components of stress are the axial and
the hoop stresses. The stress components are discontinuous
functions of p, a characteristic of layered materials. In the
skins the axial stresses are tensile and they act perpendicular to
the fiber direction. As =180 deg these stresses are large
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enough to crack the material. Also, in the core the hoop
stresses at § = 180 deg are tensile and act perpendicular to the
fibers. They are also large enough to cause cracking in the
material. The radial and shear stresses are much smaller than
the other components of stress. These stresses peak at the in-
terfaces between layers, the outer interface experiencing both
the highest radial and the highest shear stress. The quantities
b, and b,, which characterize the overall deformations of the
tubes, have the values —11.6 x 107® mm~! and —208 x
10-6. This means the tube bends and contracts axially like the
90 deg tube. This is due to the fact that the skins, with positive
axial thermal expansion coefficients, overpower the six 0 deg
core layers with negative axial expansion coefficients and
determine the sign of the thermally induced deformations.

Concluding Comments

An analysis has been presented for studying the stresses and
deformations of composite tubes subjected to a circumferen-
tial temperature gradient. Numerical examples have shown
that in a single layer tube fiber orientation strongly influences
response. In the multilayer tubes studied, the stresses were
quite high. Even for a multiple-layer tube, just two constants,
b, and b,, characterize the overall bending and axial deforma-
tions of the tube.
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A binary mixture theory with microstructure is constructed for unidirectionally
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fiber-reinforced elastic composites. Model construction is based on an asymptotic
scheme with multiple scales and the application of Reissner’s new mixed variational
principle (1984). In order to assess the accuracy of the model, comparison of the
mixture model predictions with available experimental data on dispersion of har-

monic waves is made for boron/epoxy and tungsten/aluminum composites. For-
mulas for the effective moduli are also presented, and the results are compared with
test data and other available predictions.

1 Introduction

With the advent of high strength and stiffness fibers such as
boron and carbon, and the development of techniques for
binding such materials to plastic or metal, fibrous composites
have become important elements of modern structures. Such
composites, due to their microstructural heterogeneity, may
exhibit response phenomena for some environments that are
not observed for homogeneous materials. An example of these
phenomena for dynamic environments is wave dispersion, an
understanding of which is important both from the stand-
points of direct response prediction and indirect analyses
associated with such topics as nondestructive testing. For
fibrous composites, wave dispersion has been amply
demonstrated via ultrasonic techniques by such investigators
as Tauchert and Guzelsu (1972), and Sutherland and Lingle
(1972).

Simulation of response phenomena associated with the
material microstructure, such as wave dispersion, requires a
higher-order continuum description. Several such models have
been proposed, some phenomenological, some nonphenom-
enological.

A higher-order continuum model which simulates wave
dispersion was first proposed by Achenbach and Herrmann
(1968) for unidirectionally fiber-reinforced composites. This
theory called the ‘‘effective stiffness theory’’, has been further
studied and applied to fibrous composites by Bartholomew
and Torvick (1972), Hlavatek (1975), Achenbach (1976), and
Aboudi (1981). The aforementioned works concerned linear
materials. By modifying the original methodology, Aboudi
(1982, 1983) extended the linear model to account for inelastic
responses of the composite constituents.

In addition to the effective stiffness modeling concept, a
mixture approach has been followed by a number of in-
vestigators. A phenomenological version of this model type
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was adopted by Martin, Bedford and Stern (1971). Deter-
ministic, nonphenomenological mixture theories were in-
troduced by Hegemier, Gurtman and Nayfeh (1973),
Hegemier and Gurtman (1974), Nayfeh (1977), Murakami,
Maewal and Hegemier (1979), and Nayfeh, Crane and Hoppe
(1984). Although capable of simulating nonlinear component
responses and interfacial slip, this work was limited to
waveguide-type problems. This limitation was removed in the
mixture theory developed for laminated composites by
Hegemier, Murakami and Maewal (1979), and Murakami,
Maewal, and Hegemier (1982). In their papers, it was
demonstrated that the mixture-type model was capable of
simulating harmonic wave dispersion in laminated composites
more accurately than the effective stiffness theories. Further,
the mixture-type model requires fewer governing equations.
The accuracy and efficiency of the mixture theory is due to the
use of appropriate displacement and stress microstructural
fields, and a judicious smoothing technique. These are obtain-
ed by an asymptotic procedure with multiple scales. This pro-
cedure yields a series of microboundary value problems
(MBVP’s) defined over a unit cell, which in turn represents the
(periodic) microstructure of a composite. The lowest order
version of the MBVP method is equivalent to the ‘O(1)
homogenization theory’’ summarized by Bensoussan, Lions,
and Papanicolaou (1978), and Sanchez-Palencia (1980). The
latter, while it generates appropriate static moduli, is non-
dispersive. Simulation of wave dispersion requires at least a
theory which is classified as an O(¢) homogenization theory in
which ¢ denotes the representative ratio of micro-to-
macrodimensions of a composite.

To date an O(e) mixture theory has not been constructed for
fibrous composites subject to arbitrary wave motion. Con-
struction and validation of such a 3D model for unidirectional
binary composites with periodic microstructure are the objec-
tives of this paper. To facilitate this task, the asymptotic pro-
cedure with multiple scales noted previously is combined with
a variational technique (Murakami, 1985). Following develop-
ment of the basic equations, the dispersion of time-harmonic
waves is studied and the results are compared with experimen-
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Y A CELL

Fig. 1 A unidirectionally fiber-reinforced composite

tal data for boron/epoxy (Tauchert and Guzelsu, 1972) and
tungsten/aluminum (Sutherland and Lingle, 1972) com-
posites. The good correlation obtained with experimental data
indicates that the proposed mixture model furnishes a basic
tool by which dynamic responses of elastic composites can be
investigated. While the model construction procedure is ap-
plicable to inelastic component response and interface slip, ex-
tension and investigation of the nonlinear problem is deferred
to later publications,

2 Formulation

Consider a domain ¥ which contains a uniaxial periodic ar-
ray of fibers embedded in the matrix, as shown in Fig. 1. Leta
rectangular system X, X,, X; be selected with x; in the axial
direction of the fibers. In the X,, X; plane, a typical cell that
represents the geometrical microstructure of the composite is
shown in Fig. 2 for a hexogonal array.

For notational convenience forms ( )@, a=1,2 denote
quantities associated with material o with =1 representing
fiber and o=2 matrix. Cartesian indicial notation will be
employed in which Latin indices range from 1 to 3 and
repeated indices imply the summation convention unless
otherwise stated. In addition, the notations ('),i =d(")/3x; and
(),=0(")/0t will be employed in which f represents time.
Quantities of the form () and ( ) denote dimensional and
nondimensional variables, respectively.

The governing relations for the displacement vector #(® and
the stress tensor 651‘-’in the two constituents are:

(a) Equations of motion
0
where 5@ is the mass density;
(b) Constitutive relations
o\ = N5 ,el) + 2@ Q)

where A®, 4® are Lamé’s constants, e{) is the infinitesimal
Cauchy strain, and §;; is the Kronecker delta;

(¢) Strain-displacement relations

L .
e =— @S+ i) ®)

(d) Interface continuity relations
2 = a6 = 6P on § )

where »{!) =0 on the fiber-matrix interface J;

(e) Initial conditions at =0 and appropriate boundary
data along the boundary 9 V.

Conditions (@)-(e) define a well posed initial boundary value
problem. However, due to the large number of fiber-matrix
interfaces the direct solution to this problem is extremely dif-
ficult. The objective of the subsequent analysis is to alleviate
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Fig. 2 A typical cell

such difficulties by deriving a set of partial differential equa-
tions with constant coefficients whose solution can be utilized
to approximate the solution of the problem. To this end, it will
be convenient to nondimensionalize the basic equations by us-
ing the following quantities:

A= typical macrosignal wavelength
A= typical fiber spacing or cell dimension
ConysPmy = reference wave velocity and macro-

density
reference modulus

typical macrosignal travel time
ratio of micro-to-macrodimensions.

E iy =bomyClm =
t(m)_E 1}/ C(m) =
e=A/A =

With the aid of the above notation, nondimensional variables
are now introduced according to

Ceys X2, X3) = (X, X, )23)/]\, t= i/t_(m)!
()\’ “)(a) = (7\’ ﬁ)(u)/E(m): p(u) :ﬁ(a)/f-’(m)' (5)

With the variables defined according to (5), the material
properties are seen to be periodic in the x,, x; plane in which
the periodicity of the fiber lattice structure may be defined by
the cell. 1t is expected that stress and deformation fields will
vary significantly with respect to two basic length scales: (1) a
“global” or ‘““macro”’ length typical of the body size or
loading condition, and (2) a “‘micro”’ length typical of ‘‘cell”’
planar dimensions. Further, it is expected that these scales will
differ by at least one order of magnitude in most cases. This
suggests the use of multivariable asymptotic techniques (Ben-
soussan, Lion, and Papanicolaou, 1978; Hegemier,
Murakami, and Maewal, 1979; Sanchez-Palencia, 1980). This
approach commences by introducing new independent
microvariables according to

xf=x;/e. ©)
Therefore, all field variables are considered to be functions of
the microvariables x5 and x3, as well as the macrovariables x;,
i=1-3 -
f(xl » X35 X3, t) =f >k(xl s X2y X3, X;, X;, f;(:)
Spacial derivatives of a function fthen takes the form

(7a)

3 3 1 9
s S (x,t) =—ax_,f*(xk,x}‘,t;e) t— o S Gpxnte)  (T0)
i i 1
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where d( )/0x7=0. By introducing the notation ( )  =4d( )/
dx}equation (7b) can be rewritten as:

fi=rit— f**

In the sequel f* will be written as f for notational simplicity.
The operations (7), when applied to all field variables, lead
to the following “‘synthesized’’ governing field relations:

(7c)

(@) Equations of motion

1
j(:!)j +_____ Uj( )j* =p(“)u§j’;} (}3;) - Cr(ﬂl) 8)
(b) Constitutive relations
U(g) — )\(ﬂ)ﬁije(z}( + 2#(a)e(3) ; )

(¢) Strain-displacement relations

1
o = _Z_i @ 4y @Dy (s +u(“)*)} (10)
(d) Interface continuity conditions
u =uP, o v =Py on 9. (11)

At this point, the variation of field variables which satisfy the
periodicity with respect to xf is assumed. According to this
condition field variables take equal values on opposite sides of
the cell boundary. The premise allows one to analyze a single
cell in an effort to determine the distribution of any field
variable with respect to the microcoordinates x The x*
-periodicity condition is motivated by the Floquet and Block
theorems (Brillouin, 1946) for harmonic wave in periodic
structures. Certainly, it eliminates boundary layer effects.
However, it is expected to provide a good model for the global
wave phenomena in fibrous composites with periodic
microstructure.

For the construction of a mixture model it is convenient to
cast the field equations in a variational form by using the
Reissner new mixed variational principle (Reissner, 1984). In
the Reissner variational principle the variations of displace-
ment, strain with equation (10) as definition and transverse
stresses, i.e., all stress-components except a“;‘} , are con-
sidered. Thus, it is convenient to rewrite the constitutive rela-
tion (9) in terms of the axial strain e(") and the transverse
stresses:

o} =\ +2) e}
{e“;‘% ce) j] P
R i
oy | @ 1
— )\(U)eiolt) s
033 | 1

+ 2@ () D+ (.. ),
A

N+ 2y -1
A+20)@

A

[2¢9 20,269 (L0028 (.. )]
= g, 05,0 (12)

Using the equations of motion (8), Gauss’ theorem, and the
x*-periodicity condition, it can be demonstrated that the
Reissner mixed variational principle, applied to the synthe-
sized fields by the multivariable representation, takes the

form:
2
T T 1] o foen o +oe o + o063

a=1

+20e'9 65} +28e5) 65) +28e%) 63

Journal of Applied Mechanics

+86') (u("‘)+—L ufdr—eP (...

+66') )+ i ug‘g* Rl GU))

#0058 @3+l +— e+ e 269 ()
+66%) %+ uf) +— w269 (.. L))

1
+0665) () +uf) +— - Ui —2¢50 (. .. ))}dx;‘ dxy

+f =

- uS‘))}ds*] dxy dx, dx,

{(Gu® = 5uPy T +6'T Hu®
i 1 i

2

)1 L8 [l o

1
(= ol dxsax, dxy die
2

+ SS&VT ( E SSA(”) Su,.(l!)vTi(m)dx'Z" dx;‘)dA,

a=1

(13)

where A® denotes the x3, x3 domain of the cell occupied by
material o (Fig. 2), 6{ is used for the approximate transverse
stress, *T¢® denotes ‘the traction vector on the surface vy
where the traction is specified, ds* is an infinitesimal line ele-
ment on 9, and dA is an infinitesimal surface element on the
boundary of V:idV. In (13) basic variables are the
displacements u{®, the transverse stresses 5%} and the interface
traction vector * T} The Euler-Lagrange equations of (13) in-
clude (8a), (11a), (125, ¢), and

"Tr=9 " on 9. (14

The above variational equatlon (13) furnishes a tool with
which a mixture model can be obtained with appropriate trial
displacement and transverse stress fields. The basic require-
ment for the variables is the x*-periodicity condition on the
cell boundary d4. The microstructural variation of the trial
functions can be obtained by the asymptotic procedure
(Murakami, Maewal, and Hegemier, 1981).

3 Asymptotic Analysis

The premise that the composite macrodimension is much
larger than the microdimension, e << 1, and the form of scaled
equations (8) and (10), suggest the expansion of the dependent
variables in the asymptotic series:

oo

{uﬂalj]( )(xk’xl)t6 E

{Uiimy2Tiigm } @ G, X0). (15)
If equation (15) is substituted into equations (8)-(11) and the
coefficients of different powers of e are equated to zero, a se-
quence of problems defined on the cell is obtained. The first of
the equations in this sequence furnishes

v ul) x =0, o2, *=0. (16)
Equation (16a) implies that u?f‘,,)) is independent of x}and yields
with the zero-th order expansion of (11a):

Ul = Uy (g, D). (17

The remaining systems of equations obtained from equations
(8)-(10) are, for n=0:
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@ — ) (@) _
jl (n+1), _/* p uffﬁ:)) n- /(';"én) i U'?én) - U%)’ (18)
oG =8, ekk(n)+2ﬂ Do (19)
(o) _ ! (@) (o) () 20
eij(n) '_—2— (ul(n) J +u ()i + ul(n+ N, Jj * + u (n+ 1), 1*) ( )

To be added to the foregoing are the interface conditions and
the x*-periodicity conditions for n=0:

(1) (2) (1) 1 — 2 (D
Uitay = Uiy s Tjigny VS = iy ¥

( ) 2 2
1(n) and 0(1()11) j( )

@n
(22)

The first set of microboundary value problems (MBVP’s)
for of ,(0) and u,(l), called the O(1) MBVP’s, is defined by equa-
tions (16b), (18b), (19), (20), (21b), (22b) with n=0, and (21a),
(22a) with n=1. The O(1) MBVP’s are excited by Uy, ;.
Similarly, a sequence of MBVP’s is defined for each n from
equations (18)-(22). With appropriate integrability and nor-
malization conditions, higher order terms may be computed
by solving the MBVP’s. In particular, the O(1) MBVP’s are
the ones solved for the O(1) homogenization theory proposed
by Bensoussan, Lions, and Papanicolaou (1978) and Sanchez-
Palencia (1980), and, also, form the basis of the mixture
theory which may be classified as an O(e) homogenization
theory. The asymptotic approach yields the microstructures of
displacement and stress fields after solving a multitude of
MBVP’s which are complicated.

In order to use the approximate solutions of the MBVP’s in
the course of developing a mixture model, and to ease the
burden of solving the MBVP’s exactly, a variational pro-
cedure was adopted by Murakami (1985) for laminated com-
posites with the help of the Reissner new mixed variational
principle (Reissner, 1984). A similar approach is adopted here
for fibrous composites. To obtain the lowest order mixture
theory by using equation (13), it is necessary to obtain trial
displacement and transverse stress to O(e). In the sequel, the
trial functions are obtained for a hexagonal cell with a concen-
tric cylinder approximation as shown in Fig. 2. In Fig. 2, (r, 6)
are micro-polar coordinates:

* ¥
r=Vx,2+x;2, tanf=x3/x},

on 49,

are x*-periodic on dA.

23

by which r=1 constitutes the cell boundary and r=vn®,
denotes the interface 9. The quantities #® indicate the volume
fraction of material o and satisfy

nO+n@ =1, (24)

In terms of the polar coordinates the x*-periodicity conditions
for a hexagonal cell with the concentric cylinders approxima-
tion reduce to the form:

S, r, 0, 0=f(x;, r,m+0,)at r=1. (25)

4 Trial Displacements and Transverse Stresses

The O(1) stress and O(e) displacement fields are obtained by
solving the O(1) MBVP’s which are defined by equations
(16b), (18b), (19)-(22) and (25) These MBVP’s are excited by
Uy, ;- The exact solution of u,m is furnished in the Appendix.
For the mixture formulation it is convenient to introduce an
O(¢) displacement variable which represents Uy, ;+ Uy, ; ac-
cording to:

J 1 1
Si(Xps ) 5753 uf)p{Dds* =-71—S5 ufg\Dds*
where A(= 7) is the area of the cell. Due to the fact that uf(‘?) is

excited by Uy, ; + Uyy, ; one obtains
L2

s2 =S;. 27)

Equation (27) can also be obtained if one substitutes the exact
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@6)

ff‘,)) in Appendix A into equation (26) and eliminates Uy, ;.
To render the analysis tractable, it is preferable to utilize an
approximate form of the exact solution for u%. The exact
solution indicates that the following form of the O(e) displace-

ment yields a good approximation:
Ul Gy, x%, )= S (%> D@ (F)cosh + S [, DEW()sing  (28a)

where

r 1 1
W\ — @)= —— | — —
g =" 870 n<2>< r+— )

Anticipating the O(e?) difference of the average of u!® on
A equations (17) and (28) yield the following trial displace-
ment field:

u® (g, Xx;*

(28b)

L D= U (xy, O+ eul) Oy, X%, 1) (29)

where u,(l) is defined by equations (28). Equations (29) and
(28) indicate that the mixture displacement variables are UV,
U®, ’s, and *S; with the constraint (27).

By using equations (29) in (19) with #=0 and considering
the O(e?) differences of the average transverse stresses, the
O(1) trial stress field may be expressed as:

O | @ Tk ] @ cos 26
033(0) = | T30, 1) + ’32 18} (xy, £) | cos 20
G230 T3 (X5 B 0
cos 20 sin 26
+ 13(xy, 0 ~cos 20 | +1% (x, ) sin 20 , (30a)
sin 26 0
O310p | @ T3 (Xes 1) | @ Sa2
R = T2
012(0) 712(Xg>
sin 20 cos 260
19 (e, 1) + 1% (e, 1) (30b)
cos 20 ~sin 20

In order to define the O(e) trial stress field it is convenient to
define the O(e) stress variable according to
1 1
Pilxi )=—r L o PvfDds* =7;S afyriPdst. (1)
If one integrates (8a) over A® and utilizes the x*-periodicity
condition, one obtains the mixture momentum equations:

n@ oD 4 (~ 1%+ Py= n@p@y {5 (32)
where the average operation is defined by
1
F@a(x,, 1) ;WS L(w £ @, x5 Ddxgdx;  (33)

From equation (32) it can be seen that P; represents an interac-
tion body force between the two constituents across the inter-
face. Also, the form of equation (32) with P, defined by (31)
satisfies the integrablhty condition adopted by the O(1)
MBVP’s for cr,j(l) which are deflned by equations (18)-(20)
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with appropriate n’s and equation (31). As an O(e) trial stress
field which satisfies (315) one may use the following approx-
imate fields:

Gy | @ 3cost
1
O30y =T Py, g9Nr) cos 0
G231 sin 0
sin 0
+ P3 (%, D89 3sin6 , (34a)
cos @
b3y | @ 1 sin ¢
DT == Pixi 0890) { . (34b)
G121y 2 cos 0
As a result, the trial transverse stresses are expressed as:
89 = 6,100y Gei, X1, )+ €65y (e, %1, 1) (35)
where au(a) and au(l) are defined by equations (30) and (34),

respectively.

5 Mixture Equations

By substituting the displacement and transverse stress trial
functions defined by equations (29) and (35), respectively, into
the Reissner variational equation (13), one obtains the follow-
ing relations as the Euler-Lagrange equations:

(@) Equations of motion

(a)ajaa)+( )u+1pi=n(‘1)p(a)U§f’3, i=1-3, (36)
2 L 600 00 poyy_ 16
i, 7+ = (03" — 05" + R )=1S; ,, i=1,2, (37a, b)
3 Vo co_ o, poy_re
A/[ji.j+6_2(03i —05” + R )=1S;,, i=1,3, (37¢c,d)
3
— (M, + My )+ > O o+ RPI=1S,. (T
where
{xa) _ 1 d * d
% =) a0 dxE a5
2 3 1 &
e(My;, My) == SS @ o\ g (cos, sinf)dx; dxj, (38)
a=1
and
2 1
1= Y H@p@ pO =
E ? §

1 2
h(2)=——— (2+n o In n(‘)>

4n@ (39)

(b) Constitutive relations

Oy | (ca) Ty | @ AM2u AN |w
033 733 A A 2/}.
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Uy +(—1)“+‘S /R 1
e 1]
U3 +(—1)a+ls /n' ’

Oy3 | (ca) Taz | (@) U2,3 + U3,2 (o)
a3 = | 74 =pl Uy + Uy,
Oy T1 Ui+ Uy,
3
25,
(_ 1)a+l 3
e | S o
2
S

2 2 3 3

Py o= BHUP - UPY/ e+ h/2)( S5+ 8y, + S5+ 8311
2 2 3 3

P, = BH{UP — UMDY/ + 7S, +h(35,,+28, 3+ 8;5,)/4]

3 2 3 3
Py = B3[(UP — U/ +y S, 1 +h(Sy;+28,,+3853)/4]

41)
where
2
8, = 1/{ ) h(“>/(2u("))},
a=1
2
B,=8, = 1/{ Y KON+ 3@ /8(A+ ) w)},
a=1
2 2
=Y, KON/ 20N+ p)®, A= Y ke, 42)
=1 a=1
2 3 2 h 2 h 3 h
My, =—4_ hPy,Mj, =—4‘ Py, My, =‘2_ P, My, =T Py,
3 3 3 h
M, =T hPy, My, =T Py,
2 2 3 3
M23=M31:M23=M12=0 (43)
where it is understood that
2 2 3 3
M;=M; M;=M;; (44)
R=1@/n" R = (62/2+ £2)/n R = — (B/n0,
RP=18/2n® RG= (- 1372+ £Z)/n 453)
and
2 3
(= —u®8,/n®,8) =@, /n®,
2 3 2 3
1=~ + )P (S, — 53)/nP 13 = — u®(S, + S;)/n?,
(@)= — O+ ORS,)/n®. (46)

The remaining constitutive relations associated with ¢!? are
obtained from (124); the results are

o5 = N+ 20 @ UP) + N {US) + UY)

2
+(—1)°‘“(S2+S3)/n(")], 47
1 A2 1,1
3 = @ [()\ +2u)@ —~ —————]
My, D‘Z;l A+ W)@ ‘35'1,1
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P,
+y . 48)
Py
The associated boundary conditions are on 8V
n@glody, =+ Tier) or sUW=0 ,i=1,2,3, 49)
2 2
My, =2T, or 65;=0 , i=1,2, (50a)
3 3
My, =>T; or 88;=0 ,i=13, (500)
3 2 3
(Alj2+]‘4j3)Vj:3”T2+2uT3 or (SSZ:O. (SOC)
where
O 1 o
1 =— (|, 10ax ax,
1 2
e¥T;, »T;) =7 E SSA(O‘) »T{*) gl (cosh, sinf)dxs dx3(51)

a=1
Equations (36)-(50) and the initial conditions
JoJ
Ui, U9, 8,8, at t=0on V (52)

define a well posed initial boundary value problem with
respect to time ¢ and the macrocoordinates x;.

6 Harmonic Wave Dispersion Spectra

In an attempt to test the accuracy of the mixture model, the
phase velocity and group velocity spectra of the mixture
theory have been compared with available experimental data
for time harmonic waves. For the comparison harmonic waves
which are propagating at an arbitrary angle of incidence in a
full space of the following form are considered:

[, o, U, v, U, U,
2 2 3 3 3
S,/ik,S,/ik,28,/ik, S, /ik, Sy/ik]”

= exp { ik(x; cos¢ + x,5ingcosd + x5 singsind) — iwt  U* (53)
where
U= (U0, Up, 0P, Up, Up,
2 2 33 3
bgz),SI,SZ,ZSZ,SI,S:;]T (54)

and [ ]7 denotes the transpose of [ 1. In equation (53) 215“) and
s, are constant amplitudes, k& denotes the wave number, w
represents angular frequency, ¢ is the azimuth measured from
the x; axis, and @ is the longitude; the direction of the wave
propagation may be best represented by the wave vector k:

k = k[cos¢,sinpcosd,singsing] T, (55)

Substitution of (53) into equations (36) and (37), which are
expressed by the displacement variables with equations
(40)-(48), yields an eigenvalue problem for ew of the form:

[KTU = (ew)? [M]U (56)

where [K] and [M] are 11 x 11 real symmetric matrices, the
elements of which are functions of the mixture constants and
the wave vector. Furthermore, [M] is a diagonal matrix. Upon
calculation of the eigenvalue ew for a given ek, one obtains the
phase velocity C, as

C, = (ew)/(eh). (57)

For each computed eigen pairs (ew, ﬁ)j‘, J=12,...11 the
group velocity ’

dw

C,=—n— » (58) |

& dk
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Fig. 3 Group velocity spectra of waveguide modes for a boronfepoxy
composite (Tauchert and Guzelsu, 1972)

Table 1 Material properties of the boronfepoxy composite tested by
Tauchert and Guzelsu (1972)
Volume Young’s Modulus Poisson’s Ratio Mass Density
Fraction n®) Ew ple) pl
379.2 GPa 2682 ke/m’
Mporon 0.54 (55 x 108 psi) 0.18 (251 % 10°6 B sec¥/in®)
5.033 GPa 1261 kg/m®
D epoxy 046 (©.73 x 10 psi) 0.40 (118 x 1076 b sec¥/in®)

Table 2 Material properties of the tungsten/aluminum composite
tested by Sutherland and Lingle (1972)

Volume Young’s Modulus Poisson's Ratio Mass Density

Fraction n® E ve! e
Myngsien 0.022 398 GPa : 0.28 19194 kg/m3
@ ppuminum 0.978 71.0 GPa 0.34 2700 kg/m®

can be obtained by taking the derivative of equation (56) with

- respect to ek:

(K10 = (26e0)C, M1 + ()M 1)U, (59)
For the jth eigenpair equation (59) yields
UT([K'] - (w2 IM' 1)U
(€)= (K]~ ()’ IM"JU 60)

* *
2(ew),(UTIM]U),
In the subsequent simulation a typical cell dimension A was
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Fig. 4 Group velocity spectra of waverefiect modes for a boron/epoxy
composite (Tauchert and Guzelsu, 1972)

chosen to be a cell radius by introducing the concentric
cylinders approximation of the equal area. The reference
elastic modulus and density used for the scaling are

2 2
Epy= Y, n@E@, Pum= 3 n@p@ 61)
a=1

a=1

where £® is Young’s modulus. The dimensional frequency
v(Hz) can be computed from ew by

v = (W E puy/ i/ 2A). (62)

Numerical results are presented for a boron-epoxy com-
posite, for which experimental results were presented by
Tauchert and Guzelsu (1972) for a waveguide case ¢ =0 deg
and a wavereflect case ¢ =90 deg. The material properties are
summarized in Table 1 in which the values for Poisson’s ratio
are estimated. In the simulation A was computed from the
fiber diameter (=2vnMA) which was 1.016 X 10-% m. The
group velocity spectra for a waveguide case ¢=0=0 deg are
shown in Fig. 3 for two acoustic modes: a ‘‘gross”
longitudinal model and a “‘gross’’ shear mode. In the figure
the same symbols as the reference of Tauchert and Guzelsu are
used for the experimental data points. It is noted that
reasonable agreement is achieved for the waveguide case in
which pronounced dispersion is observed. The group velocity
spectra for a wavereflect case ¢ =90 deg, 6 =0 deg in which the
wave vector is normal to the fiber axis are shown in Fig. 4 with
the experimental data. The figure includes three acoustic
modes: a ‘‘gross’’ longitudinal wave (P-mode), a ‘‘gross’’ ver-
tically polarized shear wave (SV-mode), and a ‘‘gross”
horizontally polarized shear wave (SH-mode). The sets of ex-
perimental data correspond to the ‘‘gross’’ P-mode and the
“‘gross’’ SH-mode. It is noted that there are significant devia-
tions from the ‘‘gross’’ SH-mode, but the overall agreement is
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for tungsten/aluminum composite (Sutherland and Lingle, 1972)

Table 3 Comparison of effective moduli of a boron/aluminum unidirec-
tionally fiber-reinforced composite

Data®

Mixture

Model

Square Cell?

Model

Hexagonal Cell?

Model

Efp
(

i
Efp!
Ef
Efp
Ef

£l

2450
1.825
0.779
0.604
0.526

0.566

2.551

1.868

- 0.661

0.578
0.604

0.559

2480

1.856

2.551
1.872
0.661
0.578
0.606

0.561

3 After Datta and Ledbetter (1983)

not unsatisfactory if one admits the scarcity of the experimen-
tal data and the difficulties associated with the measurement
of shear wave velocities. It was reported by Tauchert and
Guzelsu (1972) that a shear wave exhibited extremely high
damping of the pulse. A similar observation and the scatter of
shear wave data were reported by Sachse (1974) who con-
ducted modulus measurements of boron/epoxy composites by
using pulse-echo techniques. He concluded that ‘‘the measure-
ment of the present investigation indicate that shear waves
propagating along and across fibers in the composite materials
tested do not always propagate at the same speed.”’
Sutherland and Lingle (1972) reported phase velocity
measurements for tungsten/aluminum composites whose
material properties are shown in Table 2. The equivalent cell
radius A was computed from the given fiber spacings which
yield the area of a typical cell A(==A?) 0.579 x 10~ m?2.
Figure 5 shows the phase velocity versus frequency relation for
the ‘““gross’ longitudinal mode. Reasonable agreement -is
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observed between the experimental data and the theoretical
prediction.

7 Effective Moduli

The O(1) homogenization theory which yields the effective
moduli of composites can be obtained by taking the limit of
e—0 and equating the constituents’ displacements

U =uP=u, (63)
By introducing the above constraints, equations (36) yield
(m) _P(m) U R 64)
where
2 2
o= E n@glea) | o) — E 7@ pe), (65)
a=1 a=1
Equations (37) yield
o)~ oll® + RP =0, i=1,2,3 (66a)
o — 0@ + R@ =0, i=1,3. (66D)

By eliminating /S; by equations (66), equations (654a), (40), and
(47) with (63) furnish

¢ = [E(mM]elm 67

where

o =[o® 6 69,04} , 00,617,

e =[Uy |,Uy 5, Uz 5,Uy 3 + U, Uy + Uy 3, Uy + Uy i1 (68)

and [EY] is the effective modulus matrix with transverse
isotropy due to the concentric cylinders approximation and is
defined in Appendix B.

The formulas for the effective moduli (B2) are assessed by
comparing the results with the experimental data reported by
Datta and Ledbetter (1983) for boron/aluminum composites.
The results are shown in Table 3 in which the moduli com-
puted from the effective stiffness theories for the square cell
by Achenbach (1976) and for the hexagonal cell by Hlavatek
(1975) are included by using the formulas reported by Datta
and Ledbetter (1983). The comparison has revealed that all
high-order theories yield almost similar results. It can be easily
shown that the formulas for the effective moduli yield values
which fall between the upper and the lower bounds obtained
by Hashin and Rosen (1964) for fiber-reinforced composites.

8 Concluding Remarks

An asymptotic mixture theory with multiple scales was ap-
plied to unidirectionally fiber-reinforced elastic composites
with periodic microstructure. In the model construction,
Reissner’s new mixed variational principle was applied to the
synthesized fields with multivariable field representations. In
order to assess the accuracy of the model the mixture disper-
sion spectra were compared with the experimental data obtain-
ed for the boron/epoxy composite by Tauchert and Guzelsu
(1972) and for the tungsten/aluminum composite by
Sutherland and Lingle (1972).

A satisfactory correlation with the experimental data in-
dicates that the proposed mixture model furnishes a basic tool
by which dynamic responses of the composite structures can
be investigated.
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APPENDIX A
Exact 1)) of the O(1) MBVP’s
Uiy = Gg©® )1 (Uior,2 + Uz,1)080 + (Uy(o),1 + Uy,3)sind}
Ut = bo(Ungyz + Usys + AUy, )8 (P)cost
aP[{g® (r)cost + k@ g{P(r)cos30} (U2 — Uz 3)
+ {8 (r)sing + & gi(r)sin30 ) (Uygy 3 + Uz 2)]

+
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+ P [3(1 — #N)g (r)cosh + (1
+ &) g8(r)cos30} (U, — Usy3)
+ (3(1 - k)g{ (Psing + (1
+ K)g@rsin3f ) (U 3 + Uz )1,
Uh = bo(Uy)z + Usgy 3 + AU ,1)8 (r)sing

+ @[ {g@(r)sing — K@ gPsin30}(— Upgy 2 + Usys)
+ [£9(ncost — kD gi(r)cos301(Uyg, 3 + Usy )]
+DP{3(1 — k@) g (r)sinf — (1
+ k@)l (r)sin3f }(— Uy 2 + Usigy3)
+ [3(1 — @) g (r)cosd— (1

+k@)gl (r)cos30} (Uygy 3 + Usy 2)] A1)
where
by = (N )@ -\ +wM}/2d)),
d = E N+ W@/ n@ 4y @ /(nD @),
a=1
2
G = -~ u?)/d, dy= E 1 /0@ 4 @ /(nOp®)y,
a=1
A= QO -N®)/ A+ D~ N+ p)@)
K@ = N+ 2p) @/ 7@ = (1 — @)/ (1 + k@) (42)
g0 = gl =r, gY =0
gP) = =r+rt g =(—r"1+r3)/n9,
g = P —(1+x@)2{4(1 ~ k@ + x@7)p3
—3(1—k@)2r-1y. (A3)

In equations (A1) af and b§? are obtained by solving the
linear equations for x = [a(zl) , b, a(22), b(zz) 17

[4] x = B (A4)
4x4 4x1 4x1
where
Ay = 1,45 =0,A45=p0/n®, 4, =0
Ap = 30—k | Ay =1+ k)’
Ap = —Ap =310 —x0), Ayp=—1,
Agy = — i@ /n),
Asy = p@/n@ {1 -f@/p0}, A= 3,2(2),,‘(2)/,,(1)2
Ay = =301 +n0)(1 - k@)
Az = (1+k@)n®” — (4 —370)(1 — @ + x@")
/(nO(1 + k@)
Ay = 3u@1 ~ @)(n® — ;@ /n)
Ay = =3O ~ k@)1 + 32 /nM)
+12u@(1 — k@ +k@%)/ (nO* (1 + D)}, (A5)
and
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By =B,=B,=0, By=—(u - pu@)/2. (A6)

It is interesting to note that for most of practical composites
b, o= 1,2 are small compared with a{®.

APPENDIX B
The Definition of [E] in (67)

~G“W(m) [En EnEp, 0 0 0 W("’)
O Eyp Eyp Eyy 00 0
033 _ Ey Ey Eyy 00 0
| | 0 0 0 Ey 0 0
oy 0 0 0 0 Ej O
Lo | 0 0 0 0 0 E|
[ Uy |
Ui,
Us 3 (B1)
Uss+Us,
Us + Ui
L Uip+ Uy |
where
E™ = E RO+ 2p)@ — (\O _\@Yy2/q |

a=]

rn)_
12 =

Z REOND — AD - \DY (A + D — A+ @) /d,,

a=1

E9 = Z RO+ 20)@ — (A + O

a=1

— N+ 0P )2/ dy = (O = @Y/,

2
E9 = E RN — (A + O

a=1
~A+w@3)2/d, + (u® — u@)2/d,,
ES) = (EQ-E))/2,

E = E @) — (O — ydy2 /g (B2)
a=1
and where
2
= ) 1O/ + A+ p)@/2nWn®), (B3)
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Shear Stress Intensity Factors for
a Planar Crack With Slightly
Curved Front

Recent work (Rice, 1985a) has presented the calculations of the first order variation
in an elastic displacement field associated with arbitrary incremental planar advance
of the location of the front of a half-plane crack in a loaded elastic full space. That
work also indicated the relation of such calculations to a three-dimensional weight
Junction theory for crack analysis and derived an expression for the distribution of
the tensile mode stress intensity factor along a slightly curved crack front, to first
order accuracy in the deviation of the crack front location from a reference straight
line. Here we extend the results on stress intensity factors to the shear modes, solving
to similar first order accuracy for the in-plane (Mode 2) and antiplane (Mode 3)
shear stress intensity factors along a slightly curved crack front. Implications of
results for the configurational stability of a straight crack front are discussed. It is
also shown that the concept of line tension, while qualitatively useful in characteriz-
ing the crack extension force (energy release rate) distribution exerted on a tough
heterogeneity along a fracture path as the crack front begins to curve around it, does
not agree with the exact first order effect that is derived here.

Huajian Gao
James R. Rice
Division of Applied Sciences,

Harvard University,
Cambridge, Mass. 02138

Introduction

For a half-plane crack lying in an infinite space, the stress
intensity factors due to point force pairs acting on the crack
surface have been derived by many authors (Uflyand, 1965;
Sih and Liebowitz, 1968; Kassir and Sih, 1973; Bueckner,
1977; Meade and Keer, 1984a; etc) in the case when the crack
front lies along a straight line. Hence, by integration, the solu-
tion due to arbitrary loading on the crack surface can be
found.

Rice (1985a) showed how the knowledge of such solutions
enables one to calculate the changes in crack surface displace-
ment distribution, exact to the first order in the deviation of
the crack front position from a reference straight line, when
the crack front position is altered slightly to lie along a general
curved arc in the same plane as that of the crack. He gave full
details for the case of tensile (Mode 1) loading and derived an
expression for the stress intensity factor K; along such a
nonstraight crack front (again, exact to the first order). The
latter work was motivated by the interesting approach to the
wavy crack front problem based on asymptotic expansions by
Meade and Keer (1984b), although it turned out that their
results required correction.
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Here we carry through details of the slightly curved crack
front analysis for general shear loading, deriving the
analogous expressions for the inplane (Mode 2) and antiplane
(Mode 3) stress intensity factors, K, and K;, along a
nonstraight crack front.

Crack Surface Displacement

We now present the basic equation for crack surface
displacements associated with incremental crack growth,
following Rice (1985a).

An infinite, homogeneous, isotropic elastic solid contains a
half-plane crack with a straight crack front and is subjected to
an “‘original’”’ load system, consisting of some fixed forces
and/or imposed boundary displacements, that induces mixed
modes with distributions K%(z’) of stress intensity factors
along the crack front. Here o = 1, 2, 3 and z’ denotes the
location along the crack front. A Cartesian x, y, z coordinate
system is attached such that the crack plane lies on y = 0 and
the z axis lies along the crack front (Fig. 1).

Now imagine that the original loading is supplemented by a
set of concentrated force pairs +P;, j = x, y, z, acting at x,

.0*, zand x, 0™, z resulting in opening, inplane shear and an-

tiplane shear relative displacements of the crack surface. Let
Au; (x, z) be the relative displacements of crack surfaces at the
load location. (These are unbounded for point forces; see Rice
(1985a) for a refinement of the argument by distributing the
forces over finite discs whose radius is later allowed to ap-

- proach zero.) Suppose that under the combined load system

described, the crack front is advanced normal to itself by some
infinitesimal variable distance éa(z"), where z’ is the location
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Fig. 1

Half-plane crack on y = 0 in an infinite elastic body. Reference
straight crack front along z axis; z’ denotes location along front and
sa(z’) denotes advance of crack location in the planey = 0

along the front. The change in strain energy U plus the poten-
tial energy V, of the fixed forces of the “‘original load
system’’, associated with incremental crack growth and/or
variation of the point force amplitudes P;, is

S(U+ V) =P;0[Au; (x,2)] — Sf:G(z’)aa(Z’)dz/ )

(j = x, y, z; summation implied on repeated j.)
Here G is the energy release rate per unit crack area of
elastic fracture mechanics, and by Irwin’s relation

G=(1-»)(K}+K3)/E+ (1+»)K}/E @

(E = Young’s modulus, » = Poisson’s ratio.)

Since U and ¥, can depend only on the P; (or Au;) and the
location of the crack front, the right-hand side of equation (1)
is a perfect differential. Rice (1985a) then showed, using a
Legendre transformation and the reciprocal property of coef-
ficients in perfect differentials, that the variation of surface
displacemnets due to incremental crack front advance under
fixed applied forces is

** dG(Ppz’)

6[Au‘(x,z)]=S . da(z')dz’
J —» 0P,
+o g ]yl oK, (P;:z")
= 2 l: ; ’ -——-—————l I
S—m ( E KI(P', z ) an
0K, (P;z')
+ K (P32’ __,_]
2( Jj Z ) aPJ
1+ 0K, (P;:z’
+2 ”Ka(P,;z')—?;TDLil)aa(z')dz' 6)

J

Here the derivations of G and the K, with respect to the P; are
taken with a fixed position of the crack front. Letting the P,
= 0, one has

K, (0;z)=K5(z")
9K, (0;2')/0P; =k (2" ;x,2)
(¢=1,2,3,j = x, y, z) where K% (z') is the mode « stress in-
tensity factor induced along the reference straight crack front
by the original loading while k; is the mode « stress intensity

factor induced by a unit force pair at (x, 0%, z) and (x, 0™, 2)
in the =+j directions. Thus equation (3) becomes

vo 1 2(1—p?
staw, (o= (—(-—E”—) [y (2 53:2)K32")
+ky(25x%,2) K3z "))
+ 2 b K a2 e’ @

Equation (4) is the first order variation of Au; (x,z) when the
crack advances by 6a(z’) in presence of the original load

Journal of Applied Mechanics

system only. In fact, equation (4) can be regarded as a special
version of a general three-dimensional relation in Rice’s (1972)
formulation (see Rice 1985 a, b also), based on displacement
field variations associated with incremental crack growth, of
the theory of Bueckner’s (1970, 1972, 1977) “‘weight func-
tions’’ for crack analysis.

As we stated before, k,; can be found for the present half-
plane crack configuration from many sources in the literature,
and they are also listed in the form

kiw=ky, =k2y =k3y =0
(= 2x/7)2

—f= M)
ky 2+ @ —2)7]
v x*—(z'~z)?
k =[l+ ]
= 2-v xX*+(z' —2)?

v xX2—(z'—2z)?
= 12 22

2—v X*+(z'—2)
4y x(z'—2)
2—v xX2+(z' —z)>

k22 = k3x'= - (5)

by Rice (1985a).

Shear Mode Stress Intensity Factors

Substituting equations (5) into equation (4), for the shear
displacements we obtain

a[Aux(x,z)]=&;’2_)(__2i‘;) 2 [%Sj:%
(1+ zz_yy ))::((2:22 Yoa(2" )z
T o e ba(e
slAu, (x,z)]=¥(__%r_) 2 [%{Sj:”)ﬂ%
(l_ 22_V,, ,):j;((j:gj )6a(z’)dz/
(1)

S*“" K3(z")x(z' —2)
T2-») J-o [+ -2)
correct to first order in éa(z’).

Very near the crack front the stress intensity factors are
related to the relative displacements by the asymptotic
formulae

6a(z’)dz’] 6)

—p? 172
8,062 =22 () ks 0
172
8y (62 =2 () o Q

where n and ¢ are the normal and tangential directions along
the curved crack front (Fig. 2), with » lying in the x, z plane,
and r is the distance as measured from the crack front in the
negative normal direction (Fig. 2). Denoting the angle between
the normal and the x direction (very small) by ¢, we find from
geometric relations that

—rcos¢p=x—0oa(z),tan ¢ =d[da(z)]/dz . (8

Nowvconsider a particular z at which da(z) = 0 but
d[ba(z)])/dz exists. Then the first of equations (6) becomes,
whenx — 0,

8(1 —»? 172
8lAu, (x,2)] ~ —(—73—”—) (- —i";) L.
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Fig. 2 Normal (n) and tangential (t) directions for deviated half-plane
crack

curved crack front

where now the bracketed terms of equation (6) have reduced
to

1 2-3 +o K9(z")0a(z')
Lodmgm e PV |
v d[éa(z)]
taTaoy B8O ©)

and where the PV in the first term of equation (9) denotes the
principal value in the Cauchy sense.

Equation (9) can be proven as follows. Breaking the [ in
the first of equation (6) into J*7 + [ZX1 + 7%, the [[<d ’7 +
§z+,,] part, when letting x — 0~ and then n — 0, gives the PV
term in (9) above, whereas the remaining §”’7 part of the
bracketed term in equation (6) becomes

1 (= K3(2') 2 —(z' —2)? o,
21 Sz—'n 2+ —2) [H 2—» 2+ —2) ]Mz iz
2 =ty KWz (2 —2) o
T w2-») (1-7) Sz—n i@ —gip EE
Let us now observe that
K (0a(z) =K@ DL (20— 2) + 0l ~27)

and that the error term O [(z' — z)?] will have a bound of
form 10 [(z' — 2)?]l = B(z' —z)?onz—n=<2z2' =z+79
for some finite B > 0. Then since the term linear in (z' - z)
gives zero contribution to the first integral above, i.e., to the
integral involving K9, we have

z+7 Kg(zl) [ 2y _(zl_z)z ]
—_ + 6 7 d I’
27 SZ'TI X' +(z' ~2)? 2-v X+ —2)? a2z
B (atr (' —2z) [ 2p ] 2+» B
= o 1+ d7z’ < —
27 SZ—" X2+ (2" —2)? 2-v ¢ 2=y @

for any x. Hence, letting x — 0~ and then n — 0, the upper

bound on the first integral, and therefore the integral itself, .

vanishes. In the same limit the second integral, involving K9,

becomes with the substitution " — 2z = —#x
2v +oo 2 d[éa(z)]
72—v)(1-») S—oo 1+ £2)? dtKO( )
_ v dlda(z)]
=Ty B0 —
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We thus have the two contrlbutions noted in equation (9),
the PV term from [{*77 + [;51( — 0%), which represents
the influence of the rest of the nonstraight crack front on the
special point z at which da{z) = 0, and the term involving
Kj(z) from [¢*7 which represents the coupling effect due to
local slope. The sum of these two is given as equation (9). In
the above argument we have implicitly assumed, in writing the
error terms as O [(z' — 2)?], that K2 (z')da(z’) has a good se-
cond derivative at z. However, the steps leading to equation
(9) above, and equation (10) below, may be justified under
weaker assumption that the first derivative of K% (z")oa(z")
exists and is merely Holder continuous at z, such that the
bounded term above may be written as Blz’ — z!!*¢ where 0
<e=1.

Similary, when x — 0~ the second of equation (6) reduces

to
1 172

BlAu, (%,2)] ~ ;”(—7’;—) L.
where now

1 24 re K9(z)0a(z’) |, ,
[]—-—i;‘r— 27— PVS_Oo (Z'——Z)z dZ

v(l—v») d[éa(z)]
T K}(2) pe (10

in which we can also observe the coupling due to local slope.

To find 8[Au, (x, 2)] and 8[Au, (X, 2)] near some location z
along the crack front where éa(z) # 0, we use the concept
developed by Rice (1985a) of relocating the reference straight
crack front by moving it along the x direction an amount equal
to 8a(z). Then, redefining the origin of the x axis so that x =
0 along the relocated reference straight crack tip, we have
da(z) = 0 at the location z considered and can use the results
just given above. Note that the reference straight crack loca-
tion is aribtrary, so that we can locate it at will. In other words
we always choose the reference straight crack as the one that
when x — 0~ we approach simultaneously both the reference
straight crack and the actual front. This is equivalent to inter-
preting da(z’) in the above formulae as a(z’) — a(z), wherex
= g(z) is the slightly curved arc describing the crack front
location relative to any convenient choice of origin for the x
axis, and interpreting d[6a(z)]/dz as da(z)/dz. In using this
notation one also needs expressions for the stress intensity fac-
tors induced at location z along the crack front when the front
is straight but located at a general x coordinate, say, x = a.
We let the functions K%[z;al, « = 1, 2, 3, denote these
distributions. Then, at a given point x, z on the crack faces,
equations (9) and (10) become

8(1-+%) [a(z)—x] 172 y

SlAu, (x.2)]~ —F oy

{% 22—_3:1, S_m K‘z)[z’;a((zz)![il(z;’%a(z)] p
m—)KO[z ;a(z)] (Z)}

and

(o 32 ] Al e
—”((21—"))1@[, a(on & (Z)] (1)

to first order in a(z’) — a(z) and in da(z)/dz. These last
equations are now understood to represent the change in sur-
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face displacement at a point x, z very near crack front in going
from the hypothetical reference state, in which the crack front
is everywhere straight and of depth equal to that at z, to the
actual state in which the crack front is curved.

Referring to Fig. 2, we can get the relative displacement
components in the normal and tangential directions along the
crack front in terms of Au, (x, z) and Au, (x, z),

Au, (x,2) = Au, (x,z)cos ¢ —Au, (x,z)sin ¢

Au, (x,2) =Au, (x,z)sin ¢+ Au; (x,z)cos ¢ (12)

As ¢ is small for a small perturbation we have to the first order
Au, (x,2) =Au,—Au,da(z)/dz

Au,(x,z) =Au, + Au,da(z)/dz (13)

In equations (13) we now write Au, as (Au,)° + 8(Au,) and

Au, as (Au,)® + 5(Au,), where (Aux)0 and (Au,)" are the
near tip crack face dlsplacements in the reference straight
crack front configuration and, again, 0(Au,) and 6(Au,) are
the variations of equation (11) due to the crack front bemg
curved, i.e., due to the crack front advancing by 6a(z’) =
a(z’) - a(z):

Au, (x,2) = (Au,)® + 8[Au,] — (Au,)da(z) /dz
Au, (x,2) = (Au,)? + 8[Au,] + (Au,)da(z) /dz 14)

Everything here is exact to first order in éa(z). Comparing
these expressions, as evaluated with the help of equations (11),
to equations (7) (and recognizing that r = a(z) — x-to first
order) we get the stress intensity factors K, and K; to first
order when the crack front deviates from a reference straight
line. The results, supplemented for completeness with the
result for the Mode 1 stress intensity factor derlved by Rice
(1985a), are as follows:

K, (z) =K{[z;a(2)]
1 +o Kz sa(2)]la(z’) - a(z)]
+gPVS—°o (Z —‘Z)Z
da(z)
1 2-3y PVS K[z ;a(2)1la(z’) — a(z)]
2r 2-vp —o (z' —2)?
d
K@ =Kl @+ 52 Kiiza()] "(Z)

L 2+ PVS te Kilz ,a(z)][a(zz) 2@l

2r 2—vw - (z' —2)

Equations (15) are not consistent with the stress intensity
factors presented for this case by Meade and Keer (1984b) as

K (z)=K}[z;a(2)]
K, (z) =K3z;a(z)] — KS[z;a(z)1da(z) /dz
K; (z) =K3lz;a(2)1+ K3[z;a (2)1da(z) /dz (16)

Rice (1985a, just after his equation (65)), explained the
source of oversight in the Meade and Keer results for Mode 1,
in that Meade and Keer assumed in their asymptotic analysis a
double scaling of the z dependence of the solution but not of

5)

Journal of Applied Mechanics

the x and y dependence; in fact, just the opposite was found to
be true in the solution developed (without a priori assumptions
on scaling) by Rice. Similar remarks apply to the Meade and
Keer results for Modes 2 and 3.

The results of equations (15) for X, (z) can be inserted into
equation (2) to compute the energy release rate G(z) along the
slightly curved crack front. When this is done and we retain
only those terms consistent with first order accuracy in
a(z’)—a(z) and da(z)/dz, we find that the cross terms in-
volvig da(z)dz in equations (15) cancel one another. A
specific illustration of this is given in the next section.

It may sometimes prove convenient to rewrite the various
principal value integrals of equation (15) by the rearrange-
ment, following from integration by parts,

PVS“” Kilz";a(z)]a(z') ~a(z)] d
—w (z' —2)
K8lz';a(z)lda(z’)/dz’ +a(z’)—a(z)]0KS[z ;a(z)1/dz’ dz

(z'—2)

The last term of the second numerator vanishes when, as in the
next section, we consider loadings which would induce
uniform K, along a straight crack front.

Cosine-Wave Crack Front; Configurational Stability

Now we apply the results in equations (15) to the case of a
wavy crack front with the profile

a(z) =ay+ A cos(2nz/N) a7n

where A/\ < < 1, q is arbitrary and X > 0. It is assumed for
convenience that the stress intensity factors induced along the
reference straight crack are uniform along the crack front i.e.,
K%[z;al = KY[a]. Going through some algebraic calculations
and further assuming that (4dK°/da)/K° < < 1, we get the
results to the first order in 4

2
K, (z) =Ki[ao) + [EK—;(J[‘I—O]—WK?[(JO]/)\]ACOS <-5\’f5>
0
2
K, (2) = Kylao] + [ii%@ 22_3” wKlag]/\ | dcos (=)
0

4 . (272
to (AN K3[a,lsin (T)

dKO[”o]
day

47r(1 v)
2—

From equations (18) we observe that when both shear
modes are present the extremal values of a given shear stress
intensity factor do not occur at the extremal locations of the
crack front where cos 2nz/A) = =1.

We may also compute the energy release rate G, defined by
equation (2), along the perturbed crack front from the results
just given for the K. Consistent with the first order accuracy
in A, the result is

G(z) = Gla,] + {dGla,)/day — 2mFlag]/N} Acos(2nz/\)

2+vp
2—

K;(2) =Kslap] + [ rKo[aO]/)\]Acos < 2;\1'2.’)

K2laoJ(A/N\)sin ( 2;”) (18)

(19)
Here
2 1
el { (KDM01)? + KBl +— (KS1a0D?)
20)
and
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1—p? 2-3
Flagl =~ { (K¥Magl)? + = (K3lay])
2+
+m (Kg[ao])zx 21

Note that the extrema of G (z) do coincide with the extrema of
a(z) since the sine terms of equation (18) have cancelled one
another.

We have not been able to find an energetic. interpretation
for F in equation (21) but we can confirm that the result de-
rived for G (z) in equation (19) is not compatible with a string-
like model with a “‘line tension’’ effect, as used frequently to
analyze curved dislocation lines. In particular, G is sometimes
called the “‘crack extension force’’ since it is the generalized
force, in the sense of equation (1), conjugate to crack growth.
One might optimistically hope that the effect of curvature on
the crack extension force would be analogous to the effect of
curvature on a string under tension. Such would form a useful
conceptual picture of, e.g., the crack extension force distribu-
tion exerted as a crack front meets and begins to surround a
localized, hard-to-fracture heterogeneity lying in the path of
the advancing crack. However, while the string model is
qualitatively correct in predicting the proper sign of the effect
of curvature shown in equation (19), it fails quantitatively
since elementary calculations show that a line tension model
would require a 1/A? effect for a cosine wave rather than the
proper 1/\ effect that we have derived.

Rice (1985a) considered the configurational stability of
quasi-static tensile mode crack growth (e.g., by fatigue or cor-
rosion) by observing that if the crack growth rate is an increas-
ing function of K, then the amplitude of a cosine component
of a(z) will grow if the maxima of K, (z) and a(z) are in
phase but decay if they are out of phase. Thus, from the first
of equations (18), disturbances of wavelength X\ in the crack
front profile will decay in amplitude during crack growth if

dK?a,)/dag < TK3lag]/\ 22)

This is met for all A when dK{/da, < 0 and will be met for
sufficiently small A when dK§/da, > 0. It generally turns out
that the critical A values, N, at which the inequality fails
(e.g., N\, = 2xL for an edge crack of depth L in a large body
under remote tensile loading) are sufficiently large that the
model of a half plane crack in an infinite body is inappropriate
to analyze perturbations of those wavelengths; the actual
finite body dimensions must be considered instead for a
suitable analysis. Thus we conclude that planar crack growth
should be configurationally stable to perturbations involving
wavelengths that are small compared to overall body or crack
dimensions. This seems to be generally in accord with ex-
perience in that cracks, when approximately planar, in sub-
critical growth are generally observed to have fronts that lie
along smoothly curving arcs at the macroscale and to be
devoid of structure except for that directly relatable to
microstructure heterogeneity or large scale plastic flow. See,
e.g., Colangelo and Heiser (1974, chapter 4).

The stability issue is less readily addressed under general
mixed-mode loadings as we have analyzed them here since a
mixed-mode crack will seldom grow along a plane. One case
which may meet that condition of planarity involves the tec-
tonic shear crack whose slip surface is channeled by a pre-
existing fault plane. If in that case or others it is approriate to
describe crack advance under mixed-mode loading by a unique
(independent of mode combination) increasing relation be-
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tween G and the crack growth rate, then it is evident by com-
paring equations (19) to the first of equation (18) that a similar
stability condition to that for Mode 1 growth will result. In
particular, crack position a(z) and G (z) will be out of phase,
thus smoothing out initial irregularities during growth, for
wavelengths A satisfying

dG®la,)/day < 2wFlagl/\ 23)

This reduces to equation (22) for pure Mode 1 conditions.
Meade and Keer (1984b) emphasized that crack front
segmentation is observed in laboratory study of brittle
materials under combined Mode 1 and Mode 3 loading. They
suggest that this may be attributed to the coupling effect be-
tween the shear modes. For example, as is evident from the ex-
act first order results in equations (15), or in equations (18) for
the cosine wave, and as is also seen in the less complete Meade
and Keer results reported here as equations (16), Mode 3
loading induces a Mode 2 stress intensity wherever da(z)/dz
# 0. This induced K, reverses sign with the change in sign of
da(z)/dz in going from one side to the other of a localized
protrusion. This change in sign of X, is expected to promote
deviations from plararity of opposite sense (up versus down
relative to the y direction) on the two sides of the protrusions
during tensile crack growth, so that localized protrusions of
the crack front grow into nonplanar segments. It is not yet
clear how to test this proposed mechanism against
observations. '
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The Effect of Surface Depressions
on Conformal and Nonconformal
Contact Pressure Distributions

H. H. Chen This paper presents a numerical method for analyzing the stress concentration
around one or several shallow longitudinal surface depressions. The modified

K. M. Marshek iterative method and modified influence function are used in conjunction with an
. M. Marshe automatic mesh generation technique to avoid solving the ill-condition of the large

scale linear system and therefore a wide range of contact problems having multiply-
connected regions can be solved. The effect of the blending radius and the pit size on
the stress concentration for a pitted copper cylinder contacting an elastic half space
are examined. The conformal pressure distributions for a smooth steel journal con-
tacting a self-lubricated bearing with various radial clearances and material proper-
ties are also determined. The numerical results show that the smaller the blend radii,
the higher the stress concentration for a given pit size. A large deviation from the
Hertzian solution is observed for a surface with large pits because of the loss of
pressure supporting area. The results of the analysis provides a design tool for
predicting the magnitude and location of the peak stress for the rolling and sliding
contact elements. '

Department of Mechanical Engineering,
University of Texas at Austin,
Austin, Texas 78712

1 Introduction z0
: (Y
The Hertz contact theory was developed based on the condi-
tions that (1) the contacting surfaces are frictionless, (2) the Oulienc)
bodies are homogeneous and isotropic, (3) the undeformed R, ©p CREAL]
surface profiles near the point of contact are continuous and
e

may each be represented by a second degree polynomial, (4)

the bodies are isothermal and free of any internal stresses 5 $ cfll_m%%R
caused by plastic strain, and (5) the dimensions of the de-

formed contact area are small compared to the radii of the b_____L
undeformed contact surfaces. Contact problems are classified N Zp —
as nonconformal, if condition (3) is violated. If the applied y f y
load produces a contact area with dimensions nearly equal to SMOOTH
the radii of curvature of the undeformed surfaces and thus the o CYLINDER
contact patch cannot be approximated by a plane (i.e., condi-

tion (5) is also violated), the problem is classified as a confor- Yo

mal contact problem. Some examples of the conformal con- /

tact problem are self-lubricated journal bearings, connecting ! =)

joints in robotic manipulators, pistons sliding in cylinders,
and worn surface bodies in sliding contact.

Small surface depressions can cause high stress concentra-
tions and therefore rapid surface fatigue failure. Because of

Fig.1 Coordinate systems for a smooth cylinder contacting a cylinder
with a longitudinal surface depression

the limitations of Hertzian contact theory, contact problems
involving surface depressions have received little attention in
the literature, Experimental work (Bayer, 1968; Beagley, 1976;
Littman and Widner, 1966; Marshek, 1979) has shown that

Contributed by the Applied Mechanics Division for publication in the Jour-
NAL OF APPLIED MECHANICS,

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y.
10017, and will be accepted until two months after final publication-of the paper
itself in the JOURNAL oF APPLIED MECHANICS. Manuscript received by ASME
Applied Mechanics Division, August 20, 1985; final revision February 5, 1986.

Journal of Applied Mechanics

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject(t:cg)gglulgncens

repeated stressing beyond the endurance strength in rolling or
sliding contact can result in the formation of fatigue cracks on
or near the surface, which will propagate until pieces of the
surface material break out, leaving pits or spalls. Repeated
loading might also cause furrow-shape depressions on the
surface.

Chiu (1969) analytically solved the problem of an infinitely
long rigid cylinder having an axial groove in contact with an
elastic half space. Paul et al. (1975) solved the problem of a
pitted sphere in contact with a nonpitted elastic sphere with a
restriction on symmetry and the requirement of a functional
regularization parameter to make his solution quasi-stable. He
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Fig. 2 Coaordinate systems for a smooth journal contacting a bearing
with several longitudinal surface defects

treated the relative approach 6, as an unknown which needed
to be determined along with the contact pressure. Their
method was limited in its range of application because of a
numerical instability encountered in their linear system of
equations. Since their matrix was not diagonally dominant,
and had a partial pivoting, the system was ill-conditioned. The
ill-conditioned phenomenon results from round-off error in
either the calculation of the inverse of a matrix or in the solu-
tion of the sets of simultaneous linear equations (Young,
1971).

In the work to be discussed herein, the modified iterative
method and modified influence function will be used in con-
junction with an automatic mesh generation technique to
avoid solving the ill-condition of the large scale linear system.
By guessing a relative approach instead of treating it as an
unknown, the matrix becomes strictly diagonally dominant.
This improves solution efficiency and accuracy and, more im-
portantly, provides stability and convergence.

In the analysis to be presented, consider the contact of two
cylinders, one which is smooth and one which contains one or
several shallow longitudinal surface depressions. In what
follows, a brief review of a theory for analyzing multiply con-
nected contact problems will be described. Numerical results
and conclusions will be given.

2 Formulation of the Profile Function for Multiply
Connected Region

Case 1: Smooth Cylinder Contacting a Cylinder With a
Longitudinal Surface Depression. Consider a cylinder of
radius R,, having a shallow surface depression, perfectly
aligned with a smooth cylinder of radius R,. Let (x, y, z) be a
coordinate system with origin at point 0 with the z axis along
the common normal between two contact bodies, and the x
axis along the axial direction as shown in Fig. 1. The origin of
the pitted contour Oy is arbitrarily located at a distance yg
from the z axis, with the pit radii r, connected to the cylin-
drical surface at the blending point b. The z coordinate of a
point on body 1 located at a distance y from the z axis within
the blended region is given by

Zy =2Z,+r,c08¢ ~r,cos (1)
where

Z,=R (1l —cosb,)
and 0, =sin"'(y,/R))

d=sin" (g —,)/1)
0=sin"![(yp~y)/1)]
and the z coordinate of the candidate contact point on the

780/ Vol. 53, DECEMBER 1986

smooth cylinder, located at a distance y( < yp) from the z axis
is given by

2, =[R;? —¥*]" — (Rycos0,” — Z,,) (2)
where
6, =sin~'(y,/R;)

For points outside the depression (y>,), the variables z; and
z, are, respectively, written as

71 =R~ [R;*—y*1* 3
2= Z, + [Ry2 — 1% — Rycost) @)

Therefore, the profile function h (initial separation) for con-
tact of a cylinder having an axial surface defect on a smooth
cylinder can be determined by combining equation (1) with
equation (2) and equation (3) with equation (4) leading to

< i> Inside pitted contour; Iy 1< Yo
h(ry,Yp:YpY) =21—2 (3)
=[R2 =y, 1% — [R,2 — 1%
+ ["1;2 — (g _)’p)z]‘/z - [rb2 — (Vg -»HY
< ii> Outside pitted contour; ly 1>y,
h(yp)=2,-2,

=[R2 = y,21" +[Ry* = y,1" — [R* — y*1" — [Ry> - y*1" (6)

Case 2: Smooth Journal Contacting a Bearing Containing
Several Longitudinal Surface Defects. Consider a long
smooth shaft of radius R, perfectly aligned with a finite bear-
ing, of length L, and radius R,, having several shallow
longitudinal surface defects. Let (x, y, z) be a coordinate
system with origin at point 0, with z axis along the common
normal between the journal and the bearing, with y axis
tangent to the smooth shaft at point 0, and with x axis parallel
to the shaft axis as indicated in Fig. 2. The center of each of
the pit blending arcs lies along the line joining the center of the
bearing O, ’ and the blended point ;. Let the pitted radii ry;
connect smoothly to the bearing main surface at each blending
point. The z coordinate of a point on the journal (or bearing)
located at a distance y from the z axis within the blended
region are, respectively, determined as

z; =R, —[R2 - )" )
23 =Ry — (Ry +1;)c080,,; + rp;cos6; ®)
where
0;=sin~ ' [(yg; — )/ 4]
and

Yo = (Ry +ry;)sing,,;
and 6,;, ry;, y are as defined in Fig. 2.

Therefore, the profile function in the mean radial direction
for contact of a rigid unpitted journal on an elastic bearing
with several longitudinal surface defects can be determined by
combining equation (7) with equation (8).

() Within the pitted bearing surface

R (rp;,0,:, %)= (2 —2y)cos¥
=[(Ry — Ry) + (Ry + ry;)costy; — [Ry* — y*1” — rycos6;lcos ¥ (9)
where ¥ =sin~!(y/R,); (angular contact angle).

(ii) Outside the pitted bearing surface for highly conform-
ing contact problems, the profile function in the radial direc-
tion can be approximated by

h(¥)=(R, — R )(1 —cos¥). (10)

3 Formulation of General Contact Criteria
Assume that the point M; on body | and point M, on body
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circular contact arc

Fig. 3 Modified influence function for conformal contact

2 have an initial separation distance 4, and that the points will
come into contact after deformation. Then the final separa-
tion S, (along the common normal direction) of those two can-
didate contact points becomes

Sp=u® 4 u® 4 h—5, 1y

where &, is the relative approach along the common normal
direction and A is the profile function. In general, the normal
displacement ¥, 4® can be written in terms of an unknown
contact pressure p(x,y) and the Fredholm integral equation
for nonconformal contact problems. The normal displace-
ments can be expressed as

ut (x,y)
=KW [0 p(Z,INd%dY)/[(x = %)? + (v — §)*] %
where
KO =1-p2/IE, i=12 (12)

and E;, v; are the modulus of elasticity and Poisson’s ratio of
body / and Q is the contact area.
Substituting equation (12) into equation (11) yields

Sy = Knloh (5 9)@XAD)/ (6= 27 + = P14 + h=5,  (13)
where K, =KW + K@
The boundary conditions require that
(1) S;=0 p(x»NZ0
2 S>>0 p(xy=0 14
and the equilibrium condition requires
Jo, B, =F as)

where F'in the applied load along the z direction, and @, is the
projected pressure area. -

4 Modified Influence Function for Conformal
Contact

One of the major difficulties in the solution of the confor-
mal contact problem is the determination of an appropriate in-

fluence function for the surface in contact, since the
Boussinesq’s point force and . displacement half-space in-
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Fig. 4 Grid generation for multiply-connected region

fluence function is no longer suitable for this curved contact
surface area. It is necessary to generate a modified influence
function for the conformal contact problem.

For the case of a highly conformal surface when the relative
distance ry; of nodal points &£ and jis larger than the maximum
dimensions of the arc cell on the shaft, the influence function
will be approximated by assuming that points £ and j on the
curved surface are the points on the half-space as shown in
Fig. 3. The radial displacement «(?; of body / at point j sub-
ject to a uniform pressure over cell & becomes

uf) =wib cose 16)

where

wi) =KD /rd i=1,2

and e=(¢, +¢;)/2 is the angle formed between the direction
perpendicular to r,; and the radial direction of point j. Thus,

_ the modified influence function for the conformal contact is

given by
gi) =DfPcose i=1,2 an

where Df? is the influence function for the nonconformal
contact.

5 Mesh Generation and Discretization of Integral
Equation for Multiply-Connected Regions

A blanket region is chosen to be larger than the upper
boundary of the multiply-connected contact regions for a
given rigid body approach §, as indicated in Fig. 4. The
estimated axial and lateral contact length within the blanket
region may be divided into any number of segments along the
x and y directions, respectively. Each segment is then parti-
tioned into a number of strips and a number of cells. The total
number of strips along the axial direction is N, and the
number of cells for each strip is M. Fine grids will be chosen
near the high stress concentration regions. The discretization
method of the integral equation will be implemented in con-
junction with the modified Boussinesq point force displace-
ment influence function. By assuming a uniform pressure
distribution over each cell, equation (13) can be written as
follows:

N M

R k=1,N
2 2 ) =8 —Hh,. . ’
n:lm:lg""’"P"’” T j=LM

where g{d . is the modified influence function which
represents the normal deflection of body i at strip k, cell j due
to a uniform pressure P, over strip #, cell m. The variable Ry
is the profile function at strip k, cell j. Equation (I8)
represents a system of linear equations which can be solved to
determine contact pressure for a given normal relative ap-
proach §,. The automatic mesh generation technique is im-

(18)
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Fig. 5 Footprint shape with one surface depression

plemented to redefine the pressure area boundary by a
numerical method of interpolation and extrapolation
(Hildebrand, 1953). The process is repeated until both the
boundary conditions and the equilibrium condition are
satisfied.

6 Modified Iterative Method

To avoid having to solve a large linear system of equations,
the modified interative method (Hartnett, 1980) can be in-
troduced by employing the local and remote influence concept
combined with the modified influence function to determine a
solution for a small set of linear algebraic equations. Equation
(18) can be rearranged in the following form:

M -
E gl(c},)kmpkm
m=1
k=1M
hg= 2 X S Pant1=51) Py (19

n=1 m=1
where g{;,, Py, represents the normal displacement of body i
at strip k, cell j due to a uniform pressure at strip k, cell m and
84, is the Kronecker delta.

To solve for the strip pressure P,,, in equation (19), an in-
itial estimate is made for the pressure distribution outside the
strip k. Subsequently, this estimated pressure is updated until
all the strip pressures within the blanket area are found. The
boundary conditions in equation (14) and equilibrium condi-
tlon (15) are applled to determine the iterated applied load

F,... The process is repeated until the change in the iterated
applied load falls within a chosen limit of accuracy. The latest
iterated applied load is called the estimated applied load, F,.
The automatic mesh generation technique is implemented to
redefine the new pressure area boundary region from which
the new mesh grids are generated. The iterating process is
repeated to solve for all the strip pressures within the pressure

area boundary, and finally the new estimated applied load is’

determined. The whole process continues until the change of
the estimated applied load falls within a second tolerance of
accuracy.

7 Presentation and Discussion of Numerical Results

A wide range of contact problems having multiply con-
nected regions can be solved by using the analysis presented in
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this paper. The program CONPITS was written to solve for
either nonconformal or conformal type of contact problems
involving one or several surface depressions. As a specific ex-
ample, contact of a cylinder containing a shallow longitudinal
surface depression at the center of the contact zone in contact
with an elastic half space is considered. The effect of the
blending radius r, and the pit size y, on the stress concentra-
tion will be discussed. In addition, the effect of clearance and
material properties on journal bearing contact pressure will be
presented.

Example 1: Copper Cylinder of Finite Length L (With an
Axial Surface Depression) Contacting an Elastic Half Space.

R,*=R,/R,, =radius of copper cylinder=1.0
=L/R,, =straight length of cylinder=0.5
"Ry =RiRy/(Ri+R;)

where
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E, =119 GPa, »,=0.326
E, =207 GPa, »,=0.30

ry*=r,/R,, =blend radius=0.06, 0.12, 0.36
Vp*=y,/R,, =pit size=0.25x1073, 1.0x 1073, 2.0x 103

For F=444.8 N, numerical results were obtained using a 15 X
21 cell, (i.e., 15 strips along the axial contact length with each
strip containing 21 cells). Fine grids were chosen near the high
stress concentration region. The footprint contact area involv-
ing one surface depression was plotted in Fig. 5 for y,* =0.001
and r,*=0.12. For a given pit size y,*, the pressure distribu-
tions P* = (R, PL/F) were plotted for various blend radius r,*
as shown in Fig. 6. The smaller the blend radius r,,*, the higher
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Fig. 10 Relationship between R, P./F and E,AR/F

the pressure gradient near the pitted region. In each case, the
pressure distribution far away from the pit agrees closely with
that from the Hertzian solution for a smooth cylinder.
Figure 7 shows the dimensionless quantity C, =K, P,r,/y,
as a function of stress concentration factor (SCF) and inner
contact radius 7;=r;/y, at the center of the axial contact
length. The SCF is defined as the ratio of the maximum
pressure at the center of the finite cylinder to the Hertzian
maximum pressure P, for the smooth cylinder for the same
loading conditions. As expected, the smaller the ratio of blend
radius r, to pit size y, the higher the SCF. When the blend
radius r, tends to zero, an infinite pressure concentration oc-
curs at the sharp edge of the contact. An increase of C, will
make the blend contour conform to the main surface and pro-
duce a smaller inner contact radius 7; and therefore a close
agreement with the Hertzian solution (i.e., SCF approaches
1.0). For a given blend radius, the increase of the pit size pro-

- duces an increase in stress concentration due to the Icss of load

supporting area. Due to the nonlinear properties of the con-
tact problem, the SCF is found to decrease with an increase in
the applied load F*(=K,,F/R,,?) as illustrated in Fig. 8.

Example 2: Copper Cylinder of Finite Length L (Contain-
ing Several Axial Surface Depressions) Contacting an Elastic
Half Space. Dimensions and properties are the same as in
Example 1 except for the blend radius r}; and the pit size y};

¥4 =0.25x10"%,0.75x 10~%,1.0x 103
rt=0.015

The numerical solutions for problems involving several small
pits were obtained using a 15x45 cell. Figure 9 shows the
pressure distribution at the center of the axial contact length
for small pits located near the axis of symmetry. A peak
pressure gradient near the innermost pit and the pressure
distribution far from the outer pit agrees reasonably well with
the Hertzian prediction.

Example 3: Perfectly Aligned Journal Bearing in Contact.
R, =radius of the shaft =19.25mm; R, =radius of the bearing
= —19.30mm; L =straight length of the bearing=
16.83mm.

The effect of clearance and material properties on journal
bearing conformal pressure are examined and the results are
compared with the analytical solution of Persson (Persson,

DECEMBER 1986, Vol. 53/783
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1964), thus lending support to the use of the approximate in-
fluence function of Section 4 for this problem.

The dimensionless quantity E,AR/F is represented in Fig.
10 as a function of R, P./F, where P, is the maximum contact
pressure at either the center or the edge of the axial contact
length, AR is the radial clearance and F is the load per unit
bearing length. There is close agreement with the Persson’s
analytical solution at the center of the axial contact length.
However, owing to a high stress concentration at the bearing
edge, the edge pressure distribution will differ significantly
from the Persson’s plane stress analysis.

8 Conclusion

A general numerical method has been presented to solve
contact problems involving multiply connected regions. The
program CONPITS was written to solve for either conformal
or nonconformal contact problems containing several surface
depressions. Numerical results were presented for several ex-
ample problems. The first example was a copper cylinder hav-
ing a shallow axial surface defect aligned with and contacting
a steel surface. The numerical results show that the smaller the
blend radii r}, the higher the stress concentration for a given
pit size. For a given blend radius, the SCF increases with an in-
crease of pit size. A large deviation from the Hertzian solution
is observed for a surface with large pits because of the loss of
pressure supporting area. The SCF can also be reduced by in-
creasing the applied load. The second example gives the high
stress concentration for a cylinder containing several small
pits. The third example solves for the three dimensional con-
formal contact pressure distribution for various moduli and
radial clearances.

784/ Vol. 53, DECEMBER 1986

The analysis presented in this paper contributes to bearing
technology by providing an analysis of the effect of surface
defects on bearing stress and therefore provides a means for
estimating bearing operating life.

Acknowledgment

This material is based upon work supported by the National
Science Foundation under grant MSM-8416143.

References

Bayer, R. G., 1968, ‘“The Significance of Surface Fatigue in Sliding Wear,”
Wear, Vol. 12, pp. 173-183.

Beagley, T. M., 1976, “‘Severe Wear of Rolling/Sliding Contacts,”” Wear,
Vol. 36, pp. 317-335.

Chiu, Y. P., 1969, “On the Contact Problem of Cylinders Containing a
Shallow Longitudinal Surface Depression,”’ ASME Journal of Applied Mech.,
Voli. 91, Ser. E, No. 4, pp. 852-858.

Hartnett, M. J., 1980, A General Numerical Solution for Elastic Body Con-
tact Problem,”’ Solid Contact and Lubrication, The Winter Annual Meeting of
the ASME, Chicago, IL, pp. 51-66.

Hildebrand, F. B., 1953, Introduction to Numerical Analysis, McGraw-Hill,
New York.

Littman, W. E., Widner, R. L., 1966, ‘‘Propagation of Contact Fatigue From
Surface and Subsurface Origin,”” ASME J. of Basic Engr., Vol. 88, Ser. D, pp.
624-636.

Marshek, K. M., 1979, “Failures in Plastic Ball Bearings,”’ Wear, Vol. 52,
pp. 141-146.

Paul, B., Singh, K. P., and Woodard, W., 1975, “Contact Stresses for
Multiply-Connected Regions — The Case of Pitted Spheres,’’ Proceedings of the
Symposium on the Mechanics of Deformable Bodies, Delft University Press,
pp. 264-281.

Persson, A., 1964, ““On the Stress Distribution of Cylindrical Elastic Bodies
in Contact,”” PhD Dissertation, Chalmers Tekniska, Hogskola, Goteborg,
Sweden.

Young, D. M., 1971, Iterative Solution of Large Linear Systems, Academic
Press, New York, pp. 120-129.

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



In-Plane Indentation and
Separation of a Flat, or Rounded
Rigid Stamp from an Elastic,
Finite Layer

This paper describes symmetric, frictionless indentation of a two-dimensional, rec-
tangular, elastic solid, with two parallel edges constrained against displacements, by
a flat, rigid, or rounded stamp pressed against one of the remaining edges. Com-
parison with the classical problem of indentation of the elastic half-plane by a flat
rigid stamp reveals new interesting features of the present analysis: 1) For each
relative stamp length a critical aspect ratio of the indented rectangle exists such that
Jfor a narrower rectangle the separation of the midsection of the stamp occurs. 2)
The stress intensity factors at the ends of the stamp are found to depend strongly on
the relative depth of the “‘beam’’; they also depend, but to a lesser degree, on the
relative length of the stamp. 3) Unlike in the classical problem here the penetration
of the stamp is uniquely determined. Numerical results are provided. The numerical
results obtained for the case of the rounded stamp are compared with the results
available from earlier studies.

R. Solecki

Department of Mechanical Engineering,
University of Connecticut,

Storrs, CT 06268

Mem. ASME

1 Introduction

stamp and at the corners of the layer) leads to an infinite

The problem of frictionless indentation of a half-plane by a
system of algebraic equations.

plane, rigid stamp was solved first by Sadowsky (1928) (see

also Gladwell, 1980, for further references and for a historical
overview). The solution of this classical problem depicted in
Fig. 1 revealed that the interface stress has square-root
singularities at the ends of the stamp. It was also determined
that the interface stress is negative everywhere under the stamp
hence there was no question of separation of it from the half-
plane. Furthermore, an important feature of the classical solu-
tion consisted of its inability to determine the penetration of
the stamp. The present paper attempts to remove the restric-
tions imposed on the solution of the stamp problem by the
assumption of the infinity of the indented solid. This is
achieved by replacing the infinite solid by a finite two-
dimensional isotropic elastic solid in the form of a rectangle
whose vertical edges are prevented from deforming as shown
in Fig. 2. To simplify the analysis the symmetry with respect to
x axis is assumed. The state of stress and displacement is
found by first applying finite double Fourier transformation
to the two-dimensional Navier equations of elasticity. Subse-
quent application of the inversion formulas and of the bound-
ary conditions expanded into Fourier series with unknown
coefficients (and with built-in singularities at the ends of the

Contributed by the Applied Mechanics Division for publication in the JOUR-
NAL OF APPLIED MECHANICS,

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y,
10017, and will be accepted until two months after final publication of the paper
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME
Applied Mechanics Division, July 16, 1985; final revision March 26, 1986.
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These are then solved numerically for various = ¢/b and
¢ = a/b ratios and for fixed material characteristics in an at-
tempt to decide whether and under what circumstances the
stamp separates (a phenomenon foreseen by Nied and Er-
dogan 1979), how the boundaries affect the stress intensity

p
i

Fig. 1 Indentation of an elastic hali-plane
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Fig. 2 Indentation of a finite iayer by a flat stamp
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Fig. 3 Indentation of a finite layer by a rounded stamp

factors and what is the magnitude of the penetration of the
stamp for selected dimensions. A simple change in one of the
boundary conditions makes the present study also applicable
to the case of a rounded stamp indenting a finite layer with
two built-in edges (Fig. 3). Here the results were compared
with the data obtained by Keer and Miller (1983) and confirm-
ed by Sankar and Sun (1983) who used a different method. It
should be noted that the present method is valid for any aspect
ratio of the indented layer while the previous results, based on
combination of simple beam theory and the theory of elastici-
ty, are valid only for relatively thin beams.

2 Basic Equations — A Flat Stamp

For the two-dimensional state of strain assumed here the
equations of equilibrium in the absence of body forces take
the form:

do,, doy,

—= 4+ —==0 1
ax ay M)
do,, day,

— e = 2
ax ay @

The geometric and physical symmetry of the problem suggests
that only the portion y > 0 of the beam (Fig. 2) must be
analyzed. The corresponding boundary conditions are:

v=0,0,,=0aty=0 3)

0, =0,0,=0atx=a )
u=0,v=0aty=>~ %)

0, =0,u=uy=constatx=0,0<y=<c 6)
0y =0,0,=0atx=0,csy=<db @)

where v and v are components of the displacement vector
along Ox and Oy axes, respectively. Substituting stress-strain
relations for an isotropic, Hookean solid

ou v
= +2) —+ ~——],

r=n|lr+2) Gty o ®

du dv
0 =u[1 gt 0+ ], ©
du av .
» u(ay ) (10)

where

Y=Np (11

N\ and p being Lame’s constants, into equations (3) + (7)

results finally in

v=0aty=0 (12)
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du dv

+ =0aty=0 13
oy ox ar (13
v du

) —=0atx= 14
vay+(v+)ax atx=a (14)

ou v
—t——=0at x= 15
3 + F at x=a (15)
u=0aty=» (16)
v=0aty=»b an

du v
—t—=0at x=0 18
ay ox abx 18
u=u,atx=0,y<c (19)

v u
—_— 2) —=0at x=0, y> 20
vay+(v+)ax at x=0, y>c (20)

Next equations (1) and (2) are subject to finite Fourier
transformations by multiplying them by cos(mwrx/a)
cos(nwy/b) and sin(mmx/a) sin(nwy/b), respectively, and then
integrating over the rectangle xe[0, a], ye[0, b]. This is fol-
lowed by integration by parts of some integrals appearing in
the transformed equations and by application of the boundary
conditions (12) + (20). The final form the transformed field
equations include four integrals with the following unknown
integrands: v(0, »), v(a, ¥), 0,,(x, b), 0,,(0, ). The first two in-
tegrands are regular functions and are expanded into Fourier
series:

2 & .
v0.Y) =~ Y. G,sing,», @1
n=1

2 o
w(ay)=— ), H,sinB,y, 22)
n=1
The third integrand has a singularity of strength p at x=0 and

x=a (see Benthem and Minderhoud, 1972) where p is the solu-
tion of the transcendental equation

, Pr_ 40— (1-pp

23.1
R T S W Y ¥ @.1
It is therefore represented in the following form
S S2
0,y (,0) =~ +
e @y
a . a.
+%<Ko +2 1 K, cosa,,x) (23.2)
n=1

where S, and S, are unknown stress intensity factors and
where

B,=nn/b (24)
The numerical results were obtained for » = 0.3. In this case
from equation (23.1) we have

p=0.28883

The last of the unknown functions, ¢,,(0, y), which equals
zero for y>c¢, is square-root singular at y =c. Therefore it is
represented as:

00 = 1f

o, =nw/a,

C
V1-(@/c)
1 (e}
t— [Fo +2 n‘;} F, cos(nvry/c)]} (25)
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where in addition to the Fourier coefficients F, also the stress
intensity factor C is unknown. Solving the transformed field
equations with respect to the transforms of the displacements
apb )
Uy = S S u(x,y) cose,,x cosB,y dx dy, m,n=0,1,.. .0
] o
(26)

aprb
Uy = §0 So v(x,y) sina,,x sinf3,y dx dy, m,n=1, .. .0 (27)

one obtains the relation between those transforms and the

unknown Fourier coefficients appearing in equations
(2D-(25):
Upo=P/2u+K,, +S\€,,
+ (= 1)"Sen )/ [(y + 2)aiz ], m=1,...0 (28)
Uy, = ((Cen/2) Y, + (P/2p)[sin(nmy)/ (nwy) — (— 1)7]
2 ) Fka,,k—B,l(G,l—H,,)}/Bf,, n=1,...00 (29)
k=1
t = {10, + Q4 VBT
(14 7)00 B X}/ 24 D + 6] (30)
Upn = {(l +7)O‘m6nX1mn
+ @+ y)ad, + B21 Xy 1/ 12 + 1), + B (3D
where -
X\ =(Cen/2) Y, + Psin(nmy)/ Qunm) =2 Y, Frty
n=1
+ (= D"Kp + S1€p +(— 1) S5e,]
_ﬁn[Gn_(_l)mHn], m,nzl, L
Komn = 0m[G,— (- 1)"H, ], mmn=1,...0 (32)
Y, =sin(nmy)/(nwy) = J,(nmy), n=1,...0 (33)
and
o=a/b, Yy=c/b
@y = (= DEnysin(nmp)/ [w(n?y? — k2)] (34

Here J,(x) is the Bessel function of the first kind of order zero,
while ¢, represents an integral evaluated numerically:

1
So t'-Psin mnt dt

—1yn
1—p+( 1) T—p

€m

Remaining two Fourier coefficients are determined from the
global equilibrium equations

K,=—P/2u—8,—-8,, F,=—(Ccn/2+P/2y) 35)
Next the inversion formulae are used
u(x,y)=u,,+2 E Uy, COS0L, X+ 2 E U,,cosB,y
m=1 n=1
+4 E E U,,,COSe,, X cosf3,yl/ab (36)
m=1 n=1
v(x,y) = [4 E E U,y Sine,, X sin,, y] /ab 37

m=1 n=1

Finally the boundary conditions, equations (15), (16), (18),
and (19), are also subject to finite Fourier transformations
(the remaining boundary conditions are identically satisfied).
After numerous manipulations in which the symbolic

Journal of Applied Mechanics

manipulation package muMATH-muSIMP (1981) was very
useful, the following infinite system of linear algebraic equa-
tions was obtained.

Cerw); +2(n/a) E [Gy— (= 1) H} ]ry —4 E Fyrai
k=1 k=1

+2Kws; 4 2[S) + (= 1)'S,]e;ws; + (P/p)wy; =0,

Cerwy; — (w/a) E [Gywr — Hweilay; + E Fy ray
k=1 k=1

+2 E Ky g +2 E [S; + (— DESlegrp
k=1 k=1

+(P/p)wy; =0,

Cemwg; —8(m/a)(1 +7)i2¢HGwyq — Hiwg) +2 Y, Ky P
k=1

+ E [S; + (= 1D)¥Sy)ex gy

k=1

+2 ) Fy aywy+(P/wyw,;; =0,
k=1

Cenwyy = 8(w/a)(1 +v)i2¢*(Giwy; — Hywg;)

+2 ) (- VK, ri

k=1

+2 ) [(— DES, + Syl ri
k=1

+2 E Fy agwe +(P/ywy;=0
k=1

i=1,...0 (38)
where
wi= ), (= 1)'[Q+y)n2¢? +21Y,/D,,

n=1

oo
Wy = E ay; Yn Bna
n=1}

Wy = Y, aylB, sin(amy)/ () — (— 1)"(Q2+7)/@n*¢?)],
n=1

wy; = [(1 +y)imy sinh(in/p) cosh(iny/p)
— (1 +y)im cosh(iw/¢) sinh(imy/$)
+ 2¢ sinh(iw/ ) sinh(fwy/ )/ [4ipysinh?(in /)],
ws;=[— (1 +y)ir?
V+ B+ y)¢7 sinhQiw/$)/2])/[4ip? sinh?(ix/P)],
We; = w[sinh(iwd) + (1 + y)iwe cosh(ird)]/sinh2(ixd),
wa = wl(1 +y)iz + sinh(2in)/2]/sinh? (i),

Wg = —Y,wy/2,
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Wy; = — wlitd cosh(ind) — sinh(im)]/[4ipsinh2(iTe)],
Wyoi = [ — im$ + sinh(2im$)/2)/[4i¢ sinh?(ird)],
wyy = [ = wy¢ sin(iry) + (— 1)/ Q2+ y)ayl/ Qindy),
W= — Ywg/2,

Wiz =[— wg sin(iry) + (~ 1Y 2+ y)myl/ Qirdy),

Fiie = (= D) ke lyi2 — (2 + y)k?$21/ Dy,

Faie = (1= DAY { = (1 +y)im(iPy?

+ k2¢?) cosh(in/¢) sinh(imy /)

+20[Q2 +y)k?¢?

+ i2y2)sinh(in /o) sinh(imy /) + (1 + )iy
(2Y? + k2p2)sinh(in /¢p)cosh(imy /)

o]
Py = —4 E @it By,

n=1
B, =7[(1 +y)nwd + (3 + y)sinh(Rnnd)/2]/[4ndsinh?(nxe)],
Dy = (@ +k*¢?)? (39

Solution of the infinite system of algebraic equations (38) and
application of the formulae (35) yield the values of Fourier
coefficients of the unknown boundary stresses. In particular,
for the normal stress under the stamp we obtain:

0,0y = (/) Cr[l — (»/c)*1V% — Cen/2—P/2p

+2 ) Fycos(kny/c)} (40)

k=1

Note that since the solutions of equations (38) are propor-
tional to P, therefore ¢,,(0,y) above is also proportional to P.

To calculate the displacements we must first find u,,. This
is obtained from the condition that u=0 at y =5 yielding:

Hoo+2 3y (= 1)y, =0 (1)
n=1

where u,, is substituted from equation (29).

Now Fourier coefficients in equations (36) and (37) are
known to any desired degree of accuracy and hence the
displacements can be evaluated. The penetration u, is of par-
ticular interest since in the classical problem it has been an
undeterminable quantity. Presently it is determined from the
following equation:

u0=2i
k=1

ko [sin(eny)/(emd) - (= 1]
ab

+4) ) % sin(imy)/ (Iwy) (42)
k

Z1 =1
This equation resulted by performing transformation on the
boundary condition (19). It is also worth noting, as pointed
out by one of the reviewers of this paper, that the slope du/dy
is infinite at the punch corner (x=0, y= +b). That this is so
results from inspection of formula (36). It follows from it
that:

au 2 © .
____ay oy = - E B, sinnmy

4 & e -
_71-17 E E ﬁnumnSinnm//

m=1 n=1

43)
Once the expressions (32) and (34) are substituted here it is
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seen that one of the terms is represented by a divergent series
of the order

E sin2nmy/B,,.
n=1
Hence in fact expression (43) tends to infinity.

3 Basic Equations — A Rounded Stamp

In this section symmetric indentation by a rounded stamp is
investigated (Fig. 3). All equations and results from Section 2
are still valid except that the following changes must be made.

(1) Boundary condition (6), or (19), reads now:

2
y
S =h Ul T R

(2) In addition, since the normal stress under the stamp
vanishes now at the ends of the contact zone, the stress intensi-
ty factor C appearing in equation (25) and in the following
equations, must be set equal to zero

Cc=0 (45)

(3) Finally an inverse method is used here: the width of the
contact 2¢ is assumed to be known and the force needed to
generate an indentation of such a width is calculated. The con-
dition that the normal stress vanishes at the ends of contact
zone is also used to eliminate some of the Fourier coefficients.

at x=0,0=<y=c (44)

4 Numerical Results

Inspection of the problem of deflection of a beam with both
ends fixed, subject to a rigid load (Fig. 4), from the point of
view of elementary theory led to the conclusion, anticipated
first by Nied and Erdogan (1979), that also here, when ¢ =
a/b is sufficiently small, separation under a portion of the
rigid load will occur. To test this, one had to solve first the
system of equations (38) using the method of reduction as
described by Kantorowitsch and Krylow (1956) and then
calculate the stresses under that stamp from equation (40).
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Fig.8 2D stamp problem with two sided constraints modeled as a sim-
ple beam

The numerical results obtained from the approximate solution
of this system (reduced to 200 equations) fully confirmed that
expectation revealing also other interesting properties of this
modified flat punch problem: .

(1) For each fixed ¢ = ¢/b such critical value ¢, of ¢ =
a/b exists that indicates the onset of separation of the stamp
from the substrate at the midpoint. When ¢ < ¢, then the
separation of the central portion of the stamp occurs. When ¢
> ¢, there is no separation (‘‘cushioning’’ effect). It is to be
noted that ¢, does not depend on the magnitude P of the ap-
plied load and that for an isotropic material assumed here it

Journal of Applied Mechanics

Table 1 Depth of penetration by the flat stamp for y = 0.25, » = 0.30

.90 | 1.00 |
818 | 131 |

o | ml 20! .30l .40 .50 .ol .70 | .80l
| 16.3 1 6.23 | 3.26 | 2.06 | 1.47 | 1.14 | .945 |

Jlsm

["2.25 {1.50 ] 1.95 [ 2.00 | 3.00 | s.00 | 10.00 | 20.00 |
607 | .546 | .512 | .493 | .465 | 458 | .443 | .441

depends only on the Poisson’s ratio ». The values of ¢,
calculated for » = 0.3 are plotted against ¢ in Fig. 5.

(2) The nondimensional stress intensity factor SIF (it is the
ratio of the actual stress intensity factor to the one obtained
for the infinite case) at the ends of the flat stamp depends on
both ¢ and ¢. Its dependence on ¢ is particularly striking: it
grows considerably with decreasing ¢, reaching for instance
about 23 for ¢ = 0.1 and y = 0.5 (data obtained for the case
when separation is prevented by two-sided constraints under
the stamp). For fixed ¢, SIF increases very slowly with y. The
dependence of SIF on ¢ is shown in Fig. 6 for y = 0.25 and ¢
= 0.5.

The presence of two-sided constraints in the contact zone is
assumed here. It is evident that for each fixed y, SIF has a
lower bound > 1. The smaller y is the closer this lower bound
is to 1, as can be expected. In Fig. 6 it is shown that this lower
bound equals 1.096 for y = 0.5 and equals 1.060 for ¢ =
0.25.

(3) For each combination of y and ¢ the displacements at
any point, including those directly under the stamp, can be
uniquely determined. Hence the penetration is no longer
unknown as it is in the classical problem. The typical shape of
the deformed solid is shown in Fig. 7 for ¢ = 0.58 and ¢ =
0.35 (the onset of the separation) and for P/p = 1. It must be
noted that the calculated vertical displacement under the edge
of the stamp differs by about 5 percent from the displacements
of other points under the stamp. This can be attributed to
Gibbs phenomenon. For the purpose of illustration the values
of the penetration u,, by the flat stamp, calculated for y =
0.25, » = 0.30, and P/u = 1 are listed in Table 1. These
results suggest that for fixed  and growing ¢, u, approaches a
limiting value.

(4) If the flat stamp is assumed to be permanently bonded
to the indented substrate, then the calculated value of the
displacement under the stamp, #,, matches the one obtained
from the simple beam theory. The latter is determined in the
following way: since the deflection is constant under the
stamp, all its derivatives are zero and the problem is equivalent
to one represented in Fig, 8.

Solving the differential equation for bending of a beam

EIyY =0 (46)
and applying the boundary conditions
y' =0, EIy" =P/2 atx=0
y=0, y'=0 atx=(1—-y)b “n
one obtains maximum deflection at x=0:
Ymax = P(1 —)3b3/24E1 48)

Using here, as before P=p=FE/2(1+») and I = 1.43/12 one
obtains finally

Ymax = (1= ‘/’)3/4(1 + V)¢3

For y = 0.05 and ¢ = 0.10 this yields y,,,, = 165 as compared
tou, = 176. For deeper beam the discrepancy between u,, and
Ymax &rows larger due to shear effects among others. For the
round stamp (Fig. 3) the calculations made by Keer and Miller
(1983) were duplicated. It should be emphasized that their

(49)
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Table 2 Comparison of the results for a rounded stamp with Keer and

Miller (KM) (1983)

Load/displ. Max. stress
c/h '] L/h ¢ Pres. KM Pres. KM Pres. KM _ Comments
0.25 .0167 .04434 26.31 er*
0.50 .0333 .0667 .0586 .0578 34.92 34.84 .625 .622
1.00 .0667 15.0 .06620 .06634 39.29 39.20 .564 .560
2.00 .1333 .07629 .07654.44.34 44.26 .985 .979
4.00 .2667 .1043 .1051 54.31 54.28 1.98 1.97 ps*
0.25 .025 .0574 .0578 10.30 10.23 .637 .635
0.50 .050 .0846 .0851 15.15 15.02 .628 .622
1.00 .100 10.0 .1 .1012 .1018 17.99 17.83 .560 .560
2.00 .200 L .1259 .1271 21.38 21.22 .977 .981
4.00 .400 L2112 .2153 28.12 27.92 1,97 1.97
0.25 .05 .0820 .0834 2.002 1.912 .640 .635
0.50 .10 .1517 .1548 3.662 3.506 .627 .622
1.00 .20 5.0 .2 .2140 .2197 5.004 4.807 .567 .560
2.00 .40 .3445 .3606 6.778 6.527 .976 .981
4.00 .80 1.513 1.887 10.55 10.03 1.%8 1.97 ps*
0.05 .05 . 0055 0068 .640
0.25 .25 1.0 1.0 .1238 1074 -640
0.50 .50 .3972 2739 .627

*er = erratic results
*ps = partial separation

method, as a combination of the solution for an infinite layer
and a finite simple beam is applicable to relatively slender
beams. The present method is: (1) free of this limitation; (2)
satisfies exactly the boundary conditions at fixed ends (at Keer
and Miller the ends are allowed to move freely in vertical
direction what is of no consequence for slender beams, but
this and disregard of corner singularities may affect the results
for deeper beams).

The results of the calculation and the comparison with the
results of Keer and Miller (1983) are given in Table 2. It seems
that except for the value of P® for c/h = 4.0and L/h = 5.0
the correlation of the results is very good. The case of a very
deep beam (L/A = 1.0) was not calculated by Keer and Miller.
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One-Dimensional Softening With
Localization

The relationship between material softening and structural softening is investigated
through the use of a model problem in one dimension. If the size of the softening
zone is large the structural softening response is stable under displacement-
prescribed loading. For a small size, the softening response is unstable and the
loading regime is sensitive to imperfections in stiffness. A nonlocal constitutive
equation in which the limit stress is a function of strain and strain gradient is in-
troduced to provide an approach for simulating softening with localization. Implica-
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Department of Mechanical Engineering and
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Institute,
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tions for the numerical modeling of softening phenomena are given.

Introduction

Numerous computational codes contain numerical
algorithms for strain-hardening plasticity. To develop a
capability for predicting large deformations, strain softening
must be incorporated. Strain softening is associated with
localization, and if no precautions are taken, the region of
localization will depend on the size of the mesh used for
spatial discretization. This mesh-dependence is clearly unac-
ceptable, and therefore an approach that can provide basic
equations governing the phenomena of softening and localiza-
tion is needed. Several studies concerning the conditions
necessary for the onset of localization are available (Rudnicki
and Rice, 1975; Vermeer, 1982; Prevost, 1984), but it is still
not clear which procedure is optimal for predicting postlimit
states.

From a continuum point of view, Bazant (1976) has pointed
out that the region of localization must condense to what
might be considered a surface. However, such an idealization
is rarely observed in experiments. On the other hand, there is
no doubt that a region of localization exists and may consist of
a band whose lateral dimension appears to depend on the
physical characteristic of the materials. Because of the com-
plexity of the problems involving a material instability, a
numerical technique such as the finite-element method has
been used to obtain most solutions. Inherent in such a tech-
nique is the problem that a region of localization that is
smaller than the element size cannot be accurately represented.
In fact, the predicted response will generally depend on the
element size in which case the modeling of actual physical
phenomena is lost.

Recently, considerable effort has been made to obtain a
suitable approach to handling strain softening and localiza-
tion. A promising approach (Bazant, 1984b; Pietruszczack
and Mroz, 1981) involves the assumption that the size of the
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localization is fixed with the size related to the material being
studied. Softening characteristics are adjusted to take element
size into account or to ensure that an appropriate amount of
energy dissipation is provided. However, Willam (1984) sug-
gests that in order to take into account what appear to be dif-
ferent modes of softening, a composite damage formulation is
necessary. A motivation for the use of a nonlocal constitutive
equation is that the aspects discussed by Willam can perhaps
be synthesized into one theory, although Bazant and Chang
(1984) point out that certain precautions must be taken.
Recently, Bazant, Belytschko, and Chang (1984) and Bazant
(1984b) have introduced the concept of an imbricated con-
tinuum which is a method for capturing nonlocal constitutive
features. Physically realistic results have been obtained for
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wave propagation in a bar. The arguments of Sandler (1984)
and Read and Hegemier (1985) that strain softening is not a
true material property has been circumvented to a certain ex-
tent by the use of nonlocal continuum laws which do involve
softening.

Triantafyllidas and Aifantis (1984) and Aifantis (1984)
point out the need for an approach to localization that will
automatically generate in a predictive and natural way solu-
tions with localized deformations. For hyperelastic materials
they have shown that such a procedure is possible by introduc-
ing higher-order deformation gradients in the constitutive
equations. The result is a static problem that is well-posed in
the softening region, and consequently, well-posedness prob-
ably exists for the dynamic problem, especially in light of the
solution provided by Bazant and Belytschko (1985).

At least two aspects of strain softening and localization
have not been addressed. First, the effect of initial imperfec-
tions is unknown; and second, the potential usefulness of a
nonlocal constitutive relation has not been conclusively
demonstrated. In this paper, the implications of softening,
localization, stiffness imperfections, and the assumption that
stress is a function of both strain and the gradient of strain are
explored by means of a one-dimensional model problem. It is
believed that the insight provided can be useful for the con-
struction of more general theories to address the issues that
have been raised in connection with softening.

Model Problem

Willam, Pramono, and Sture (1985) argue that a series ar-
rangement of intact elastic and strain-softening zones is more
representative of post-critical experiments on concrete than a
parallel arrangement. Therefore, to simulate the softening
phenomenon (Crisfield, 1982; Schreyer and Chen, 1984) con-
sider a body of length L = @ + b and a unit cross-sectional
area as shown in Fig. 1. This body can be considered a bar or,
in a more general sense, a structural member or even a finite
element of a continuum. The element is considered to be com-
posed of two segments described by similar constitutive equa-
tions, the only difference being that the limit stress for seg-
ment B is slightly less than that for segment A, If the stress on
the element is such that the strain in region B exceeds the value
at the limit state, then softening will be exhibited. It is as-
sumed that softening occurs uniformly over a localized
region B whose dimension is given by the parameter b. It is
also assumed that the length of the element is greater than that
of the softening regime, i.e., L > b.

For simplicity, the constitutive relation for both regions is
considered to be bilinear. The slopes of the loading and
softening segments are oF and —BE, respectively. If
unloading occurs, a line with slope E is followed so that if a <
1, the effect of strain hardening can be simulated in an ap-
proximate sense. The limit stress for region A4, denoted by a,,
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is assumed to be infinitesimally larger than the limit stress for
region B, denoted by g,. These details are sketched in Fig. 2.

There is a cogent argument that strain softening does not ex-
ist. It is the essence of damage theory (Krajcinovic, 1983) that
a decrease in apparent stress occurs not by strain softening but
by a reduction in effective area due to the coalescence of voids
and microcracks. The viewpoint adopted here is that for an
engineering approach, the choice of a procedure for providing
a drop in nominal stress with strain can be based on conve-
nience because a rigorous development of the two methods
should provide the same results on a macroscopic basis. For
the current development, the assumption of strain softening
provides a suitable basis for deriving general results that
would not change if an alternative approach were used.

For given values of strain in regions 4 and B, which are
denoted by e, and e, respectively, the corresponding elonga-
tions are

5, =be, 1)

Then the elongation and the composite strain for the complete
element are given by :

§=6,+68, e=4/L 2)

The composite constitutive equation is characterized by the
relation between stress, o, and strain, e, or equivalently, a P-6
curve,

For monotonically increasing stress from zero up to the
limit stress, the composite constitutive equation is identical to
the constitutive equation for either segment. However, the
postlimit response is different. To obtain this part of the
curve, suppose that e, is given an increment, Ae,. From
equilibrium in segment B,

Ag= —[EAe, 3)
and the change in strain in segment A4 is

&,=ae,

Ao
Ae, = 5 = —fBAe, “4)

It follows from equation (2) that the increment in total strain
is

(b—Ba)
Ae= —_L Aeb (5)
The result of substituting equation (3) in equation (5) is
Aoc= —nEAe ©
where
BL
R o 7
T (18 —BL @

The composite, or smeared, constitutive relation is shown
schematically in Fig. 3. The case of an infinite value of 5 cor-
responds to a vertical drop in stress, and the stress-strain curve
displays a decrease in strain with a decrease in stress for
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negative values of n. The parameter «, which characterizes
strain hardening, does not appear in the expression for 4. As L
increases, n approaches asymptotically the limiting value of

Implications

Experimental data are often obtained with stress-prescribed
devices, in which case failure occurs when the limit load is
reached, For some devices, however, displacements are
prescribed, in which case postlimit data can be obtained unless
the case corresponding to negative values of 7 exists. If the
model problem represents an element in a continuum, for ex-
ample, then because of the basic indeterminacy of such a
system, the situation is probably closer to a displacement or
strain-controlled problem than to one of load or stress
control.

If the loading condition can be represented adequately by
increasing the strain monotonically, and if 7 is negative, then
it is apparent from Fig. 3 that it is impossible to follow the ac-
tual stress-strain curve. If an increment in load forces e to be
larger than e, = 0,/E, the result will be a snapdown to zero
stress with a corresponding release of energy. Because loss of
stability is often associated with failure, a condition of
negative g is assumed to be undesirable. However, no matter
how small a value (positive) of 8 is appropriate, equation (7)
shows that n can be made negative for a sufficiently large
value of L with b fixed. In the context of a structural member,
the dependence of instability on the size of the structure is a
manifestation of a size effect that has not been investigated ex-
tensively. For example, fracture can be used to justify the
argument that strain softening is not observed in metals.
However, an alternate interpretation for fracture can be given.
The phenomenon of crack growth occurs in such a small zone
compared to the length of the specimen that the terms involv-
ing L in equation (7) dominate, and % is negative. In other
words, fracture is usually an unstable process because of the
size of the specimen, not because strain softening does not ex-
ist. In fact, since crack widening has been controlled for con-
crete (Shah and Gopalaratnam, 1984), it would be interesting
to know whether one could obtain a similar result for metals
by using sufficiently small specimens.

An energy interpretation is apparent. Once softening oc-
curs, the energy dissipated in region B must be provided from
region 4 and from any work added by an external agency. The
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Fig. 5 Failure stress as a function of element length
situation defined by n = oo is the critical case in which

region A can provide enough energy to match that dissipated
in region B with no additional work, a case corresponding to
Ae = 0. .

In many finite-element codes that use explicit time integra-
tion, the total strain increment is fixed at each time step. Some
algorithms incorporate the conventional softening identified
with 4 > 0, but almost none incorporate the possibility
associated with 4 < 0. From equation (7), the need for the lat-
ter case can be averted by selecting the element size 4, such
that

O<h<L*= M ®)
B
It is assumed, of course, that b is known.

Willam, Pramono, and Sture (1985) have theoretically
developed the weak restriction » < 1 which must hold for
uniqueness. If such a condition is invoked, then the maximum
allowable element size is L*/2 rather than L* given by equa-
tion (8). The primary problem is that elements larger than L*
are desirable. In addition to the problem of uniqueness, the
use of large elements would require a constitutive equation
that incorporates a negative value of 5. To the authors’
knowledge, such an algorithm has not been developed. This
feature may not be difficult to incorporate because plasticity
algorithms automatically incorporate an elastic unload
feature. In the postpeak regime, which is not unloading
because energy is being dissipated, a pseudoelastic behavior
could be incorporated as a three-dimensional representation
of the case corresponding to negative ». Simultaneously, the
limit surface must contract to exclude any path that involves
an increase in stress. With such a constitutive model, the static
analysis of structures would require a special numerical
algorithm to predict the possible snap-down and snap-back
response features. Although the arc-length method holds con-
siderable promise, a general and robust procedure has not
been demonstrated for applications to strain softening and
localization.

Initial Imperfections

So far, the development for the model problem indicates a
size effect based on the softening feature of an element, but
there is no implication that the apparent failure or fracture
stress varies with the size of the structural member. To show
that there may be a size effect for the failure stress as well,
consider the case in which L >> b, so that 7 is close to (slightly
less than) — 1. The situation is illustrated in Fig. 4 with 5, <
M, < 73 = —1. The fact that the pre- and postlimit
equilibrium states can be close suggests that the response of
the structural member will be sensitive to initial imperfections
or loading disturbances. Rather than being geometrical in
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nature, the imperfections of concern here are those associated
with variations in stiffness, aE, as the structure is loaded. Sup-
pose such variations are bounded on one side by the dotted
line in Fig. 4, where the imperfection is characterized by the
strain parameter, ¢. Then, for strain-prescribed loading, it is
possible for a snap-down response to occur at stress values of
0y, g,, and o; for softening conditions characterized by »,, 1,
and 73, respectively. To be specific, if » = 7, and the load in-
creases from point 4 to point C, then the possibility of
reaching an alternative equilibirum state exists at ¢ = o,, and
snap-down from D is feasible.

The presence of initial imperfections provides the rationale
for a potential size effect on the limit stress (or limit load) that
can be exhibited by a structural member. As the size of the ele-
ment increases, the softening parameter approaches — 1, and
the probability of snap-down at a stress less than the ultimate
_ stress becomes greater.

Geometrical arguments based on Fig. 4 can be used to show
that the failure stress, in the presence of imperfections, is

op=0g =0
eaE
1+a/q

For brittle materials, modeled by a value of « close to unity,
the failure stress is sensitive to imperfections as exhibited
through e; whereas for ductile materials, modeled by small
values of «, the decrease in the failure stress from o is not as
abrupt. The idealized post-peak response, as reflected through
7 in equation (7), does not depend on «, whereas a considera-
tion of initial imperfections shows that strain hardening, as ex-
hibited by values of « less than one, is an important
characteristic.

A plot of failure stress as a function of L/b is shown in Fig.
5. For strain-controlled loading, no reduction in failure stress
occurs if the structural element is small enough. When L/b
reaches the critical value of (1 + B)/83, the failure stress
decreases sharply. The magnitude of the jump depends on the
degree of inelasticity in the loading part of the stress-strain
curve. With a further increase in structural size, or a decrease
in the size of the region of localization, the failure stress
asymptotically approaches a limiting value, which also
depends on the parameter «. In fact, if « is close to one, the
limiting value can be zero for large values of L/b.

These results must be ameliorated to a certain extent
because neither total strain nor a stress-controlled loading
condition describes a typical problem. Instead, a stable post-
peak response may be the line with a slope of —m, where 0 <
m < oo, so that an additional regime of instability exists for
values of n between m and oo as shown in Fig. 6. Except for a

=-1 ®)

O =0g

change in some of the details, the basic concepts outlined

previously are still valid, and the matter will not be pursued
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Fig. 7 The effect of the parameter a4 on strain-softening

further except to say that alternate considerations also imply a
decrease in strength with an increase in the size of a structural
member. For example, Bazant and Panula (1978) made such a
claim based on the assumptions that material properties are
randomly distributed and that a model structure can be
represented by a set of elements in parallel rather than in
series. Another size effect due to blunting at a fracture front
has been described by Bazant (1984a).

A Nonlocal Constitutive Model

The existence of a localized region with strains much larger
than those in the adjacent region implies that the strain gra-
dient must be large. For cases in which softening and localiza-
tion occur, it is not clear whether the region of localization re-
mains fixed in size or changes monotonically with deforma-
tion. One approach is to postulate that a characteristic dimen-
sion of localization depends on the material (Bazant, 1984a)
while another involves dependence on the post-peak stress
(Shah and Gopalaratnam, 1984). A disadvantage of these
assumptions is that a separate procedure for handling soften-
ing must be established for numerical computations. On the
other hand, an alternate approach involving an assumption on
the constitutive equation might provide equivalent results, but
with the advantage that the softening mechanism would be a
consequence of the loading path. As a result, existing
numerical algorithms could be used with a minimal degree of
modification.

To explore the potential usefulness of a nonlocal con-
stitutive equation, a modified form of the relation shown in
Fig. 2 is used. The nomenclature of conventional plasticity is
used to suggest a possible three-dimensional generalization.
Suppose the yield function is given by

F=6—H 10)
where & is the second invariant of the stress deviator normal-
ized such that & = lol for uniaxial stress. The strain harden-

ing function is prescribed to be continuous with a continuous
first derivative as follows:
e \" o
) ] o<se'=<e;

2 \é
B an
H=H,+ (H, —H,)(1+a,e*)e-1¢" e >el
with
2 12)
er
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The inelastic strain invariant, €, is also considered to be scaled
so that for uniaxial stress, €’ is equal to the absolute value of
the principal inelastic strain. The value of e’ at the limit state is
¢} . Initial and peak values of yield stress are denoted by H,
and H, respectively. The parameter n controls the shape of
the strain hardening part of the stress-strain curve. In the
strain softening regime, the function H decreases to the
asymptote H,. For a Young’s modulus of £ = 1, and with H,,
=0.5,H, =1,H, =0.2,¢, = 0.1,and n = 0.5, the effect
of the parameter g, is shown in Fig. 7.

Suppose further that an inelastic strain gradient causes a
decrease in both the limit stress and the inelastic strain at the
limit state. Although it will be shown that realistic localization
features are predicted for uniaxial tension, the assumption ap-
pears to be contrary to experimental evidence obtained from
simple bending tests where both strain gradients and an
enhancement of the tensile limit stress are exhibited. However,
the strain field in beams displays different strain gradients in
two directions which is a topic beyond the scope of this
investigation.

A smooth characterization of the assumed effect of the
strain gradient is given by

H, =H;,G
(13)

el =el G
G =a,+(1—a,)e %8

where g denotes the absolute value of the gradient of the in-
elastic strain invariant normalized to equal the absolute value
of the inelastic strain gradient under uniaxial stress. For H,,
= 1, e, = 0.1, a, = 0.5 and g, = 0.4, the postulated effect
of strain gradient on the stress-strain curve is shown in Fig. 8.
The material parameter @, has the dimension of length and its
effect can only be exhibited for cases involving nonuniform
strain,

To show the effect of g, consider a bar under uniaxial stress
loaded such that the strain in the softening region is increased
monotonically. For model parameters listed previously except
for a; = 0.8, and a; = 0.05, the evolution of strain distribu-
tion for a bar discretized with 20 uniform elements is shown in
Fig. 9. Initially the strain is uniform. Once the peak stress is
reached at a point chosen arbitrarily to be x = 0, a portion of
the bar in the softening zone will continue to elongate, while
elastic retraction will cause the remainder of the bar to shrink.
The region of continued extension is the localized softening
region which develops to a maximum size and thereafter re-
mains fixed. The listed values for stress are less than one
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because the structure is in the post-peak regime. The lower the
value of stress, the more extensive is the strain softening.

Strain distributions for a fixed value of stress in the post-
peak regime are shown in Fig. 10 for various values of aj.
When a; = 0, which corresponds to a conventional con-
stitutive equation with no consideration of strain gradients,
the softening localizes into a single element as expected. An in-
crease in the value of a4, corresponds to a widening of the
softening region; thus, if softening is very localized, which oc-
curs with cracking for example, then a small value of a,
should be used.

The effect of element size is shown in Fig. 11, in which con-
vergence is displayed.

For a length of one unit, the stress-deflection relation for
the bar is shown in Fig. 12 for various values of a;. When a,
= 0, unstable behavior is predicted for displacement-
prescribed loading whereas larger values of @, yield results
that are stable. All of the softening curves will be steeper if a
longer bar is analyzed.

Shah and Gopalaratnam (1984) performed tensile tests on
concrete under carefully controlled loading conditions and
with refined measuring techniques. The response of the con-
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crete specimen was modeled with 20 elements and the follow-
ing material parameters:

E = 5x106 psi H, = 370 psi
H;y = 530 psi H, = 53 psi
a, =0.03 a, = 0.4

a; = 60 in. n =05
ey = 3.8x10°¢

The theoretical stress-elongation relation for a gage length of
3.25 in. is compared with the experimental result in Fig. 13
which shows that the softening response has been captured
with a nonlocal plasticity model. However the size of the
predicted softening zone is 0.16 in. which is considerably
larger than the measured crack width. This difference between
theoretical and experimental values may be due to the ex-
istence of a softening region outside the crack zone, or to a
deficiency in the model. An interesting feature is the small
value of a; which indicates that very little strain softening is
required to obtain a reasonable result. This absence of a
significant amount of strain softening is close in spirit to the
argument of Read and Hegemier (1984) that experimental
evidence does not support the concept of strain softening.

Conclusion
With the use of an elementary model problem, the
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significance of both strain softening and the ratio of the size of
the softening region to the size of the structure has been
demonstrated. For a given strain softening relation and for
structural elements that are small enough, the slope of the
softening part of the load-deflection curve will depend on the
size of the structural element. This conclusion is in agreement
with three-dimensional softening data obtained by Van Mier
(1984) who performed experiments on cubical specimens. The
experimental results show that the descending branch of the
stress-strain curve should be considered a structural
characteristic rather than a material property. Similar implica-
tions follow from the examples given by Read and Hegemier
(1984).

If the structural element is large enough, the assumption of
strain softening implies that unstable equilibrium states exist
even if the problem is one of displacement-controlled loading.
The presence of unstable equilibrium states adjacent to stable
equilibrium states suggests that such a structure is sensitive to
variations in stiffness. Consequently, the failure load may be
less than the load associated with the nominal peak stress. The
possible reduction in dimensionless failure load with an in-
crease in the size of a structural element is a size effect that has
been noted previously from alternate viewpoints.

One approach for predicting the various manifestations of
softening in a continuous medium without being overwhelmed
with detail is to assume that the constitutive equation incor-
porates strain softening and is nonlocal. If the mesh size used
for structural discretization is small enough, then structural
softening and the region of localization are predicted in an
evolutionary manner. Comparisons between theoretical and
experimental data associated with the cracking of concrete in-
dicate that the method is useful and that a generalization to
three dimensions is feasible,

From a practical viewpoint for numerical calculations, a
mesh size larger than the region of localization is desirable in
which case the constitutive equation must be modified to in-
corporate a reversal in strain in the post-peak regime. The
theoretical and computational issues associated with strain
reversals must be resolved before softening and localization
can be routinely handled.
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Inclined Flat Punch of Arbitrary
Shape on an Elastic Half-Space

V. 1. Fabrikant

Department of Mechanical Engineering,
Concordia University,
Montreal, Canada H3G 1M8

A new method is proposed for the analysis of elastic contact problems for a flat in-
clined punch of arbitrary planform under the action of a normal noncentrally ap-
plied force. The method is based on an integral representation for the reciprocal
distance between two points obtained by the author earlier. Some simple yet ac-

curate relationships are established between the tilting moments and the angles of in-
clination of an arbitrary flat punch. Specific formulae are derived for a punch whose
planform has a shape of a polygon, a triangle, a rectangle, a rhombus, a circular sec-
tor and a circular segment. All the formulae are checked against the solutions known
in the literature, and their accuracy is confirmed.

Introduction

The theory of elastic contact problems for classical domains
(a circle and an ellipse) is well developed (Galin, 1961). There
are quite a few publications treating the case of a flat nonellip-
tical punch under the action of a centrally applied force
(Rvachev and Protsenko, 1977). There are almost no reports
on the case of a noncentrally applied force and a nonclassical
domain of contact. We are aware of only one report (Rvachev
and Protsenko, 1977) considering an inclined circular punch,
with a zone of separation between the punch and the elastic
half-space. Slightly better is the situation in Electrical
Engineering where the mathematically equivalent problem of
the magnetic polarizabilty coefficients was solved numerically
for several specific shapes (de Smedt, 1979; De Meulenaere
and Van Bladel, 1977; Okon and Harrington, 1981). Though
their results sometimes differ by more than the accuracy they
claim, we have no other source for verification of the accuracy
of the formulae to be derived here.

This paper constitutes the second part of a three-part proj-
ect. In the first part (Fabrikant, 1986) we derived a universal
formula for the relationship between the punch settlement and
a centrally applied force which compares favorably with the
numerical results available for a regular polygon, a rectangle,
a triangle, a rhombus, a circular sector, and a segment. Here,
the same method is used for the solution of the problem of an
inclined punch of arbitrary planform. Some general relation-
shps are derived between the tilting moments and the angles of
inclination of the punch. Specific formulae are derived for
various punch planforms, and their accuracy proves to be
quite satisfactory when compared with the numerical results
available. The third part of the project will deal with an ar-
bitrary curved punch.

Contributed by the Applied Mechanics Division for publication in the Jour-
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Theory

It is well known (Galin, 1961) that the problem of an ar-
bitrary punch on an elastic half-space can be reduced to the
solution of the following integral equation

where S is a two-dimensional domain of contact, R (M,N)
stands for the distance between the points M and N, w denotes
the normal displacements under the punch (known function),
o stands for the normal stress exerted by the punch (unknown
function), and H is a constant which in the case of an isotropic
elastic half-space takes on the value H = (1 — »?)/7E, vand E
being, respectively, the Poisson coefficient and the elasticity
modulus. In the case of a transversely isotropic body, the ex-
plicit expression for H can be found in Fabrikant (1971b).

The presentation in this paper will be made in terms of the
elastic contact problems but one should keep in mind that all
the results will be applicable in other branches of engineering
science. Here we outline the analytical treatment of the elastic
contact problems which allows to derive simple yet accurate
formulae for various punch shapes. The approach is based on
the integral representation for the reciprocal distance
established in Fabrikant (1971a)

1

das 9))

172
[02 +0o> — 2ppocos(p ~ ¢>o)]

N
2 min{oeq,0) (ppo ¢ _¢0> dx
_Tjo

[0 -]

1-k?
1+ k2 -2k cosy

Substitution of equation (2) into equation (1) gives, after
changing the order of integration,

Ak) = 3
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Consider a flat-ended punch with a planform S whose

boundary is given in the polar coordinates as
p=a(¢)

where the function a(¢) is bounded and single-valued. The
punch is pressed against an elastic half-space by a normal
force P applied at the point with cartesian coordinates x, and
¥,. This loading is statically equivalent to a centrally applied
force P and two tilting moments M, = Py, and M, = — Px,.
The case of a centrally applied force was considered in Part 1
(Fabrikant, 1986). It remains here to consider the punch under
the action of the tilting moments, and to superpose the results.
Let the normal displacements under the punch be

W=o,y~o,X (5)

where «, and o, are the tilting angles about the axes Ox and
Oy, respectively. It is necessary to relate these angles with the
tilting moments.

Let the normal stress distribution under the punch be

a(¢)p(pcos¢ + p,sing)
o= ©)

[2@)-]"

where p, and p, are yet unknown constants. Make use of the
condition that the integral of ¢ over S should be equal zero.
Since p, and p, are independent, this leads to two equations
2w

S: (a(#))7coss dp=0, |

(a($))3sing dp=0 @

One can note that the left-hand side of each eguation (7) is
proportional to the x or y coordinates of the center of gravity.
This means that the origin of the system of coordinates should
be located at the center of gravity of the domain of contact.
The axis orientation will be discussed later.

The relationships between the tilting moments and the
parameters p, and p, can be established from the statics
conditions

N S
which leads to

8 8
MX=T(pIIxy +p21x)’ My= _T(plly +p21x)’) (8)

where I, I,, and I,, are the well known quantities of the
moments of inertia and the product of inertia, respectively.
Now it is necessary to relate p; and p, to the angles o, and «,,.
This can be done by substitution of equation (6) into equation
(4) which yields after integration with respect to p,

wen-i B0 (2)"

H=—o p
27 - 2
S eiﬂ(¢”¢0)F<3 |n|’.L; 1; 1_.._..—_x )
0 2 2 a2(¢0)
(p1cOsdg + ppsingdg)de, 9

Here F stands for the Gauss hypergeometric function. Further
evaluation of the normal displacements can be done separately
for each harmonic. Note that the zeroth and all the even har-
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monics of w will be zero if a(¢) contains only the even har-
monics. The first harmonic will take the form

27
W (0,8) =—- Ho | " cos(6 ~ do)p1c0500

+p2sin_¢>o)a(¢o)d¢o

which can be simplified as

w1(0,9) == Hol(p,J, +pyJ.y )cos
+ (p1Jyy + Py J,)sing] 10
where the following quantities were introduced
27 27
Jy= SO a(¢)sin’pdp, J,= SO a(¢)cos’pds,
27
gy =S0 a(¢)singcosgpdd 1y

These quantities do not seem to have been used before in
engineering practice so they do not have an accepted name.
Since their tensor properties are similar to those of the
moments of inertia, we shall call J, and J, the linear moments
of a two-dimensional domain about the axes Ox and Oy,
respectively; J,, will be called the linear product of a two-
dimensional domain about the axes Ox and Oy.

It is important to note that the third harmonic is equal to
zero for an arbitrary contour. Here is the expression for the
fifth harmonic

128 2% 5(¢p —
Ws(o,) = Hot | ————cosaz(zso)%)

315
(D1 c08dg + p2singg)dey
which can be modified as
64
ws(o,0) =315 Ho* {[(A s+ AP + (A — Agy)Ps1cos5¢
+[(Ags +As)p) + (A — Ag)p,1sin5e } (12)

Here, the following geometrical characteristics of the domain
of contact were introduced

_ SZW cosdd do _ SZ" cos6o do
4~ 6

o (a(e))?’ o (a(¢))?’
_ SZW sind¢ do _ S“ sin6¢ de
“lo (a(e)? T Jo (a(¢))?

Investigation of further harmonics shows that their amplitude
decreases.

Now consider in more detail the case of a square with the
side 2/. The equation of the boundary in this case is a(¢) =
I/cos¢ for —w/4< ¢ < w/4, and the pattern is repeated outside
this range. We can evaluate the first two nonzero harmonics:

w, = wHlp In(1 +V2)(p,cos¢ + p,sing),
. 128Hp*
5T o45p

Since the amplitude of wjs is significantly less than that of w,,
it seems natural to assume w = w;, and the remaining har-
monics may be called the solution error. Direct computations
show that the error is less than 3 percent inside the circle p</.
The error is reasonably small outside the circle, reaching about
20 percent at the apex and decreasing very rapidly with the
distance from the apex. Taking into consideration that the er-
ror sign fluctuation will result in even smaller error in the in-
tegral characteristics sought, a direct comparison of equations
(5) and (10) leads to

(P cos5¢ + p,sinSe) (13)
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P ¥is
ay=—— H(p1Jy+P2ls)s &= ——= H(piJy+p2Jy) (14)

The inversion of (14) gives
2 Jyact o 2 Ja,tJye

_2 p = 15
T A S R ey 3 ey 2 B

b=

Substitution of (15) into (8) finally gives the required
relationship

16 6
Mx=—-—(m”ax+m12ay), M},=—T{-(m2lozx+m22ay)

3nH 3r
(16)
where
O S % R ¥ S 8
T, =2 Ty =2
T, I, —J,I, T A, ~J I,
L Iy o B e Y

It is clear that all these results can be rewritten in a matrix or a
tensor form. One can verify that formulae (16) are invariant
with respect to an arbitrary rotation of the axes. The same
property holds for m,, + my, and m, — m,,. Strictly speak-
ing, according to the reciprocal theorem, m, should be equal
my;, so that formulae (16) generally do not satisfy this
theorem. But we may state that this theorem is satisfied ‘‘ap-
proximately.”’ We mean by this the following property which
has been verified by several direct computations, namely,
lmy, — myl/my < 1and lm;, — my t/my, << 1. This
theorem will be satisfied exactly for any domain which has at
least one axis of symmetry because in this case m;, = m,; = 0
provided that the coordinate axes coincide with the central
principal axes of the domain of contact. Since we have no
numerical data for nonsymmetrical domains which could be
used to verify the accuracy of (16), we shall consider further
only the case when the domain of contact has an axis of sym-
metry. In this case formulae (8), (14), and (16) simplify
significantly

8 8
Mx=—'3__1xp27 My=_TIypl a7
T T
[o 9 ZT Hprz, &y = ——2— HJypl (18)
16 I, 16 I
— x = 19
“T3H g, > 3aH T, Y 19

Returning back to our problem of noncentrally applied
force and using the results of Part 1 (Fabrikant, 1986), we can
write the following expression for the stress distribution under
the punch in terms of the applied force P and the coordinates
of its point of application x, and y,

o i a ()
24]a2() -2 ro

(20)

where A is the area of the domain S. An expression equivalent
to equation (20) can be written in terms of the norral
displacement & and the tilting angles «, and o,

_ ) 5 ay ap
' WH[achs)—pz] VZ‘[JO+ ) Jyy]

@n

where
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27
n=|"a@ras

The quantity J, may be called the polar linear moment due to
the analogy with the moments of inertia and the property J;, =
J, + J,. One can note also that J, is proportional to the

" average polar radius. Expressions (20) and (21) are exact for

an ellipse. We expect them to be reasonably accurate in the
neighborhood of the coordinate origin for an arbitrary punch
planform with at least one axis of symmetry, while the error
might become quite significant close to the boundary of the
domain S.

Let us rewrite formula (19) in the form

A3 A2
Mx:_i;r-f—‘[— hx()lx, My:T’lr—f{— hyoz}, (22)
where
321, 321
=gy Megar @3

We introduced the coefficients h, and A, for two reasons:
since they are dimensionless they characterize the shape of S
and do not depend on its size; both %, and 4, are equal to the
corresponding coefficients of magnetic polarizability which
will simplify the comparison of our results with the numerical
data available. There is an advantage of formulae (22) over the
equivalent (19): the factors depending on the shape of S are
separated from those depending on its size. One can draw
from equations (22) an immediate conclusion that in the case
when a domain § is magnified so that its linear dimensions
double, its area quadruples, and the tilting moment should be
multiplied by 8 in order to produce the same tilting angle. This
conclusion is not so clear in equations (19). The remaining
part of the paper will be devoted to the evaluation of the coef-
ficients &, and A, for various punch planforms.

Applications

Several punch planforms are considered here. Each con-
figuration is related to its central principal axes and assumed
to have at least one axis of symmetry coinciding with the axis
Ozx. A high degree of accuracy of formulae (23) is confirmed
by comparison with available numerical solutions.

Polygon. Consider a polygon with n sides. The function
a(¢) describing its boundary is bounded and single-valued.
The origin of the coordinate system is located at the center of
gravity, as before. Let us number the polygon sides in a
counterclockwise direction from I to », a; being the length of
the kth side. The apex, at which the sides @, and @, are in-
tersecting, is numbered k + 1. It is clear that the value of index
equal #+ 1 is understood as 1. Denote b, the distance from the
center of gravity to the kth apex; v, stands for the angle be-
tween the axis Ox and the perpendicular to the side a,. Let 4,
be the area of the triangle formed by a,, by, and b, ,, the
total area A of the polygon being equal to the sum of 4,. The
following expressions can be obtained for the moments of
inertial

no94,3
I = I3
X 2
k=1 9

b 2D
[sin?‘l/x,{ L TR 6in2y,

44,

2
agt+3 (bk+ e bk2)

cos21//k] 24)

484,

n
247 biyi” — b
I,= [c0521// —E K sin2y
g kE ad a4, ‘
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2
a’+3 (bk+ - bkz)

484,27
The linear moments can be computed in the form

sinz\/ka 25)

cients does not change significantly in the whole range
3<n< oo,

Isosceles Triangle. In the case of a triangle with‘ the sides
a,=a,=1 and the angle between them equal to « formulae
(23)-(27) give

A 1 ' 1 . 1
J.= ) — a7 — (b — by ) 1cos2y, I. =—— Psine sin?(«/2), 1,=—— Psina cos?(a/2),
x Py X ¥y
k=1 G by by 12 36
: 2 o
1 . betbesita J, = lcos — | sina + sin{a +y) — 2sin
+4A (—-— >sm2 +2a,ln ———— % cos? ] x cos « oty Y
« b by Vet 2aln bp+bp1—a; o5 3 2
(26)

H
f )> 3 [(7;‘+
k

. )it = (b= by leos2iy
k=1 K

bk+1

1
,4Ak<ﬂ__
bk k+1

bk+bk+l+ak
be+byy1—ay

sin? 1//k]
27)

Substitution of equations (24)~(27) into (23) gives the coeffi-
cients A, and &, for an arbitrary polygon. In the case of a
regular polygon a, = a, b, = b = a/[2sin(zn/n)], ¥, =
2a(k—1)/n, A, = [@Pcot(x/n)]/4 = [b*sinQRu/n)}/2, A =
nA,, and formulae (24)-(27) simplify to

> sin2y, +2a,in

2 _
74 i cot —Z—->+ln tan(%JrL)],

04
+ 2si 3—1( t
Sin 5 nyco )

2 o . . .
J,=—lcos =N [— sina — sin{a 4 y) + 2siny

Y3
—a o
cot ——)],
4

with the result for the coefficients

. o 2
+ sinacos - In (cot il

3/2
B =8 (tan(oz/Z)) {3 [sinoz + sin(a ) — 2siny

2 -
g acoti)
4 4

+ 2sin? % In (cot

1.=1= na’ cot — [cot2 T + ! ]
T 64 n no 3 1
Ty
nb* *in ta“<T+T>B ’
= sin 2" [2 4 cos 7| 28 @31
L . . 1+ sin(x/n) h, =8Vcot(a/2) {9 [— sina — sin{a + ) + 2siny
XTI Ty n 1 —sindx/n) -1
i iln(cot 2y« cot ——a—)]}
1 7 l+sin(r/n) +INacos = 3 ’
=——nbcos — In ———v—""_ 29
2 n 1—sin(x/n) where v = tan~!(3tan(a/2)).

Substituting equations (18) and (29) into (23) leads to

2
l6<2 +cos i)
n
=h,= (30)

Y o7 7\ 12 1+sin(z/n)
9{ n3sin — cos? ——) In
n n

The isosceles right triangle was considered by Okon and
Harrington (1981) who gave the interval between 0.9829 and
1.021 for only one coefficient which in our notation is 4. Our
result for A, is 0.9255 which differs less than 10 percent from
theirs. The second formula (31) gives 4, = 0.3995, and there is
nothing in the literature to compare with this result.

1 —sin(w/n) Rectangle. Consider a punch with a rectangular base, g, and
Consider several particular values of 7. For an equilateral 92 DEIng its semiaxes. Introduce the aspect ratio ¢ = a,/4,.
triangle (n=3) formula (30) gives h,=h,=31/416/[27In(2+ Formulae (24)~(27) in this case reduce to
V3)] =0.5922. We did not find any numerical data to compare 4 , ,
with this result. In the case of a square n=4, and I =344 1y RN
h,=h,=4/[9In(1 +v2)] =0.5043 which is inside the interval N . _
from 0.4973 to 0.5162 given by Okon and Harrington (1981)  Jx=4@sinh™le, Jy=4aysinh = (1/¢)
and within 3 percent from the result of de Smedt (1979) and formulae (23) yield
0.5193. Since formula (30) in the limitglzg case n— oo gives the 46372 4e-32
exact result for a circle A, = h, =8/(313%) = 0.4789, we should * = Osinp T h,= Ssinh 1 (170) 32)

expect that the error of equation (30) will decrease with »n. The
value of the coefficients for a regular hexagon is
he=h,=40v2/(3'/481In3) = 0.4830 which differs by 1.4 per-
cent from the result 0.49 due to Okon and Harrington (1981),
and it is quite clear that the maximum possible error indeed
decreases with n. It is noteworthy that the value of the coeffi-

We have found in the literature some numerical results which
seem to be more or less accurate, The coefficients of magnetic
polarizability were computed by de Smedt (1979) for a rec-
tangle with different aspect ratio e. Here, we present his results
along with those given by equations (32):

€= 0.1000 0.2000 0.3333 0.5000 0.7500 0.8000 1.0000

de Smedt A, = 0.1287 0.1881 0.2531 0.3249 0.4240 0.4436 0.5193

Formula (32) 4, = 0.1408 0.2001 0.2612 0.3265 0.4165 0.4341 0.5043

de Smedt 4, = 4.1070  2.0260 1.2600 0.8892 0.6426 0.6130 0.5193

Formula (32) &, = 4.6876 2.1488 1.2701 0.8708 0.6228 0.5929 0.5043
Discrepancy in 4,(%) -94 —6.4 -3.2 -0.5 1.8 2.2 2.9
Discrepancy in 4,(%) —14.1 -6.1 -0.8 2.1 3.1 3.3 2.9
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Our formula (32) seems to perform satisfactorily in a suffi-
ciently wide range of aspect ratio. The approximate expression
for the stress distribution under the punch according to (20)

takes the form
1 (33)
Savas [ (8) 7| I )

Pa(¢)

Expression (33) can be used for analyzing the process of move-
ment of the applied force P, say, along the axis Ox. This
analysis can be done by requiring that the contact traction
vanish at the edge. One can conclude from equation (20) that
the boundary at which this occurs will always be a straight
line. It is clear from equation (33) that the punch will be in
contact with the half-space as long as x, =4a,/9, after which
the punch will start separating from the half-space. Assuming
that the new domain of contact is also a rectangle (of course,
with a different aspect ratio), one can again apply the for-
mulae of this paragraph to analyze the process further. If one
can denote by ¢ the width of the zone of separation, the
following relationship holds:

9

4

XX

(._

a?

YYo

0 =
a,?

2 4
c=—(9%;—4a,), for xy=z—a,

5 9
The last formula states, for example, that when the force P is
applied at x, = 134,/18 only a half of the punch will be in con-
tact with the half-space. Unfortunately, there is no data to
verify these relationships. Further analysis reveals that the
core inside which the force can be applied without causing any
separation is a rhombus with semiaxes 4a,/9 and 4a,/9,
respectively. As one knows, in the case of a circular punch the
core is a circle of radius equal to one third of the radius of the

This is why we are using the word discrepancy rather than the
word error in the tables throughout the paper. The situation
becomes even more evident if we compare the same values
along the axis Oy. One can use a formula similar to (34)
replacing all x by y and interchanging «, and a,, the value of
h, was taken to be 0.3265.

0.1667 0.3333 0.5000 0.6667 0.8333

0.1756 0.3663 0.6011 0.9014 1.6413

0.1756 0.3673 0.5998 0.9292 1.5662
0.0 -0.3 0.2 -3.1 4.6

yia, =
de Smedt oH =
our result oH =
Discrepancy (%)

Changing sign in the discrepancy indicates some ‘‘noise’ in
the numerical solution by de Smedt.

Rhombus. Let o be the angle at one of the rhombus apexes,
and / be its side Formulae (24)-(27) in this case yield

x > s

1 1
I = Psina sin? —j— I = Psine cos? —;—

A =Dsin a,

J, =2/ sina [cos —;— —sin —;—

cos(a/2) +sin{a/2) + 1
cos(a/2) + sin(a/2) — 1

. o
+sin? — In
2

I

J,=2 sina[—cos —;—+sin —;——

, @ cos(a/2) + sin(w/2) + 1
+cos® — In -
2 cos(a/2) +sin(a/2) — 1

The coefficients will be defined as

|

8sin? —
B = 2
Nt
Ssines®? [cos 2 sin -y sin? L. g S/ DASICD 1]
2 2 2 cos(a/2) +sin(a/2)— 1
8c0s? —
hy, =
2 in(c/ 1
9(sina)*? [— COS — 4 5in ——+ cos? —— In cos(a/2) + S.m(a D+ ]
2 2 2 cos(oe/2) +sin(a/2) — 1

punch. The results due to equation (33) can be compared with
the numerical data received in personal communication from
de Smedt. In order to make the comparison possible, one
should put in equation (33) P=0, M, =0, replace M, with

(3%)

The same formulae in terms of the rhombus semiaxes ¢ and b
and the aspect ratio ¢ = b/a has the form

2V2e(1 +€2)

equations (22), with the result b =
X ’
&2 1+e+(1+2)172
9[1 —€e+ ]
B 9\/Za(¢)hyx € 1+ )2 T+e—(1+e2)72
oH= ” (34)
da, [aZ (9) —pZJ . 2V2(1+¢2)
» = 3
Computations due to equation (34) were made for e=0.5__ 932 [e~ 1+ 1 I4+e+(1+e2)l2 ]
along the axis Ox, the value 4, was taken 0.8708 (sce the table (14 €2)172 14+e—(1+e2)l2
above). Here are the results compared to those communicated 36)
by de Smedt:
x/a, 0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 0.6667 0.7500 0.8333 0.9167
de Smedt ¢H = 0.1143  0.2303 0.3501 0.4759 0.6093 0.7523 0.9367 1.1460 1.4304 1.8303 2.8182
Formula (34) cH= 0.1159 0.2342 0.3577 0.4898 0.6350 0.7999 .0.9950 1.2392 1.5709 2.0886 3.1777
Discrepancy (%) —-1.3 —-1.7 —-2.2 -2.9 —4.2 —-6.3 —-6.2 -8.1 -9.8 ~14.1 —12.8

One should expect the error of equation (34) to be
monotonous (or to have one extremum). This expectation is
not met around x/a, =0.5 and x/a, = 0.9 which most probably
indicates some computational errors in the data by de Smedt.

802/ Vol. 53, DECEMBER 1986

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to AS

We did not find in mechanics literature any result related to a
punch with a rhombus planform. In electrical sciences, the
mathematically equivalent problem of the coefficients of

Transactions of the ASME

ME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



5.08

4.00
3.02 \

2.08

{.e2

——

.00 —pocood afr
9.00 P.10 .20 2.3¢0 D.40 .50 2.60 P.79 2.80 £.8¢ .20

Fig. 1

Coefficients h, and hy, for a circular segment

magnetic polarizability of a diamond was solved numerically
by de Smedt (1979). Here, we present his results compared to

1
I, = Ar?(1+ 3kcosa — 4k?),

3
J, =" r{— ksin®y + (1 — k%sin2y)“2sinycosy
1-k2

+k2

F(W“’Y,k)

2k% ~1 .
TE(W—'y,k) + 3(k— cosa) [—sm'y

+1n tan(—}-+—27—>]}

2
J, = N r{siny [ksinzy —3cosa— (1 — k%sin?y) “Zcosy]

those given by formula (36):

€= 0.1000 0.2000 0.3333  0.5000

de Smedt A, = 0.1181 0.1729 0.2341 0.3052

Formula (36) 4, = 0.1078 0.1627 0.2258 0.2986

de Smedt 4, = 6.1820 2.7060 1.5240 0.9946

Formula (36) #, = 4.5987 2.1982 1.3254  0.9095
Discrepancy of A,(%) 8.7 5.9 3.6 2.2
Discrepancy of #,(%) 25.6 18.8 13.0 8.6

The deterioration of the accuracy of (36) for small values of e
is the result of erroneous assumption of a square root
singularity in equation (6) which is grossly incorrect for do-
mains with sharp angles.

The stress distribution under the punch can be expressed ac-
cording to equation (20)

LB RRYERES)
24]@(8) -7

g=

Further analysis of the last expression reveals that the core in-
side which the force can be applied without causing any
separation is a rectangle with semiaxes 2a/9 and 2b/9, respec-
tively. In the case of e = 1 the rhombus transforms into a
square, and all the results are in agreement with those of the
previous paragraph.

Circular Segment. Let the radius r and the angle 2a be the
segment parameters. The location of its center of gravity is
defined by x, = kr, where

2 sino

k= (37)

1
3 <oz———2-— sin Za)

The equation of the segment boundary with respect to its
center of gravity takes the form

1—k2 + k2
o Flr—pk) + 5 E(r=y,0)]
0.7500 0.8000 1.0000
0.4101 0.4323 0.5193
0.4026 0.4230 0.5043
0.6703 0.6323 0.5193
0.6388 0.6052 0.5043
1.8 2.1 2.9
4.7 4.3 2.9

where vy = tan~! (sina/(k — cosa)). Substituting in (23) leads
to

4(1 — kcosar)
h= {-—ksin3'y+(1

1 12
[oz 5 sin2a]

— k%sin?+)"2sinycosy +

2

=)

2k~ 1 .
+—kz———- E(w—v,k)+3(k—cosa) [—Sm'y
- 'y -1 4(1 + 3kcosa — 4k?)
+/n tan<~—4——+—)]} h,=

2 ’ 1 172
[:LY - T SiIIZOZ]
{sin'y [ksinzy —3cosa — (1 — k?sin?y) ‘/Zcow]

1—k? 1+ k2 -1
- F(r=y )+ — o E(r =700}

A plot of &, (solid line) and £, (broken line) against the ratio
o/ is given in Fig. 1. We are unaware of any data to verify
the accuracy of (39).

One can now investigate the case of a circular punch under
the action of a normal force P applied at x,>r/3. From the
classical theory we know that there should be a separation be-

12
r[—kcos¢>+ (I—kzsinzqs) ] for0s¢=sm—yor m+y=¢<2r

al¢)=

k —cosa

r
cos{(m—¢)

Computation of the moments (24)-(27) yields

A=r <a———;— sin2a>, I, =% Ar*(1 - keosa),

Journal of Applied Mechanics

(38)

for T—y<o¢=<m+vy

tween the punch and the half-space. Assuming that the do-
main of contact after separation is a circular segment, one can
get the following relationship between the coordinate x, and
the size of the segment characterized by the angle «
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(1 - k(1 +4k)
3(k —cosw)

The last expression is exact in two limiting cases: the complete
circle o= gives xy =r/3, and a— 0 results in x, = 7. The prob-
lem of an inclined circular punch was considered numerically
in the book by Rvachev and Protsenko (1977). Here, we com-
pare the results

0= (40)

afdeg) = 158.4 108.1. 102.0
Rvacheyv et al. x; = 0.3583 0.5833 0.6250
Formula (40) x, = 0.3543 0.5418 0.5750

Discrepancy (%) 1.1 7.1 8.0

The agreement should be considered as surprisingly good,
especially taken into consideration that Rvachev et al. con-
sidered the domain of contact not in the form of a segment but
having a more complicated shape.

----- S

R
~. e

S~

afx
2.2 0.19 P.20 2.30 2.40 ©0.50 .60 ©.70 .83 P.99 .90

Fig. 2 Coefficients h, and h,, for a circular sector

2

Circular Sector. Repetition of the procedure, described in  + (1 — k%siny)'?sinycosy ——5— F(y,k)
the previous paragraph, leads to the following results for a cir- k
cular sector with the angle 2q: 1+ k2 .
| | + 2 E(v,k) +3ksma[—cosa—cos(a+’y)
A=rta, L,=—1rt <a—-—— sin2a> ,
4 2 o Yo -1
+cos?a In (cot —— cot >B 4D
o 9a? + Yasinecoso — 16sina 2
I, = 36 Formulae (41) are exact for a complete circle (e =), and give
X the same results as (39) for a half-circle (o =/2). The plot of
2 . . . - h, (solid line) and A, (broken line) against the ratio a/7 is
_ 3m (1 — K2ain2a ) 172 X
Tx T3 r{—ksm v~ (1~ kPsin®y) “Esinycosy + k2 F(y.k) gixven in Fig. 2. We dyid not find in the literature anything to
compare with these results.
2k2 -1 . .
+ 2 E(v,k) + 3ksina [cosa+cos(a+'y) Cross. Consider a punch configuration obtained by an or-

y—
2

2ll

2
== r{ksin'y(sinz'y — 3)4+ (1 — K2siny)Y2sinycosy

o
+sin’w In <cot - cot

1-42

k2

F(v,k)

1+ k&2

+k2

E(v,k) + 3ksina [—cosa —cos(a+7)
y—

)]

Here, k = 2sina/(3a), and y = tan~! (sina/(cosa — k)). The
coefficients sought are expressed as follows

o
+cos?a In (cot > cot

thogonal intersection of two equal rectangles with sides 2a and
b/a. The area and the

2b. Introduce the aspect ratio as ¢
moments will take the form

4
A=4d’e2—¢), I.=1, =5 ate(l+e2—¢%)

1+ (1 +€2)12
J.=J =4a[ln(e+ 1+ +ein ————}
’ ( ¥ (1+v2)e
The coefficients will be defined as

_Ae(l+e—€?)

h.=h [ln(6+(1+62)“2)

YU 92— )2
L+(1+€2)27 -1
In——— 42
: (1 +v2)e ] (42

The comparison between the results due to (42) and those
given by de Smedt (1979) are presented below:

€= 0.1000  0.2000

de Smedt A, =h, = 1.5910 0.8720
Formula (42)h,=h,= 1.7382 0.8738
Discrepancy (%) -93 —-0.4

0.3333  0.4000 0.5000 0.6000 0.7500 0.8000 1.0000

0.6255 0.5725 0.5267 0.5069 0.4985 0.4997 0.5193

0.6006 0.5465 0.5049 0.4890 0.4893 0.4926 0.5043
4.0 4.5 4.1 3.5 1.9 1.4 2.9

A, =20"322a —sin2a) {-ksin“y — (1 — k%sin?y)“2sinycosy

2
—5— Flv.k)

+k2

2k2 -1 .
— 5 E{y,k) +3ksina [cosa +cos(a+v)

i

4(9a% + Yarsinocosa — 16sinor)
hy = 90572

_+_

Y-«
2

[04
+sin’q In (cot BN cot

{ksiny(sinzy ~3)
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Taking into consideration the shape complexity, we should
consider the results agreement as surprisingly good, not only
quantitatively but qualitatively as well: both data display a
relatively flat minimum around e=0.75.

Discussion

It is noteworthy that the change of the order of integration
which led to equation (4) is valid inside the circle
p=<min{a(¢)} only. Nevertheless, one can obtain from equa-
tion (4) an exact solution for an ellipse and sufficiently ac-
curate formulae for various punch planforms as it was
demonstrated in the previous Section.
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The accuracy of formulae (23) can be improved by taking
into consideration the fifth harmonic (12) in combination with
the variational approach (Noble, 1960). The following func-
tional assumes its maximum value at the exact solution of (1)

Since expression (44) is approximate, there is no guarantee
that equations (46) will be more accurate than (23). We per-
formed the necessary computations for a rectangle. Here are
the results compared to those by de Smedt (1979):

e= 0.1000  0.2000 0.3333 0.5000 0.7500 0.8000 1.0000

de Smedt &, = 0.1287 0.1881 0.2531 0.3249 0.4240 0.4436 0.5193
Formula (46) 4, = 0.1405 0.1988 0.2577 0.3207 0.4165 0.4376 0.5331
de Smedt &, = 4.1070  2.0260 1.2600 0.8892 0.6426 0.6130 0.5193
Formula (46) &, = 4.5856 2.0985 1.2479 0.8714 0.6463 0.6190 0.5331
Discrepancy in A,(%) -9.2 =57 —1.8 1.3 1.8 1.3 ~2.7
Discrepancy in A2,(%) —11L.7 —3.6 1.0 2.0 -0.6 -1.0 -2.7

2 Comparison with similar data computed on the basis of for-
1(o) =71“S SS o (M)w(M)dSy, mula (32) shows that the correction terms 4, and 7, in this par-
ticular case resulted in decreasing the value of discrepancy,
o(N) positive as well as negative. We caution again that there is no
- Hs o(M) [S S s ‘R‘W dSN:l dSy (43) guarantee that this will be valid for an arbitrary domain. For
’ example, here are the data computed for a rhombus:

€= 0.1000  0.2000 0.3333 0.5000 0.7500 0.8000 1.0000
de Smedt 4, = 0.1181 0.1729 0.2341 0.3052 0.4101 0.4323 0.5193
Formula (46) A, = 0.2268 0.1860 0.2351 0.3031 0.4058 0.4264 0.5091
de Smedt £, = 6.1820 2.7060 1.5240 0.9946 0.6703 0.6323 0.5193
Formula (46) 4, = 8.5600 2.5916 1.4196 0.9408 0.6490 0.6138 0.5091

Discrepancy of A,(%) —92.0 -7.6 —~0.4 0.7 1.0 1.4 2.0

Discrepancy of 4,(%) —38.5 4.2 6.8 5.4 3.2 2.9 2.0
Taking Comparison with the data computed due to equation (36) in-
o(N) » dicates that the discrepancy decreased for e=0.2 while for
S SS ROLN) dSy=w,+ ws (44)  ¢=0.1it has jumped in the opposite direction to — 92 percent.

and substituting equations (6), (10), (12), and (44) into (43),
one gets after integration with respect to p

27
1= (@) {(prc0ss + pasing) [ - (esing
—a,c0s¢) —-;L(ley +p2J iy )c0s
4
_—;r'“(pl‘]xy +p,J,)sing —‘6?(0“25) ([P (As+Ag)
+Py(Ag— A)lcosSo+ [py (A + Ag)

+ DA~ Acp)linss) | 45)
Considering now the functional I as a function of p, and p,,
the extremum conditions
ol oI
—=0, —=0
ap, op;
give two linear algebraic equations with respect to the
unknowns p; and p,. The complete solution is pretty cumber-
some. Here, we present the final result for the coefficients 4,
and A, which are valid only for domains having at least one
axis of symmetry, and the central principal axes taken as the
coordinate axes
321, 327
h =237 = s hy=5ms : (46)
34T (1 +1,) 342 T,(1+1,) .
where the correction terms
= (Bc4"Bc6)(A04 _Acé)
* 427l J,

— (Bc4 +Bc6)(Ac4 +Ac‘6)
42xl,J, ’
(47)

4 y

and

27 2r
B= (a(¢)) cosbgp dp, B, = (a(¢)) cosde do
0 0

Journal of Applied Mechanics

The main reason for this is a jump in the value of the coeffi-
cients u, and 5, when ¢ is very small. The following rule of
thumb may be suggested for the user wishing to improve the
accuracy: when the value of the correction coefficients 5, and
7, does not exceed a small percentage of unity, this generally
means an improvement in accuracy, otherwise one should not
use formulae (46).

It is worthwhile to give the solution due to (45) for the case
when the domain of contact has no axis of symmetry, and only
the first harmonic of the displacements w, is taken into con-
sideration. The result is

- Oy (CZZIxy - clzl,\') + 5% (Clzlxy _CZZIy)

Py

2
CuCap—Cp
(48)
_ Oy (cll[x _chIxy) + @, (C121y ——clllxy)
2= 2
C11€2 —Cyy
where

TH TH

cy; =—2—(Jy1y +Jly)s € =T(Jxlx +Jy 1),
TH

C2 :T(ny(lx+1y) +1, (J,+J,))

Formulae (48) look different from the equivalent set (15)
derived earlier. In the absence of any numerical data related to
a general domain, it is impossible to say whether formulae (48)
are more accurate than (15), but they are definitely more com-
plicated. It is noteworthy that in the case of a domain with an
axis of symmetry both (48) and (15) simplify to the same equa-
tions (18).

Conclusion

Formulae (22)-(23) give a simple and effective solution to
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the problem of a flat inclined punch of arbitrary planform on
an elastic half-space. Their high accuracy is confirmed by
numerous examples. One can notice a certain similarity be-
tween the formulae derived and those related to the Saint-
Venant theory of bending. This similarity will become more
evident if, for example, we rewrite equation (20) in the form

e e )

2[a2 @) _pz] 1/2

We think that this similarity is not a pure coincidence since the
method used in this paper can also be called semi-inverse. The
method can be developed further into a complete Saint-
Venant type theory of elastic contact problems which will
combine the simplicity and the accuracy sufficient for a prac-
tical engineer. The case of a curved punch will be considered in
the third part of this project. Results of this paper are useful
for the solution of mathematically similar problems in the
other branches of engineering science (Electrostatics, Fluid
Mechanics, Acoustics, Heat Transfer, etc.)
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The Poisson Function of Finite
Elasticity

The Poisson function is introduced to study in a simple tension test the lateral con-
tractive response of compressible and incompressible, isotropic elastic materials in
Sfinite strain. The relation of the Poisson function to the classical Poisson’s ratio and
its behavior for certain constrained materials are discussed. Some experimental
results for several elastomers, including two natural rubber compounds of the same
kind studied in earlier basic experiments by Rivlin and Saunders, are compared with
the derived relations. A special class of compressible materials is also considered. It
is proved that the only class of compressible hyperelastic materials whose response
Junctions depend on only the third principal invariant of the deformation tensor is
the class first introduced in experiments by Blatz and Ko. Poisson functions for the
Blatz-Ko polyurethane elastomers are derived; and our experimental data are
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reviewed in relation to a volume constraint equation used in their experiments.

1 Introduction

Isotropic, linear elasticity theory is characterized by two im-
portant physical constants: Young’s modulus and Poisson’s
ratio. It is well-known that their definitions are based upon the
simple tension test!; and, for a specific homogeneous,
isotropic and linearly elastic material, both may be found
from this experiment (Love, 1927). We recall that Poisson’s
ratio is determined from kinematical measurements alone, and
when the material is known to be incompressible it has the
value of 1/2.

In isotropic, nonlinear elasticity theory, the traditional
material constants play a less important role, but their use in
characterization of the mechanical properties of highly elastic
materials certainly is of no lesser importance. However, in this
case, the material response generally is not described by con-
stants; rather, it is represented by three scalar-valued func-
tions Br =By (I}, I, I) of the three principal invariants f; of
the Cauchy-Green deformation tensor B so that the principal
Cauchy stress components ¢, are determined by

Le=Bo+BIN+Bo N2, k=1,2,3, (1.1
(Truesdell and Noll, 1965). Herein A2, the squared principal
stretches, are the principal values of B; and I'= -1, 0, 1. For

an incompressible material, every deformation must satisfy
the constant volume constraint relation

'This does not preclude the use of other testing methods for the determina-
tion of these basic moduli. However, the Poisson ratio is defined in terms of
strains in a simple extension produced by simple tensile loading. Although the
same thing may be done in a simple compression experiment, a compression test
usually is avoided because of eccentric loading and stability problems. Of
course, compression data sometimes may be obtained by other means (See
Rivlin and Saunders, 1951, p. 270).
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NAL OF APPLIED MECHANICS.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y.
10017, and will be accepted until two months after final publication of the paper
itself in the JournaL oF ApPLIED MECHANICS. Manuscript received by ASME
Applied Mechanics Division, December 26, 1985.

Journal of Applied Mechanics

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject(t:cg)gglulgncens

B2 =N\NMN =1 (1.2)
and the constitutive relation (1.1) is replaced by
L=—pD+B N +B_ N2, k=1,2,3, (1.3)

in which p is an unknown hydrostatic stress, and the two
response functions 8y =B (I, I,) depend on the invariants in-
dicated. The determination of the response functions for par-
ticular materials is a principal problem in experimental
mechanics. Of course, it is reasonable to expect that the
response functions, or combinations of them, ought to be
related in some limited sense to the classical moduli of the
linearized theory; and it is natural to ask how the usual
physical parameters may be characterized in the general
theory. The connection of the response functions with the
Lamé constants is made in Truesdell and Noll (1965). This
note concerns the definition of the Poisson function and its
relation to the classical modulus known as Poisson’s ratio.

The Poisson function is defined in Section 2; and its connec-
tion with the simple tension experiment and its behavior under
certain constraints are described there. Some experimental
results are then presented for demonstration in Section 3. Ex-
perimental data for a urethane elastomer, a certain blend of
natural and synthetic rubbers, and two natural rubber com-
pounds of the same kind used in early experiments by Rivlin
and Saunders (1951) are compared with the universal Poisson
function obtained for incompressible materials. Although
every incompressible material has the universal constant,
natural state limit value 1/2, the converse is shown generally
to be false. A specific application to compressible materials is
illustrated.

It is proved in Section 4 that the only class of compressible
hyperelastic materials whose response functions depend on
only the third principal invariant of the deformation tensor is
the class first studied in experiments by Blatz and Ko (1962).
Their constitutive equation for foamed, polyurethane rubber
is shown to be related to the micro-structural theory of
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foamed rubbers due to Gent and Thomas (1959) and to the
well-known controversial, classical molecular theory of
elasticity (Todhunter and Pearson, 1960). Poisson functions
are derived for the Blatz-Ko polyurethane materials and our
demonstration data are reviewed in relation to an ad hoc
Blatz-Ko constitutive equation of volume control in simple
tension. It is shown that the natural state Poisson’s ratio for
every Blatz-Ko material is simply the ratio of the true lateral
contractive strain to the true extensional strain for finite
deformations and hence may be readily evaluated from
measurements of corresponding stretches over the entire range
of elastic extensibility of the material in a simple tension ex-
periment. Discussion of some additional related literature is
reserved for the end.

2 The Poisson Function

It is easy to show from the constitutive equation for
isotropic, linearly elastic solids that a simple tension produces
a simple extension provided that the shear modulus g, #0 nor
o, and Poisson’s ratio »,# — 1 nor o. In fact, on physical
grounds, one usually requires co>u, >0and 1/2=»,>0; and,
in any case, v, > — 1 is necessary for material stability (Love,
1927). The corresponding result for isotropic, nonlinearly
elastic solids is not as transparent. Therefore, to begin, it is
necessary to recall Batra’s theorem (Batra, 1976) that for every
isotropic, compressible or incompressible elastic material, a
simple tensile loading

=T, t,=t,=0 2.1
produces a corresponding extensional deformation
N=A N =Ny, (2.2)
provided that the empirical inequalities
B,>0, B_;=0 (2.3)

hold (Truesdell and Noll, 1965). Actually, the same result is
obtained under the weaker condition that the Baker-Ericksen
inequalities hold.

With Batra’s result in hand, let us assume that a compressi-
ble material characterized by equations (1.1) and (2.3) is sub-
jected to a simple tension (2.1). Then the familiar Young’s
modulus is defined as the slope of the axial stress/axial stretch
function T=t; (\) evaluated at A= 1. However, its determina-
tion involves the further assumption that either of the identical
transverse stress equations (2.1), ; may be solved uniquely for
the lateral stretch as a function of the axial stretch. In other
words, (2.1), may be interpreted in a simple tension test as a
restriction on the response functions that defines a relation
between the longitudinal extension A= 1 and the lateral con-
tractions A, =\, < 1. Hence, their ratio,

A (V)

a(N)= N
defines one kind of lateral contraction function that derives
from (2.1), and (1.1). Subtraction of the second equation
from the first in (1:1) and use of (2.3) shows that in simple ten-
sion 0<o(A)=1. There exists the possibility that for some
response functions the same equations may exhibit several
solutions for A;(A\). We consider only those elastic materials
for which A;(A\) may be determined uniquely. When this is so,
we say that the extension is simple. Thus, if the empirical ine-
qualities are met, it is in this sense that a simple tension pro-
duces a simple extension in every compressible, homogeneous,
and isotropic elastic solid. In linear elasticity theory (Love,
1927), for example, the null relations (2.1), ; yield a unique ex-
pression for the ratio of the principal transverse contractive
and longitudinal engineering strains in terms of the Lamé con-
stants; and this classical squeeze-stretch ratio is commonly
known as Poisson’s ratio (L.ove, 1927; Todhunter and Pear-
son, 1960).

2.4)
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Recalling that the three principal engineering strains ¢, are
related to the principal stretches by e, =\, — 1, we may define
the Poisson function v(\) as the ratio of the lateral contrac-
tive strain to the extensional strain measured in a simple ten-
sion experiment; that is,

YN = & _ 1-N _ 1 )\a()\)’
€3 N1 A—1
wherein equations (2.2) and (2.4) have been used in the last
relation, Then, for general homogeneous and isotropic elastic
solids, Poisson’s ratio v, is defined as the value of this func-
tion in the undistorted, natural state where A= 1:

dn (N)

T an A=1
wherein the last of equation (2.6) follows from (2.5), provided
AN =1,

It follows similarly by Batra’s theorem that for the incom-
pressible material (1.3) a simple tension produces an extension
(2.2); and the constraint (1.2) determines uniquely the
function

@2.5)

v, =limit » () = , (2.6)

A =A"12, @.7)

Thus, a simple tension produces a simple extension in every in-
compressible, homogeneous and isotropic elastic solid, pro-
vided the empirical inequalities (2.3) hold. We have seen that
the condition (2.1), is essential to the determination of the
Poisson function (2.5) for an isotropic and compressible
elastic material. On the other hand, in view of equation (2.7)
and the arbitrariness of the stress p in equation (1.3), the con-
dition (2.1), in the case of an incompressible material is ir-
relative to the determination of the Poisson function, which
may be found from the kinematics alone. By use of equation
(2.7) in (2.5),, we obtain for every incompressible,
homogeneous and isotropic material the wniversal Poisson
function?

1
NN

Hence, we may conclude by (2.6) that for every incompressi-
ble, isotropic material Poisson’s ratio has the unique value
v, =1/2. The converse, however, is false, as we shall see in a
moment. It may be mentioned that the lateral contraction
function (2.4) for the incompressible case becomes
a(N) =N"%2; hence, (1) =1 in the natural state.

The value of Poisson’s ratio », is defined by equation (2.6);
hence, clearly, »,=1/2 does not imply that the isotropic
elastic material need be incompressible. We shall illustrate this
by a counterexample of a compressible, isotropic material
whose Poisson function has the constant value »,=1/2. For
this purpose it is useful to recall the results of experiments by
Bell (1983) for certain homogeneous and isotropic metals in
finite (plastic) strain. These data support the following con-
straint in a variety of deformations:

rBY2 =N, + N, + Ay =3. (2.9)

A similar constraint #B =3 has been investigated recently by
Ericksen (1985) in a study of a constitutive theory for elastic
crystals. Details of these applications need not concern us
here. Rather, let us consider a homogeneous, isotropic elastic
material for which the constraint (2.9) may hold; and let it be
subjected to a simple tension to effect, under suitable restric-

p(N) = 2.8

-tions on the response functions, an extensional deformation

2The function (2.8) and its limit value have been described in different ways
by others (Claxton, 1958; Lindley, 1957; Pdsfalvi, 1982). However, of these, on-
ly Pésfalvi derived them in the context of the simple tension test for general in-
compressible, homogeneous, and isotropic hyperelastic materials; but Pésfalvi

. does nothing with the results. We thank Dr. Joseph D. Walter, Assistant Direc-

tor of the Firestone Central Research Laboratories, for bringing to our attention
the papers by Claxton and Posfalvi.
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Fig. 1 Comparison of extension data for two elastomers with the

Poisson function (2.8) for an incompressibie material in a simple tension
test

(2.2). Then use of equation (2.2) in (2.9) yields the unique sim-
ple extension relation 2\, (A\) =3 —A>0, which also implies
I=A<3. It thus follows by (2.5), and (2.6) that the Poisson
function for this special class of constrained, compressible,
homogeneous and isotropic elastic materials is a constant:
1

v(N) === (2.10)
for all Ne[1, 3). If, additionally, the material were assumed in-
compressible so that equation (1.2) must also hold for every
admissible deformation, it may be seen that only the trivial
deformation A; =\, = \; = 1 would be possible. For sufficient-
ly small deformations, however, the constraint (2.9) approx-
imates the incompressibility constraint; hence, for small
strains, the material behaves initially like an incompressible,
isotropic elastic solid.

It is interesting to observe that in every extension (2.2),
whatever may be the tractions required for its control in an in-
compressible material, the Poisson function (2.8) is indepen-
dent of the elastic response and is valid whether the material
be isotropic or not. However, this fact must be viewed with
caution. Control of the deformation (2.2) plainly depends on
the nature of the constitutive equation for the stress; and if the
homogeneous deformation (2.2) is assigned, this stress
distribution may be readily determined. But if the stress is
given, conditions needed to assure that the deformation (2.2)
is possible, as demonstrated above, must follow from careful
examination of the constitutive equation for the prescribed
loading situation. In particular, in a simple tension (or com-
pression) test, the kinematic condition (2.2), plainly cannot be
expected to hold for arbitrary directions in an incompressible,
anisotropic material. In such a material, even equal biaxial
loading may not produce (2.2). For an isotropic material, we
are assured by Batra’s theorem that simple tensile loading will
effect the deformation (2.2). Therefore, the formula (2.8),
though universal for the deformation (2.2), must be viewed in-
directly with regard for the nature of the material and of the
loading needed to control the deformation. Parallel remarks
apply to the Bell constraint (2.9) and the associated value
(2.10) for the Poisson function valid in every equi-biaxial
deformation (2.2).

On the other hand, contraction functions certainly may be
defined in terms of other experiments; and, for distinction,
these may be named apparent Poisson functions »,. For an in-
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Fig. 2 Comparison of extension data for two rubber compounds with
the Poisson function (2.8) for an incompressible material in a simple ten-
sion test. Data by Rivlin and Saunders (1951) for compound A also is
shown.

compressible material, the apparent Poisson function will be
the same as equation (2.8) in any experiment for which equa-
tion (2.2) holds; but the loading needed to control the defor-
mation will be determined by the particular constitutive equa-
tion for the material. In equal triaxial extension of a cube of
any incompressible material, the only solution is the trivial
solution Ay =X\, =\, =1; hence, for this case equation (2.8)
yields the apparent value », (\) =», =1/2. We are reminded,
however, that nonuniqueness of a pure homogeneous defor-
mation is possible in all around tension of an incompressible
material. Rivlin (1974) has shown, for example, that for a
uniform tension 7>0 on all faces of a cube of neo-Hookean
material for which 8, =pu, is constant and §_, =0, seven
possible states exist. The trivial state A; =\, =\, =1 is always
a solution for which », = 1/2. This state is stable provided that
T/u,<2. The state A\; =\,, 0<N; =A< T/pu,, and two others
obtained by cyclic permutation of the X\,’s, are stable
equilibrium solutions; and the apparent Poisson function is
also the same as (2.8). The remaining three solutions are
unstable. Although each solution has the same apparent
Poisson function (2.8), it cannot be measured in these unstable
states. Other examples may be easily constructed.

3 Some Experimental Results

Experimental data obtained from at least two specimens of
each of three considerably different elastomers are presented
here. One is a polyether, polyurethane elastomer. Another is a
carbon-black reinforced, sulfur-cured blend of natural and
synthetic rubbers. A third variety is a natural gum rubber. The
procedure for obtaining the axial and transverse stretch data is
straightforward. Specimens having straight sides of length 42
mm and width of 6 mm were die stamped from thin sheets of
uniform thickness of 1 to 3 mm. Each sample was
quasistatically elongated in a tensile loading frame. The test
was stopped periodically to allow measurement of the
specimen width to the nearest 0.01 mm with a Gaertner tra-
versing microscope equipped with a digital readout. At that
time, the elongation was measured to the nearest 0.1 mm with
a linear variable differential transformer fastened to the
loading actuator. These techniques permitted reasonably ac-
curate determination of the transverse and axial stretches
suitable for demonstration purposes here. For the sake of
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Fig. 3 Comparison of stretch data for two elastomers with the incom-
pressibility condition A =A"" in a simple tension test (see equation

(2.7)

clarity-in diagrams presented below, not all the data values
collected will be shown.

It is seen that the Poisson function (2.8) for an incompressi-
ble material is a monotonically decreasing function for which
0<v(\)=<1/2in simple tension. The graph of equation (2.8) is
shown in Figs. 1 and 2 together with tensile test stretch data
for the three kinds of elastomers described above. It is seen
that the urethane follows the universal function very nicely,
particularly for axial stretches A\>1.5, roughly. Although the
data for the carbon-black reinforced blend of natural and syn-
thetic rubbers, as shown in Fig. 1, follows the trend of the
universal graph, its deviation at the larger deformations is evi-
dent. Two compounds of natural gum rubber of the same?
kind used in the basic experiments by Rivlin and Saunders
(1951) were fabricated from their recipes (see p. 285) provided
for compounds described as 4 and B. Figure 2 shows that our
compound A is exceptional in its comparison with the
kinematical relation (2.8), while our compound B, though
well-behaved, falls below and virtually parallel to the master
curve. The scatter in the data for small deformations was
typical for all the samples; and we feel no need to provide an
explanation for it. The dotted curves shown in Figs. 1 and 2
have an analytical basis which will be explained in the next sec-
tion; it suffices to mention here that these curves approximate
the best fit for the data. The extension data obtained by Rivlin
and Saunders for their compound A also is shown in Fig. 2. It
is found that these data, for the same reason noted later, fit
the universal relation (2.8). Our data for the same material is
essentially coincident with theirs, except at small deforma-
tions, as noted before.

The same data may be viewed differently in Figs. 3 and 4,
which emphasize the incompressibility relation (2.7) in simple
tension. The data are to be compared with the line whose
slope is one. The response appears to be about the same as
described for Figs. 1 and 2, except that the small amount of
scatter evident for the smaller stretches appears diminished in
Figs. 3 and 4. It is quite clear from both graphs that the data
for the urethane and the natural gum compound A fall
reasonably close to the kinematical function described;

3There was a minor difference; thie antioxidant nonox used by Rivlin and
Saunders (1951) was replaced by another hindered phenol type antioxidant,
tradename American Cyanamid A02246.
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Fig. 4 Comparison of stretch data for two rubber compounds with the
incompressibility condition )\% =\~ " in a simple tension test (see equa-
tion (2.7)). Data by Rivlin and Saunders (1951) for compound A4 is also
shown.

therefore, these materials are virtually incompressible. The
special rubber blend and the natural rubber compound B ex-
hibit almost incompressible response that we shall examine
again further on. The data for the Rivlin-Saunders compound
A is also shown in Fig. 4. However, it must be mentioned that
Rivlin and Saunders (1951) did not confirm by any tests
described in their paper that the incompressibility constraint
actually was obeyed by either compound they studied. Since
the incompressibility condition was used to compute from
measured values of A alone the values for I, provided in their
Table 6, it is not surprising that our calculation of values of A,
corresponding to their tabulated values for \ and I, results in
their data falling smack on the line in Fig. 4. The same applies
to Fig. 2. The representation of our stretch data in the univer-
sal plot in Fig. 2, however, is a genuine experimental result
that demonstrates the incompressibility of the natural rubber
compound A. The response of compound B is another matter
that will be discussed later.

4 Example for Compressible Rubbers

Let us consider a class of compressible, isotropic hyper-
elastic materials with strain energy function W= Ww(J,, J,, J;)
per unit undeformed volume, and whose response functions in
equation (1.1) depend on J, alone: Bp=pr(J;). Herein we
have introduced the invariants

Ji=I,=trB, L,=L,/I,=0B~", L,=1?=detF.  (4.1)

Then the following relations will be obtained for this
hyperelastic material (Truesdell and Noll, 1965):

B 2 ow
Bo(Js)————, B:(J3) = A
2 oW
6 (-’3)=“J—3 3-’2‘ 4.2)

Bearmg in mind the assumed functional dependence, it may be
seen that these relations will hold if and only if 20W/aJ, =
and 20W/0J,=0 are constants. Thus, introducing these in
equation (4.2) and writing dW/dJ, = W;(J;), we obtain the
response functions

5 B—\:_ﬁ

Bo= Willy), By = 7
3

4.3)
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It is known that 8,(1)—8_;(1)=a+B=p,, the usual con-
stant shear modulus in the undistorted, natural state of the
material (Truesdell and Noll, 1965). Thus, upon introducing
a=p,f and B=u,(1—f), where f is another constant, and
substituting equation (4.3) into (1.1), we reach the general
form of the constitutive equation for our compressible,
hyperelastic material:

T=W,(J)1+ (4.4)

Hofp k- Np
Jy Jy
This equation was first introduced in an altogether different
way by Blatz and Ko (1962). It may be seen from equation
(4.3) that the empirical inequalities (2.3) are satisfied for the
Blatz-Ko material if and only if p,>0 and 0<f<1. These
conditions were not noted by Blatz and Ko (1962); however,
they are essential in the biaxial deformation problems de-
scribed there. In order that the stress (4.4) may vanish in the
undeformed state where B=1, it is necessary and sufficient
that W;3(1)+pu,(2f~1)=0. Hence, by (4.3),, —pu,=<B(1)
<o

Experiments by Blatz and Ko (1962) on a certain compressi-
ble, foamed, polyurethane rubber revealed the specific
response functions

Bo=to, 0<B <<, B_1=—p,/Js, 4.5)

where 3, was considered negligible so that f=0, very nearly,
and W; =pu, =32 psi. Thus, in general terms, equation (4.4)
reduces to the following constitutive equation for the Blatz-Ko
foamed, polyurethane rubber:

T=p,[1-J; 'B-1]. (4.6)

For the simple tension (2.1), (2.2) holds and Jy;=NiA. It
follows that equation (4.6) yields

T=pu,(1=A2A"3), A ()=A"V4, @.7)

The extension, therefore, is simple. Application of equation
(2.5) delivers the Poisson function
I—A" 174

A—1
We thus find by equation (2.6) that the foamed, polyurethane
rubber (4.6) has a Poisson ratio », = 1/4, which is, in fact, the
experimental value found by Blatz and Ko. However, they
made no connection of their data with equation (4.8); rather,
they used a clever ad hoc rule described below to determine »,,.

The linearized form of equation (4.6) will be considered
next. First we note that E,=5u,/2 is the usual Young’s
modulus for this model, and for a sufficiently small engineer-
ing strain e, it can be easily shown that

B=1+4+2¢ J=1+06,

P(N) = 4.8)

4.9)

in which 6 = tre describes the small change in volume per unit
initial volume. Then, to the first order in ¢, equation (4.6)
becomes

2F

T= 5°[01+26]. (4.10)

We thus recover the linearized, uni-constant equation for
general isotropic, foamed elastic materials derived by Gent
and Thomas (1959) from a simple microstructural model con-
sisting of a network of thin extensible rubber cords connected
by rigid joints. It may be noted that equation (4.10) isthe same
equation obtained from linear, isotropic elasticity theory with
v, =1/4,1i.e., with equal Lamé constants A, =p,; it is the con-
stitutive equation of the controversial 19th century rari-
constant elasticity model that evolved from molecular theories
of elasticity due by Poisson and Cauchy (Todhunter and Pear-
son, 1960; Bell, 1973). On the contrary side, we are reminded
of Wertheim’s many experiments on metals for which he
claimed a universal average value v, =1/3. The rari-constant
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theorists and experimentists were careful always to exclude
from the uniconstant theory unusual materials that they
believed ought not to be treated as elastic; caoutchouc was an
example often cited (Todhunter and Pearson, 1960). It is
strangely coincidental that Gent and Thomas (1959) found in
their experiments on foamed natural rubber the average value
v,=1/3, as compared with their predicted universal value of
1/4.

There is a third empirical condition, 8, <0, that also should
be considered (Truesdell and Noll, 1965). Hence, G,(1)<0
with p,>0 holds if and only if f=(1/2), in which case
— 1, <Be(1)=<0 for (1/2)<f=<1. We see from (4.5), that the
Blatz-Ko foamed, polyurethane rubber model fails to satisfy it
(Beatty, 1984). It is possible, of course, that this results from
the fact that a foamed rubber is not a homogeneous, material-
ly uniform and isotropic continuum. Nonetheless, the test
data share good agreement with this model. It should be em-
phasized also that the data for the Blatz-Ko compressible,
solid polyurethane rubber material described below support
all of the empirical inequalities.

It is also interesting, though apparently not well-known,
that in the construction of their more general constitutive
equation (4.4), which essentially is designed to reduce to the
Mooney-Rivlin model when »,=1/2, Blatz and Ko (1962) in-
voked the following additional ad Aoc constitutive assumption
of volume control in a simple tension:

Jy=\"% 4.11)

It follows by Batra’s theorem that A; =\, in the simple ten-
sion; hence, equation (4.11) yields the unique relation

ANA)Y=A""0, “4.12)
Therefore, the extension is indeed simple. This must hold in a
simple tension of every Blatz-Ko material (4.4) for which (2.3)
holds. Thus, the Poisson function for every such material is
given by

1—-A""
A)=— 4.13
r(\) == (4.13)
It is readily seen that for small strains equation (4.12) may
be linearized to ¢, = — »,¢;; hence, the constant exponent », in

equations (4.11) to (4.13) is the classical Poisson ratio for the
material, Of course, the same thing derives from equation
(2.6). Thus, the occurrence of Poisson’s ratio », = 1/4 in equa-
tion (4.7), and (4.8) is not coincidental. Notice also that for
this case the value », =1/2 reduces equation (4.11) to the in-
compressibility condition (1.2) in simple tension.

A material whose response in a simple tension test fails to
obey the rule (4.12) cannot be a candidate for the Blatz-Ko
model. Therefore, when attempting to model the constitutive
behavior of an elastomer, the experimenter may find it helpful
to first confirm the volume control relation (4.12) by plotting
a graph of log(1/\,) against log A, which is a straight line of
slope »,. For illustration, the tensile test data for the
elastomers considered earlier are plotted accordingly in Figs. 5
and 6. A least squares fit of the data with straight lines
through the origin shows in Fig. 5 that the urethane has a
Poisson ratio »,=0.493, while the rubber blend satisfies
v, =0.468. Similar tests on a second urethane and a second
rubber blend, which differed from the others only slightly in
their formulation and processing, yielded the same basic
response with the respective values v, =0.463 and », = 0.459.

The data for the Rivlin-Saunders natural rubber compound
A are shown in Fig. 6. However, as noted earlier, because they
measured only A and, in effect, used the incompressibility con-
dition to compute \,, one should expect, as seen in Fig. 6, that
their converted data should follow perfectly the ideal line for
which »,=0.5. It is seen, however, that our corresponding
data for the natural rubber compound A4 also enjoys excellent
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Fig. 5 Best fit comparison of tensile test data for two elastomers with
the Blatz-Ko volume control relation (4.12), and evaluation of Poisson’s
ratio for the materials

correlation with the volume control relation for incompressi-
ble materials. The compound A4 yielded, among all the
elastomers we studied, the best fit correlation with », =0.499.
The natural rubber compound B, on the other hand, produced
in our tests and best fit », =0.466. The values of », found in
this manner were then used in equation (4.13), and the cor-
responding best fit graphs of their Poisson functions »(\)
were plotted in Figs. 1 and 2. Of course, the curves for the
urethane and the rubber compound A lay so close to the
master curve that we let this curve represent their behavior, as
shown therein. Although the elastomers for which »,#0.5,
approximately, may thus be viewed as candidates for a Blatz-
Ko constitutive model, considerable further evaluation would
be necessary to establish this.

Based upon their volume control relation (4.11), Blatz and
Ko graphed the straight line of log J; against log A and from
its slope 1—2», determined for their foamed, polyurethane
rubber the value v, = 0.25; but they apparently were unable to
apply the same method to their solid, polyurethane rubber. By
an altogether different and unrelated argument, they arrived
at the value v, =0.463. We encountered no serious difficulties
in our graphical evaluations of ratios of similar value for other
varieties of rubber based upon equation (4.12). Evaluation by
Blatz and Ko (1962) of the tension data for their solid,
polyurethane showed that f=1 and p,=34 psi. Thus, in
general terms, the reduced form of the Blatz-Ko constitutive
relation (4.4) for their solid polyurethane rubber may be writ-
ten as

T=W,(J;)1+

Ko
B, 4.14
7, 4.14)

subject to the further empirical inequality 8, = W;(J;)<0.

Finally, it may be observed that the true strain e, in any
direction k is defined by e, =log N,. Consequently, the volume
control relation (4.12) may be rewritten as

€y
p,=———,
[ e3

(4.15)

which reveals that in finite strain Poisson’s ratio for every
Blatz-Ko model is the ratio of the true lateral contractive
strain to the true extensional strain. Therefore, Figs. 5 and 6
actually are plots of the true transverse strain e; versus the true
axial strain e, in a simple tension test. This simple fact has ap-
parently gone unnoticed by others.
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Fig. 6 Best fit comparison of tensile test data for two rubber com-
pounds with the Blatz-Ko volume control relation (4.12), and evaluation
of Poisson’s ratio for the materials. Data by Rivlin and Saunders (1951)
for compound A also is shown.

5 Conclusion

The tensile test possibly is the most important among all
simple experiments used to characterize the phenomenological
behavior of solid materials; and its application to rubbery
materials provides an excellent opportunity for instruction in
some interesting aspects of nonlinear elasticity. With this ob-
jective in mind, some data for the so-called Poisson’s ratio
(sic) as a function of engineering strain for an unspecified rub-
ber material was illustrated by Coakman, Eastwood and
Evans (1966); however, they provided no explanation or
discussion of the phenomenon. This almost casual indication
of a substantial variation in the lateral contraction ratio for
rubber in finite strain prompted, we feel, an inaccurate criti-
que by Lindley (1967) a year later.

Lindley observed correctly that Poisson’s ratio is a material
constant, hence independent of the strain from the natural
state. But his subsequent remark that its definition is valid on-
ly for small strains, so that its use is inappropriate at large
strains, is imprecise. He naturally assumes that regardless of
the nonlinear constitutive description of the material, the
transverse strains in a simple tension test must be equal; and
based upon this assertion and the incompressibility of rubber,
which he justifies in terms of the bulk modulus rather than the
volume constraint for infinitesimal strains, he provides an
equation in terms of (possibly) finite engineering strains that
characterizes reasonably the data shown by Coakham et al.
(1966). We agree with Lindley that the experiment in
Coakham et al. and in our own Figs. 1 and 2 above, is an inap-
propriate method for evaluation of Poisson’s ratio for natural
rubber, though it may be an excellent demonstration in sup-
port of its incompressibility. However, since Poisson’s ratio
»,=1/2 for every incompressible, isotropic elastic material,
these data obviously are not intended for this evaluation in the
first place.

The fact that one can indeed define a Poisson function, or
some other lateral contraction function, that accurately
demonstrates the variation in the lateral contractive response
of elastomers over a wide range of deformation in a simple
tension test, as shown in Figs. 1 and 2, apparently is unap-
preciated by Lindley (1967) and ignored by Coakham,
Eastwood and Evans (1966). Of course, not every elastomer
need be incompressible; and based upon the Blatz-Ko volume
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control relation (4.11), it is seen in Figs. 5 and 6 that in special
circumstances the kinematical data for finite deformations
may be plotted in a manner that does allow for easy evaluation
of their Poisson’s ratio in the natural state. In fact, our equa-
tion (4.15), demonstrated by rough experiments, refutes
Lindley’s remark that use of Poisson’s ratio is appropriate on-
ly for small strains. Moreover, Anand (1979) has found that
equation (4.15) arises naturally in a linear theory of isotropic
elasticity that uses the true strain e=logB'/? as a deformation
measure for moderately large strains. He showed that
Hencky’s constitutive equation for the Kirchhoff stress shares
good agreement with a variety of experimental data for
moderately large deformations defined by stretches of roughly
1.3 to 1.4. Although it may be tempting to adopt equation
(4.15) as the definition of Poisson’s ratio for large deforma-
tions, we caution that this rule applies only to the class of
materials for which equation (4.12) holds in a simple tension
test. The Blatz-Ko material (4.6), in view of equation (4.7),,
the linear Hencky model (Anand, 1979), by definition, and all
others for which equation (4.12) may be valid, belong to this
class. The definition (2.5), on the other hand, extends to all
isotropic elastic materials that respect the empirical
inequalities.

Finally, we are reminded that in numerical work involving
elastomeric materials which often are assumed ideally incom-
pressible, a value of », close to 0.5 commonly is used to avoid
computational difficulties. But it may be useful to first
evaluate the actual lateral contractive response for the special
elastomeric material of interest. Indeed, it may happen that a
plot of the kind used in Figs. 5 and 6 may provide useful data
for a more appropriate and realistic estimate of Poisson’s
ratio for elastomers studied in numerical work.
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Introduction

The longitudinal shear problem is characterized by a single
displacement component normal to the x-y plane, and in-
dependent of the coordinate perpendicular to this plane. The
nonvanishing stress components are the shear stresses in the
x-y plane. In this paper we consider a semi-infinite elastic body
with an arbitrary shape and an infinite elastic body with a hole
under uniform longitudinal shear load. These bodies have a
boundary on which displacements are fixed at two parts. It is
assumed here that the material of these bodies is homogeneous
and isotropic. The exact solution of this mixed boundary value
problem can be obtained in closed form. In the analysis, the
complex stress function and a conformal mapping function
which maps these shapes into the inside or outside of a unit
circle are used.

The stress function for boundary condition of one fixed
part can be obtained in closed form, but for that of two fixed
parts the stress function contains an integral term which is dif-
ficult to integrate. However, the first derivative of this term
can be obtained in closed form which does not contain an in-
tegral term. Finally, the complex stress function is obtained in
its first derivative form.

Examples of stress distribution are shown for a doubly con-
nected shape with symmetry. As examples of a crack problem,
expressions for stress intensity factor are also shown.

Method of Analysis

A) Analysis of Semi-Infinite Elastic Body. A stress func-
tion is derived for a semi-infinite elastic body with an arbitrary
shape. The body has two parts of the boundary on which
displacements are given. Figure 1 shows the semi-infinite
region in the z plane and the unit circle in the ¢ plane. The
parts of the boundary on which displacements are given are

designated by M, and M,, and the sum by M = M, + M,. .

Similarly L = L, + L, designates the parts on which external
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Longitudinal Shear Problem for an
Elastic Body with Two Fixed

A semi-infinite elastic body with an arbitrary shape and an infinite one with a hole
under uniform longitudinal shear load are investigated. These bodies have a boun-
dary with two fixed parts. The respective complex stress functions are obtained in
closed form by using a conformal mapping function. Doubly connected elastic
bodies with symmetry can also be treated. Examples of the stress distribution and
expressions for the stress intensity factor are shown.

forces are given. I' designates M + L. Z, and Zy are end-
points of M, and Z- and Z, are those of M,.

A conformal mapping function which maps the semi-
infinite region into the unit circle is used (see Fig. 1). The ra-
tional mapping function is expressed as follows (Hasebe,
1979; Hasebe and Inohara, 1980)

n
Ev ) Ee g, (1)
I-¢ &2 G—¢

in which E, is imaginary if the semi-infinite region coincides
with the lower half of the z plane, and {; is a point outside of
the unit circle. { = 1 corresponds to infinity. The boundary of
the unit circle is denoted by T'. «, 83, v, and 6 correspond to
Z4, Zg, Zy and Zp.

Next, we show several basic expressions for the longitudinal
shear problem. Stresses 7,, and 7,,, the displacement w, and a
complex function ®(z) which is regular in the region obey the
following relations (Benthem and Koiter, 1973)

z=w({)=

aw ow
=G ax =G ay

Ty — i1, =GP’ (2),

w=[®(z) +®(2)1/2, )

where G is the shear modulous, the prime indicates differen- -
tiation and the bar indicates a conjugate term. The displace-
ment w is a solution of Laplace equation to satisfy the

Fixed parts
M e

B Ly

-1 0 1
Ly S

M2
_1 -Y
Z-plane ¢ -plane

A semi-infinite elastic body with an arbitrary shape and the unit

Fig. 1
circle
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equilibrium equation. The following expression is obtained
from the equilibrium of external forces:

Gl (£) — & (£)] =2i{{r,ds+Cy}, 3)

in which £ is a point on the boundary; 7,, is the longitudinal
shear stress on the boundary; s is the length along the boun-
dary, and the sense of s is positive when the region lies to the
left.

Introducing the mapping function w(¢), and putting & (z)
= ®(w()) = ¢(1), the following expressions are obtained:

2O +s@12
o (£)

Gl (o) —d(0)]=2i{[r,ds+C,}, @

in which ¢ is a point on the unit circle. If stresses 7,, and 7, are
components for the curvilinear coordinates expressed by the
mapping function, the relations among 7,,, 74, 7,,, and Ty A1,

Ty =ity =eP (1, —i1,), P :%% . ()

The boundary condition is expressed from equation (4) as
follows:

Ty —iT,=G

¢ (a)+8(a)p(0) —d(a) =f(0), 6
where

0 onL
6(a) =
-2 onM

When equation (6) is multiplied by do/[27i(c— {)] and in-
tegrated along I, the following expression is obtained:

2i{fr,ds+Cy}/G onL
» flo)=

—2w onM.

G R
8= |, T do=M(}) +40)

_ 1 Sf(o)
M(g)_% SP s do. 9

The solution of equation (7) is obtained as follows (Mikhlin,
1964).

M(o)
M x(0)(c—Y)

¢(f)=M(§)—X(‘.°)S
e

1

do+P()x(9), ()]
where

x(H)=E-a) 2= (=72 (;-8)'7,

(s 257 =1).

x({) is a Plemelj function chosen so that displacements are
continuous at «, 3, v, and 8. P({)x ({) is a homogeneous solu-
tion of equation (7). Equation (8) is a general solution when
arbitrary displacements and external forces are given.

When two parts of the boundary are fixed under uniform
longitudinal shear load as shown in Fig, 1, the stress function
¢ ({) is obtained as follows:

() = o () + o1 (D). ®

¢ () is the stress function which determines the uniform
stress state at infinity, and from equation (4)

=T
o () = G w({). (10)
Boundary conditions are,
f(e)=0 onL;, f(o)=0 onM,
f(o):Zi% oan, f(o)=0 onM, ()

C,, is a resultant force on M. In equation (11), we can also
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take f(o) =2iC,/G on L, and f(0)=0 on L,, and then C,
represents a resultant force on M,. If we substitute equations
(9), (10), and (11) into equation (6), ¢, ({) can be obtained
from equation (8). Then ¢ ({) is obtained from equation (9) as
follows:

_To By x(© G
qS(()-———G =t XD + G F(¢) + Const,
T =
y=¢ X -0
F(¢) =1 - do.
D= SMX(G)(G—K’) oW

¢ ({) has to satisfy 7,, — 74 as {— 1, and the resultant force on
M has to be equal to zero. Therefore, P({) in equation (8)
equals zero, and the constant term in equation (12) is deter-
mined from the condition on displacement. The integral in
F({) of equation (12) looks difficult, but the first derivative
¢’ (¢) of the stress function ¢({) can be obtained by the
following procedure. Looking at equation (12), ¢({) does not
contain E, and {, except E, in equation (1). Hence ¢ ({) for a
semi-infinite elastic body with perfectly flat plane and for that
with an arbitrary shape are the same; however, E,, i.e., the
coefficient of 1/(1 — ¢{), for each shape has to be used in ¢ ({).
First we find &’ (z) for a semi-infinite elastic body with a
perfectly flat plane. Then ¢’ ({) for a semi-infinite elastic
body with an arbitrary shape can be obtained from &’ (z), and
F’ ({) can also be obtained.

The semi-infinite elastic body is in the region of the lower
half of the z plane, so the boundary is on the x axis. The
uniform longitudinal shear 7,, = 7, acts at infinity. Boundary
conditions are expressed by using equation (2) and analytic
continuation for stress-free boundary,

B ()48 - (6) =2 onM
ax

q>'+(g)—¢>'—(g)=—2i% onlL (13)

where £ is a point on the x axis. The solution to the Riemann-
Hilbert problem of equation (13) is

Y(z) S f(€)
2w Jr Y(£)(§—2)

®'(2)= dt+0Q(2)Y(2),

(14)
Y(2) =(2-24) 2(@2~2p) "' (z—2c) "z ~2p) "1,

in which f(£) equals 2(dw/0x) on M, and -2ir,/G on L.
Y (z) is a Plemelj function which is chosen so that the stresses
are discontinuous at z,, 23, Z¢ and zp, and the branch is
chosen so that z2Y(z)—1 as z—o. Q(z)Y(z) is a
homogeneous solution of equation (13).

The desired stress function is expressed by &' (z) = ®,’ (z)
+ &,’(z) where ®,’ (z) gives a uniform stress state at in-
finity, and @4’ (z) = 7,/G by equation (2).

Substituting the boundary condition f(£) = 0 into equation
(13), the boundary condition for ®,’ (z) is given and ®, ’ () is
given by equation (14). Q(z) is a polynomial expression of se-
cond order, since the stress is 7, at infinity. Consequently
$’ (z) has the following form:

<1>'(z)=[——g— z2+b1z+bo} Y(z), (15)
in which b, and b, are coefficients chosen to satisfy the condi-
tion of resultant force at infinity and relative displacement of
parts M, and M,. ¢’ ({) can be obtained from equation (15)
as follows: the mapping function which maps the region in the
lower half of the z plane into a unit circle is expressed by
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Fig. 2 An infinite elastic body with a hole and the unit circle

E, _E,
1-¢ 2

Substituting equation (16) into equation (15), ¢’ ({) can be
obtained from &' (z) = ¢’ ({)/w’ ($):

’ __To_ D, D,
¢’ ()= G Eh{(1—§)2+1—§' 0}

z=w({)=

(16)

Y
(1)

» (7

where

YO =E—a) =B A (E—y) T A(E=8) T

For convenience (7,/G)E, is put before the bracket, as
shown in equation (17). Dy, D,, and D, are obtained by the
following procedure: D, = 1 is obtained from ¢'(1)/w’(1) =
7o/ G, since the stress is 7, at infinity. D, can be obtained from

[(1-1)2e "(§)1{=1 = Osince the resultant force is equal to zero
at infinity:
D)= l(1+.1+1+1) (18)
o2 \1—a  1-8  1—y 1-8/°

Dy can be obtained from the condition that the relative
displacement of two fixed parts M, and M, is equal to zero
and the part L, is a free boundary. From this condition and
equation (4), the following expression is obtained:

Y

(1 =4(8) = ¢’ (1)do=o0.

We can take another part between o and § instead of 8 and
v. Equation (19) is integrated along the arc on the unit circle.
This integration is transformed into a real integral by using the
transformation ¢ = Ey/(1 — o) — (E,/2) in which Ej is an ar-
bitrary imaginary number. Hence Dj is expressed as follows:
I+ E,(1+D)I(1) 1 D,

E21(0) 4 27
where 1(2), I(1), and I(0), are real integrals:

tc o
= er@a =" ma,
tp £p

(19

Dy = (20)

£c
10)= SE Y* (£)dE,
B
in which

Y*(E)=(E—£4) 72 (E—£p) V2 (E—Ep) " VH(E—Ep) 12
1 1 1 1
$A=E°<1—a _T>’ £?=E°<1—B ——2")
1 1 1 1
SC=E"<1—y —T)’ éDZE"(l—a _T>'
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To avoid complication, the derivations of I{2), I(1), and I(0)
are omitted, but these contain elliptic integrals in general. In a
practical calculation, it is necessary to pay attention that the
modulus of elliptic integral k? does not exceed 1. When the
region and the fixed parts are symmetric to the y axis, i.e., &p
= —§,, k- = —£p, then Dy is simplified as follows:

b () [0

in which

(2]

oo [_(_1+B)(1-oz) ]2
1-8)(1+aw)

K (k) and E(k) are complete elliptic integrals of the first and

second kind. Of course we may derive the expression by using

v and ¢ instead of o and B.
Thus ¢’({) is obtained as follows:

,()_TOE{1 __L(1+1+1
¢ ()= En 1-9 2 \l-a 1-8 1-v
1 1 y(£)
+1—a)1—;+D"} O 22)

where D, is given by equation (20), or by equation (21) for the
symmetric case. Equation (22) is the solution for the semi-
infinite elastic body with an arbitrary shape. As mentioned
previously, E, must be given by the coefficient of the term
1/(1 = ¢{) in the mapping function for each shape.

When the first derivative w’ () of the mapping function is
given for the desired shape, stresses can be obtained by the
first expression of equation (4). In this case the mapping func-
tion need not be a rational one. When the shape is polygonal,
w’(¢) is easily obtained from the Schwarz-Christoffel
transformation,

Next F’ (¢) is obtained as follows: because equation (22) is
equal to the first derivative of equation (12), F’ ({) can be
obtained,

1 1
F'(§) =B[§‘2——2— (a+6+7+6)§‘+—2— (a+B+y+0)—1

D) (1=B) (1-N (1-9) [y), @)
in which B = =7,E,y(1)/C,, but B is not related to the shape
and loading condition because F'({) is not related to the shape
and loading condition (see equation (12)).

b) Analysis of Infinite Elastic Body. A stress function is
derived for an infinite elastic body with a hole of arbitrary
shape as shown in Fig. 2. The body has two fixed parts on the
boundary. A rational mapping function which maps the
physical region into the outside of the unit circle is expressed
as follows (Hasebe and Ueda, 1980; Hasebe et al., 1984):

n

z2=w()=Ef+ E Ex
i1 Sk

in which ¢, is a point inside the unit circle. The uniform
longitudinal shear load in the direction A is considered. We
assume the desired stress function ¢({) = ¢4 () + ¢, ({) in
the same way as for the semi-infinite body. Then ¢,({) =
70¢ M@ ({)/G, and the boundary conditions are f(g) =
2iC./G on L, and f(o) = 0 on the other parts. C, represents
the resultant force on M,. Using these expressions and equa-
tion (24), ¢, ({) is obtained from equations (6) and (8). Hence

B({) is
o (1) =—- e

@4

+E_,,

Eo x|, G
¢ x(@  Gn
in which F({) is the second term of equation (12). Equation
(25) also does not involve E, and {. ¢’({) is given by

(2%)

F({) +Const,
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Fig. 3 Examples of analysis for a semi-infinite elastic body
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Fig. 4 An infinite elastic body with a crack on a rim of a circular hole
and the unit circle

substituting equation (23) into the first derivative of equation
(25). In this case, undetermined constant BC,./Gw is deter-
mined by the stress condition at infinity, ¢’ (®)/w’ (o) =
e~™ 7,/G. Finally ¢’ ({) leads to

WA T
e

) 1
+% e_,)\Ecig-Z_T (a+6+’y+6)§‘}y(g‘)

y($)
¥0)

. 1
+lG°—{e-'*Ec—ef*Ecy(0)} {—2—-(a+ﬁ+y+5)~ 1

+Dy(1-a) (1-B) (1= (1=-0)|y(5).  (@6)

The constant D, which contains elliptic integrals is given by
equation (20), or equation (21) for the symmetric case. Equa-
tion (26) is the solution for the infinite elastic body with a hole
of arbitrary shape. The stress components can be obtained by
using the first expression of equation (4). The first derivative
of the mapping function w’({) and E, of the shape to be
analyzed have to be used. An irrational mapping function
could also be used.

Examples of Analysis

Examples are shown for the analysis of a semi-infinite
elastic body and an infinite one. First example is the semi-
infinite elastic body with a crack of depth ¢ as shown in Fig 3.
Figure 3(a) shows that two parts on the crack sides are fixed.

Journal of Applied Mechanics

0 3
Stress/ To

Tyt /To
®|
4 x/b

Txt / To

Fig. 5 Exampies of a stress distribution of the infinite elastic body
with a circular hole and a detouched crack: (a) ¢/b=2, d/b=1, e/b=0.5;
(b)yc/b=2,d/b=1,e/b=0

The stress function ¢’ ({) is given by equation (22) and the
mapping function is w({) = —V2iceV1+ /(1 -9 with E, =
—2ic. This shape is symmetric to the y axis and the loading is
antisymmetric. When the fixed parts are symmetric, i.e., zp =
z4 and Zo = zg, this problem is one of a doubly-connected
region as shown in Fig. 3(b). According to the position of the
fixed parts the problem also becomes one for Figs. 3(c) or
3(d). In these cases 8 = @ and v = § and D, of equation (21)
are used in equation (22) because of symmetry.

In Fig. 3(b) the stress intensity factor K at the crack tip
z4{=2zp) is given by using the singularity of the fixed edge

(=) 20" (D)])a
Vo' (a) )

Similarly the stress intensity factor at the point z-(=2zz) is

Km=x/‘27rie_ e QN

172
PR,y S (e N L) 18

(28)
Vo' (v)
and at the point C
Kyi=vie ¢ \—}L,f;ii 29)
where { = —1 corresponds to the point C on the z plane.

Further the problem of Figs. 3(b) or 3(c) are the same one as
symmetric two or three cracks arranged on a straight line in
the infinite elastic body. Sih’s solution (Sih, 1964) for the in-
finite elastic body concides with one of this paper.

Next an example is shown for an infinite elastic body with a
circular hole having a crack in the radial direction. The
mapping function which maps this shape into the outside of
the unit circle is given as follows (Bowie, 1956):

1 1
= w({)‘ Sty {5‘+—(—+ 1+ cos2k
1
+ (1 +—{—) (12 + 2082+ 1)1/2}, (30)
_ 2cosk _ 1
1—cosk ’ sin2«
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where c is the crack length and b is the radius of the circular
hole. The loading direction is along the y axis, i.e., A = #/2in
equation (26) (see Fig. 5). When parts of the sides of the crack
are fixed at symmetric positions as shown in Fig. 4, 1i.e., 2, =
z4 and zo = zp, the problem is that of a doubly connected
region as shown in Fig. 5. When the fixed part extends to the
circular boundary, the problem becomes one of an infinite
body which has a detouched crack for the circular rigid inclu-
sion with debonding. And if 8 = v, the problem becomes one
without debonding, with one fixed part. Also 8 = @andy = §
due to the symmetry and D, in equation (26) is given by equa-
tion (21). Figure 5(a) shows the stress distribution for a crack
on a rim of a circular hole and a detouched crack. Figure 5(b)
shows a circular hole and a detouched crack. Stress analysis
for an arbitrary loading direction A can be obtained by super-
posing the previous solution A = 7/2 on the solution of a
semi-infinite body with a semi-circular notch under uniform
shear (A = 0).

Stress intensity factors are given by the following expres-
sions for each crack tip in Fig. 5:

$'(1)
oS

where { = 1 corresponds to the point C. Using the singularity
of the fixed edge

Ky =V7iG at C, (31)

[(E=a) 2" (D)=

Ky = —N27G Ty A, (32)
and
— 172 4 7
Ky =vEmic =0T Oy 33)

Vo' (y)

When the crack length e = 0 (see Fig. 5), i.e., only a de-
touched crack, the stress intensity factors at C and D have
been shown in a figure by Yamada (1972). These values coin-
side with the values of equations (31) and (32).

Conclusion

The stress functions ¢’ () are given by equations (22) or
(26) under the uniform longitudinal shear load for semi-
infinite or infinite elastic bodies with two fixed parts on the

818/ Vol. 53, DECEMBER 1986

boundary. These functions are for arbitrary shapes. £, and E.
in respective solutions arethose of the shape to be analyzed.
An irrational mapping function could also be used. Hence if
the first derivative of the mapping function w’ ({) is given for
desired shape, stresses can be calculated by equation (4) with
equations (22) or (26). Putting 8 = v, equations (22) and (26)
become the solutions of the problem for one fixed part. The
first derivative F’ ({) of the second term in equation (12) is
given in the form of equation (23) containing undetermined
constants.

Examples for the doubly connected region with symmetry
were shown and the stress distributions were also shown. Fur-
thermore by using symmetry, solutions of a semi-infinite or an
infinite elastic body with a rigid inclusion, cracks, and de-
bonding can also be obtained.

Problems of heat conduction (temperature- heat flow) and
potential flow (potential-velocity) are mathematically
equivalent to the longitudinal shear problem (displacement-
stress) and so these mixed boundary value problems can be
analyzed in the same way as in this paper.
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Governed by Linear Equations

It is observed that the equations of motion governing finite elastic deformation are
linear if and only if the Piola-Kirchhoff stress tensor is linear in the deformation gra-

dient. Then the three components of displacement satisfy uncoupled linear equa-
tions. These equations are used to solve some problems of finite deformation.

1 Introduction

Finite elastic deformations, both static and dynamic, are
governed by equations which are usually nonlinear. However,
there is a particular material for which they are linear. For it
the equations governing the three Cartesian components of
displacement are uncoupled. The stress in this material is
linear in the deformation gradient, so the natural or stress-free
length of any element of it is zero. Therefore, it can represent
only a real material which has been stretched to several times
its stress-free size. Nevertheless for this material one can ob-
tain exact solutions of problems in finite elasticity. They can
be used, for example, to test numerical methods and other
approximations.

The present considerations extend to two and three dimen-
sions our previous analysis of the finite amplitude motion of
strings (Keller, 1959).

In Section 2 we present the equations of motion, con-
stitutive equation and boundary conditions for the particular
material. Then in sections 3 and 4 we solve some simple
problems for it.

2 Equations of Motion

Let x(p,f) be the position at time ¢ of the material point p
and let p(p) be the density at p when the body is in its reference
configuration x = p. Then the equation of motion satisfied by
X is

2

= VS +@,). @.1)

o(p) 3

Here f is the external force per unit volume in the reference
configuration and S is the Piola-Kirchhoff stress tensor. In an
elastic material S is a function of the deformation gradient
VX, of the form (Gurtin, 1981, p. 181, equation (15)).

S=(vx)S(vx)T(Vx),p].

The tensor § is symmetric so that S =S;.
Now (2.1) will be linear in x if and on]y if Sis linear in Vx,
so §= S(p) must be independent of (Vx)T(Vx):

S=(vx)S8(p).

2.2)

2.3)
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In the reference configuration vx=1I, so (2.3) shows that the
residual stress is S(p). In component form (2.3) is

8 =(8x:/9p;) S (D). 2.3")
Then (2.1) becomes
2
X -
p(p) Y =V [(VvX)S(p)] +(p.1), 2.4
or in component form
x;, 4 x; -
Y = e S ]+ (D, 1). 47
ooy o= o ) £ 2.4

We observe that (2.4) is linear and the ith equation involves
only x;, so the three equations of motion are linear and un-
coupled. If we had required that the equations be uncoupled,
rather than that they be linear, we would have been led to the
same results (2.3)-(2.4") in view of the form of § in (2.2).

For a homogeneous material S and p are constants so (2.4)
and (2.4’) have constant coefficients. If the material is also
isotropic §=2ul, or in components Skj =2udy;, where p is a
constant. Then (2.4) becomes

2

a YR
This is just the wave equation with propagation speed
¢=2u/p)!”? and forcing term f, which is satisfied by each
component of x.

There is a strain-energy density o( Vx,p) corresponding to
(2.3), so the material is hyperelastiC‘

S,,(p)

—2uAx =f(p,?). (2.5)

ax,  oxg
ap;  dp; '
For a homogeneous isotropic material this becomes a sum of

sauares:
d ax, \?
o7 =p(5-)
ap;

i

o(Vx,p)=— (2.6)

@7

The traction #;(p,f) at a point on the surface of a body with
unit normal 7, in the reference configuration, is from (2.3),

ax;
60,0 = () Sywn; 9
When the material is isotropic, (2.8) reduces to
0x;
L®0 =20 () g 2.9
opy

The right side of (2.9) is just 2u times the normal derivative of
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x;. We see that in (2.8) and (2.9) only one component x; occurs
in each equation. Thus if the #; are prescribed, (2.8) or (2.9)
become boundary conditions on the x; and these conditions
are uncoupled, just like the equations of motion are.

If the position of all or part of the body surface is a given
function x{¥ (p,f) then on that surface x; must satisfy the
boundary condition

xi(p,5)=x(p,1). (2.10)
Again the conditions (2.10) for the different x; are uncoupled.

3 Static Solutions for Cylindrical and Spherical Holes

Consider a circular hole cut out of a circular sheet of
homogeneous isotropic material, so that an annulus remains.
Let the inner and outer radii of the annulus be @ and b>g¢,
respectively, in the reference state. Suppose that the outer
boundary is held fixed, while the inner boundary is stress-free.
We shall find the equilibrium configuration of this annulus.
The result applies equally well to a three dimensional cylinder
with a concentric cylindrical hole. We shal write R= Ip! and
r=Ix1.

When f;=0 and 3%x,;/3> =0 the equation of motion (2.5)
becomes Laplace’s equation

Ax;=0,a<R=<b,i=1,2. (3.1)
The inner boundary condition (2.9) becomes, with ¢, =0,
G R=g, i=1,2. 3.2)
oR
The outer boundary condition (2.10) becomes
X =bcos b, x,=bsinfatR=>b. 3.3)

The solution of (3.1)-(3.3) for x, and x, is readily found to
be (x;,X,) =r(R)(cos 8, sin §) where r(R) is given by

r(R)y=(1+a*/b*)"Y(R+a*/R) 3.4

By setting R=a in (3.4), we find that the equilibrium radiuis
of the hole is r(a)=2a(l+a?/b*)~'. Thus r(@)>a and it in-
creases from @ when b/a=1 to 2a as b/a tends to infinity.

Let us next consider a sphere of material with a concentric
spherical hole in it. The formulation is the same as that above
with i=1,2,3 and with (3.3) replaced by

x=bw, R=0. (3.5)

Here w=p/R is a unit vector. The solution of (3.1), (3.2), and
(3.5) is x =r(R)w with

HR) = (1+a*/2b%) (R +a*/2R?), 3.6

The equilibrium radius of the hole is r(a)=3a/2
(1+a*/2b%) 1. Again it exceeds @ and increases from @ when
b/a=1 to 3a/2 as b/a tends to infinity.

For a balloon the boundary condition is ;= —pn; at R=a
and t;=0 at R =b, where p is the pressure in the balloon. The
solutions for cylindrical and spherical balloons are as above
with r(R) given by

PR (1+bY/RY) paR
riR)= 2 (b —1)  2ub—a)’ 3-7)
3 3
HR) = PR (1+b°/2R%) paR 3.8)

20 BB —1) 4plb—a)

The second forms apply when the wall of the balloon is thin
compared to its radius, i.e., b—a < <a. They show that then
the spherical balloon has half the radius of the cylindrical
balloon for the same internal pressure.

4 Expansion of a Spherical Hole

We shall now consider the dynamic problem of the expan-
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sion of a spherical hole in an unbounded homogeneous
isotropic medium. At ¢=0 the medium is at rest and a hole of
radius a is created, or the surface of a preexisting hole is
released. We wish to find the subsequent motion of the
medium, and especially the radius of the hole as a function of
time. As ¢ increases, the radius should tend to the static value
3a/2 given in Section 3. With f;=0, (2.5) becomes the
homogeneous wave equation

1 9%

i3 =0. 4.1
4 c? EYE ( )
Initially we have
dx;(p,0
x{(p,0) =X,~,—-'b(l;—)= 0, R=a. (4.2)
At the surface of the hole ¢; =0 and (2.9) becomes
ax:
xi =0, R=a. 4.3)
oR

To solve this problem we choose the polar axis along p; and
set p; =R cos 6 and x; = f(R,!) cos 0. Then from (4.1) it follows
that ris of the form

w2 [FE=0]

{ere fis arbitrary and we have omitted the incoming solution,
since the initial conditions (4.2) require it to vanish. We see
that (4.2) will be satisfied if

AR—ct)=0forR—ct=a.
Upon using (4.4) in (4.3) we get

4.4

(4.5)

-—l—f”(a—ct)—izf/(a—ct)—k%f(a—ct):—1. 4.6)
a a a

The solution of (4.6) must satisfy (4.5) and also make r(R,?)
continuous, which requires that f* (@) =0. The unique solution
satisfying these conditions is

a | ek-ara z—a 7r)
= +— —1], <a, 4.7
f@) 2 [cosw/4 COS< a 4 ¢ “.n
and f(z)=0 for z=a.
Now (4.4) yields
a3 a3 ] e(R——ct—a)/a
R,)=R+ + -—[
r®0) 2R? T 2177 3R R
R—ct—
cos<#+—;—r—)], R—ct—a<0 (4.8)

rR,5H=R, R-ct—az=0.
Then x(p,)=r(R,Hw. We see from (4.8) that as ¢ increases,
r(R,f) tends to R+4®/2R?. This is the solution of the static
problem, given by (3.6) with b/a= o. The radial coordinate r
of each particle, including the surface of the hole, tends to its
limit via a damped oscillation.
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Detailed calculations are presented for strain cycling in a homogeneous deformation
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that can be sustained by a biaxial state of stress in thin-walled specimens of OFHC
copper. These calculations are made with a set of relatively simple constitutive equa-
tions within the framework of the strain-space formulation of plasticity. The

predicted theoretical calculations, carried out in the context of small deformation,
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are in good agreement with corresponding available experimental results for satura-
tion hardening and erasure of memory in two-dimensional strain cycling. Also, with
the use of the calculated results, a scalar quantity that characterizes strain-hardening

is plotted as a function of plastic strains. Such plots are likely to be useful for com-

putational purposes.

1 Introduction

In an interesting series of experiments pertaining to two-
dimensional strain cycling in plasticity that can be sustained by
a biaxial state of stress resulting from combined tension-
compression and torsion in thin-walled specimens of OFHC
copper,! Lamba and Sidebottom (1978a,b) observed the
following three phenomena:

(a) The occurrence of saturation hardening after loading
from an undeformed state and cycling along a strain
path which is essentially an ellipse in the normal strain-
shear strain plane;

(b) the erasure of memory after the material has reached a
state of saturation; and

(c) the nature of the post-saturation stress response for
cycling in a relatively ‘‘complex” nonproportional
strain path.

With reference to the above two-dimensional strain cycling ex-
periments, our main objective is to examine the predictive
capability of a (rate-independent) theory of plasticity for-
mulated in a strain space setting with the use of special con-
stitutive equations employed previously by Naghdi and Nikkel
(1984). Also, by employing the strain-hardening characteriza-
tion which arises in the strain-space formulation of plasticity
(Casey and Naghdi, 1981, 1983, 1984a) and which is
represented by a scalar function ®, we calculate (over the do-
main of interest) the values of ® for the material used in the
experiments of Lamba and Sidebottom (1978a,b) and plot this
as a function of plastic strains. As in the experiments of Lam-
ba and Sidebottom (1978a,b), our calculations are carried out
in the context of small deformation.

In a previous paper (Naghdi and Nikkel, 1984) comparisons

IThe abbreviation OFHC stands for “‘oxygen-free high conductivity.”’
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were made between the predictions of uniaxial stress and
strain cycling in plasticity and corresponding available ex-
periments. The previous calculations (Naghdi and Nikkel,
1984) were carried out in a strain space setting by means of
special constitutive equations obtained on the basis of a theory
first formulated relative to stress space by Green and Naghdi
(1965, 1966) and subsequently reformulated relative to strain
space by Naghdi and Trapp (1975a), along with some addi-
tional developments pertaining to loading criteria and harden-
ing characterization by Casey and Naghdi (1984a,b).

Description of the Strain Cycling Problem. As in the ex-
periments of Lamba and Sidebottom (1978a,b), we consider
the combined tension-compression and torsion of a thin-
walled circular cylinder whose axis is in the x, direction. As
usual, we neglect the variation of stress and strain in the radial
coordinate direction so that the stress and strain components
referred to cylindrical polar coordinates are then independent
of position. We denote the axial stress and axial strain, respec-
tively, by s,, and e,,; and similarly denote the shear stress and
shear strain, respectively, by s, and e;.

The analysis in Section 3 and the procedure for calculations
in Section 4 require a reduction of the general loading criteria
since not all components of strain (and strain rate) are known
a priori in the context of the particular experiment considered.
This reduction is discussed in Appendix A and the results are
employed in all calculations of Section 4. Our calculations do
not include those appropriate for two-dimensional stress cycl-
ing, even though it is relatively easier to calculate such cycles
for materials exhibiting hardening behavior.?

In the remainder of this section, we discuss in some detail
the main features of the calculated results. A summary of the
calculations can be arranged in three groups corresponding to

2This is because for materials exhibiting hardening behavior the loading
criteria in stress space may be used (Casey and Naghdi, 1984b), and for two-
dimensional stress cycling all of the components of stress are prescribed in con-
trast to two-dimensional strain cycling where some of the components of strain
are not known a priori.
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Fig. 1(a) Comparison of the stress trajectory in sy, —s45 plane
{measured in MPa) between the theoretical prediction ( ) and the
experimental data (-~-) from Lamba and Sidebottom (1978a) for OFHC
copper; the numerical calculation of the theoretical trajectory was ef-
fected with the use of equations (3.4), (3.15), (3.16), and the constants
(4.1). The prescribed strain path in the e,4 — ¢4, plane is shown in the in-
set. After initial elongation from the undeformed state to point Q, the
nearly elliptical path QRSTQ is repeatediy traversed. Whie the path in
the e4 =e4 plane is cyclic, the remaining nonzero components of
strain do not necessarily return to the same values at the end of each cy-
cle. Comparison with the experimental data is shown for the first few
cycles only since the portion of the trajectory for additional cycles
would crowd the figure.

the nonproportional strain cycling experiments of Lamba and
Sidebottom (1978a,b) as listed in the opening paragraph of
this section. The first experiment pertains to saturation
hardening after loading from an undeformed state, and the se-
cond two concern the behavior after the material has reached a
state of saturation. In each case, the strain path in the e;; — e,
plane is the input to the problem, and the stress response (s,
and sy,) is calculated from the relevant constitutive equations.
A graphical presentation of the calculated stress trajectory in
the s;; — s, plane alone does not give all the relevant informa-
tion, unless a knowledge of the correspondence between all
points of the stress trajectory and all points of the input strain
path in the e;; —e,, plane is also known. It is, therefore,
necessary to also plot the calculated results in either the
sy —ey;, or the s, —e;, plane. For clarity’s sake, we have
presented the calculated results in both the s, —e,, and
§y; — €y, planes.

Saturation Hardening. For two-dimensional saturation
hardening, we prescribe ¢, and e,, parametrically as func-
tions of time such that in the e;; — e, plane the strain path is
as depicted in the inset of Fig. 1(@). This corresponds to uniax-
ial tensile loading from the undeformed state until the axial
strain reaches the value 0.00635 (point Q in Fig. 1(a)) followed
by combined tension-compression and torsion controlled in
such a way that e;, and e, cycle in a counterclockwise direc-
tion around the nearly elliptical path in the inset of Fig. 1(a).?

3The actual experimental strain path in Fig. 3(a) of Lamba and Sidebottom
(1978a) is not perfectly elliptical. In the present calculations the portion of the
path in the upper half of the e —e), plane is specified to be the upper half of
an ellipse with vertices on the e;; axis at ~0.00623 and 0.00635 and a semiaxis
of 0.00531 in the e}, direction. The portion of the path in the lower half of the
ey — ey, plane is specified to be the lower half of an ellipse with the same ver-
tices on the ey axis, but with a semiaxis of 0.00588 in the ey, direction.
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Fig. 1(b) Comparison of the theoretical ( ) axial stress

response, measured in MPa, with the corresponding experimental data
(---) of Lamba and Sidebottom (1978a) for OFHC copper according to
the prescribed strain path in the inset of Fig. 1(a). Comparison with the
experimental data is shown for the first few cycles only, since the por-
tion of the curve for additional cycles would crowd the figure.
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Fig. 1(c) Comparison of the theoretical ( ) shear stress
response, measured in MPa, with the corresponding experimental data
(---) of Lamba and Sidebottom (1978a) for OFHC copper according to
the prescribed strain path in the inset of Fig. 1(a). Comparison with the
experimental data is shown for the first few cycles only, since the por-
tion of the curve for additional cycles would crowd the figure.

The strain components e;; and e;, were parametrically
specified to be sinusoidal differing by a 90 deg phase shift. The
calculated results for stresses are shown in Figs. 1(a—c) along
with the experimental curves for the first few cycles only, since
the portion of the trajectory for additional cycles would crowd
the figure. Figure 1{a) represents the stress trajectory and Figs.
1(b,c) are alternative representations of the calculations in the
sy; — ey, and s, — e, planes. Points corresponding to Q,R,S,T
on the prescribed strain path in the inset of Fig. 1{@) have been
labeled in Figs. 1(a-c) only for the portion of the path which
represents a cycle at saturation and not for prior cycles. These
results are in good qualitative agreement with the experimental
results of Lamba and Sidebottom (1978a). In agreement with
the experimental results, the theory predicts that saturation
occurs after about four cycles. The main differences between
the theoretical predictions and the experimental results are
that the predicted maximum shear stress at saturation (point R
in Figs. 1(a,c)) is slightly greater than the corresponding ex-
perimental value while the predicted maximum axial stress at
saturation (point 7'in Figs. 1(a,b) ) is slightly less than the cor-
responding experimental value. The reasons for these dif-
ferences are discussed in Section 5. One further point may be

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



mentioned with respect to Figs. 1(b,c). When some of the con-
stitutive response functions are linear in the variables (such as
generalized Hooke’s law for the linear elastic range), in a plot
associated with uniaxial loading the response exhibits a sharp
corner. This is exemplified by the beginning portion of Fig.
1(b) which corresponds to the strain path from the origin to
point Q in the inset of Fig. 1(a). On the other hand, corre-
sponding to the portion of the strain path QRS in the first cy-
cle (along which plastic deformation also occurs), because of
the presence of two components of stress the response is no
longer uniaxial and the beginning portion of the plot of the
response in the s, — e, plane in Fig. 1(c) exhibits a smooth
transition between a rising portion and a portion which is fair-
ly level.

Erasure of Memory. Consider next the erasure of memory
property observed by L.amba and Sidebottom (1978a) in the
case of OFHC copper. The phenomenon occurs when the
material has reached a state of saturation after strain cycling
along an elliptical path in the e;; —e;, plane. If subsequent
linear strain paths lie within the elliptical strain path (which
was originally used to reach the state of saturation), then cor-
responding to a given linear path in the e,;; — e, plane there is
a particular limiting stress cycle response in the s,, — s, plane.
This process is repeated as the material is cycled again along
the strain path. Lamba and Sidebottom (1978a) observed that
a larger cycle (not necessarily along a linear path) in the
e, —e, plane essentially erases the effect of any previously
traversed smaller cycles and returns the material to a state in
which the limiting stress cycle response corresponds to that of
the larger cycle. With the use of the linear strain paths BDB
and BFB (as the larger and smaller cycles) indicated in the in-
set of Fig. 2(a), a calculation leading to a state of saturation
was arrived at by first cycling in shear along B’ D’ B’ for four
cycles followed by cyling along B’ CD’EB’ for an additional
four cycles. Then, the effect of erasure of memory was

T
e

E
=
-0.01
-0.01 0 0.01
€
8
.l \
B
o ™.
o © \]
F
-100— 0
I | [ |
-200 -100 0 100 200
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Fig. 2(a) The theoretical stress trajectory in s44 — s, plane (measured
in MPa) calculated from equations (3.4), (3.15), and (3.16) for OFHC cop-
per using the constants (4.1). The prescribed strain path in the eq4 —e4o
plane is shown in the inset. Calculation for a state of saturation was ob-
tained by first cycling in shear along B'D’B’ in the ¢4-¢45plane for four
cycles followed by cycling along the elliptical path B’CD’EB’ for four
cycles. After this saturation was attained, the smaller path BDBFB was
repeatedly traversed. Only the portion of the stress trajectory which cor-
responds to the (post saturation) strain path BDBFB is shown.

Journal of Applied Mechanics

calculated by further cycling which alternates along BDB and
BFB. The results of calculations are shown in Figs. 2(a-c)
along with the experimental curves from Lamba and Sidebot-
tom (1978a, Figs. 5(b,c)), where for clarity only the portion of
the response corresponding to cycling which alternates along
BDB and BFB are indicated.* The erasure of memory
phenomenon is best seen in Fig. 2(c), where along the seg-
ment of path BD the effect of the path BFB has become
undetectable by the time the trajectory has reached point D.
Thus, the larger cycle BDB erases the material’s memory of
the previously traversed smaller cycle BFB. In addition, the
overall response is in qualitative agreement with the ex-
perimental results of Lamba and Sidebottom (1978a), while
the predicted shear stress is again higher than the corre-
sponding experimental results (Fig. 2(c)) and the predicted
compressive axial stress has a larger absolute value than the
corresponding experimental results (Fig. 2(b)). Also, the

41n Lamba and Sidebottom (1978a), at the point we’ve labeled D, the value of
the shear strain shown in Fig. 5(a) (the strain path in the axial strain-shear strain
plane) is somewhat different from its value shown in Fig. 5(&) (the experimental
results shown in the shear stress-shear strain plane). In prescribing the strain
path for our calcuiations, in order to compare with the experimental results we
specified the value of the shear strain at point D to be that indicated in Fig. 5(b)
of Lamba and Sidbottom (1978a).

200

100
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-100
-200 , I
0 0.005
€
Fig. 2(b) Comparison of the theoretical ( ) axial stress

response, measured in MPa, with the corresponding experimental data
(---) of Lamba and Sidebottom (1978a) for OFHC copper according to
the prescribed strain path in the inset of Fig. 2(a). Only the portion of the
stress response which corresponds to the (post saturation) strain path
BDBFB is shown.
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Fig. 2(c) Comparison of the theoretical ( } shear stress
response, measured in MPa, with the corresponding experimental data
(~~-) of Lamba and Sidebottom (1978a) for OFHC copper according to
the prescribed strain path in the inset of Fig. 2(a). Only the portion of the
stress response which corresponds to the (post saturation) strain path
BDBFB is shown.

slope of the calculated s,,—e,, curve in Fig. 2(c) during
loading along FB is different than on the corresponding ex-
perimental curve. Again, these differences are discussed in
some detail in Section 5.

Complex Nonproportional Strain-Path. Now, with
reference to the third experiment of Lamba and Sidebottom
(1978b), consider the predicted response for a ‘‘complex’
nonporportional strain path (using the terminology of Lamba
and Sidebottom) applied after the material has reached a state
of saturation. The state of saturation is attained in the same
way as discussed earlier in the preceding paragraph, namely by
cycling first in shear followed by cycling along an elliptical
path in the e, —e;, plane. After this, a path was prescribed
which returned e;; and e;, to the origin of the e¢,; —e;, plane
(point 0 in Fig. 3(a)) while at the same time the plastic strains
were returned to the value zero.’ Next let e, and e, be
prescribed parametrically as functions of time such that in the
€1 — €y, plane the strain path is represented by the linear
segments 0-1, 1-2, 2-3, . . . ,7-8 in the inset of Fig. 3(a). The
calculated results for stresses are shown in Fig. 3(a-c¢) which
qualitatively agree well with the experimental results of Lamba
and Sidebottom (1978b), Figs. 2(a-d) ). Moreover, the theory
again predicts the erasure of memory effect since as the path
0-1, . ..,7-8 in the inset of Fig. 3(a) is traversed a second
time, the stress path becomes indistinguishable from the first
time the path was traversed. Thus, the larger path 6~7-8 erases
the effect of the previously traversed smaller portion of the
path 1-6.

3This calculation was performed by prescribing a path unloading from the
elliptical path at a point such as B’ in the insert of Fig. 2(a) on which e,; =0 and
allowing reverse loading to take place until such a point where e’l’z =0. At this
point ef 1 has also become essentially zero which is again indicative of erasure of
memory. Reversing the direction along this path until point 0 in Fig. 3(a) is
reached results in only elastic behavior.
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Strain Hardening Behavior-—The Function ®. In view of the
fundamental role played by a scalar function & that
characterizes strain-hardening behavior of the material (Casey
and Naghdi, 1984a), we represent ® as a surface which exhibits
the nature of strain-hardening at any elastic-plastic state with
fixed values of the total strain components® e,; and e;,. The
surface in Fig. 4 is a plot of ® (defined in equation (2.10)) as a
function of the plastic strains ef, and ef, for fixed values of
the total strains ¢;; and e, prescribed in the course of calcula-
tions; in the plot of Fig. 4 the prescribed total strains are
specified to be e;; =e;, =0. For different values of ¢}, and e,
the surface represented by ® merely translates parallel to the
plane of ef, —e%,. A choice of the total strains, say (&;,,€;,),
specifies a particular surface and elastic-plastic states reached
by different strain paths ending at (€;,,€;,) will in general
correspond to different points on the surface ®. The outer
boundary of this surface (which has the smallest value of ®)
corresponds to the state of saturation, while the inner boun-
dary corresponds to the largest value that ® can take in the do-
main of interest. A further discussion of how the surface was
calculated is found at the end of Section 4. As is evident from
the plot in Fig. 4, & is always positive; and hence, in view of
the conditions for strain-hardening characterization (see for
example the conditions (8) in Naghdi and Nikkel, 1984), the
material always exhibits hardening behavior.” It also shows
how ® decreases with additional plastic deformation, taking
its largest value at initial yield and its smallest value at satura-
tion. The value of & is constant at both initial yield and
saturation.

2 General Constitutive

Equations

Background and Special

With reference to a strain-space formulation of plasticity
and for the special constitutive equations used previously
(Naghdi and Nikkel 1984), we include here a brief summary of
the relevant equations of the purely mechanical theory con-
tained in the papers of Green and Naghdi (1965, 1966),
Naghdi and Trapp (19752a), and Casey and Naghdi (1981,
1983).8

In the context of infinitesimal deformation, we recall that
the main ingredients of the rate-type theory of plasticity, in
addition to the total strain eg;, are plastic strain e%; and a
measure of work-hardening «. Also, no distinction needs to be
made between various measures of stress which we denote by
Skr. As usual, it is convenient to express the various con-
stitutive response functions in terms of the components of
deviatoric stress 74, and deviatoric strain v, , namely

Tk =Skr —§ bgp, T =0, @.1)

YrL =€xr —€ Ogys Yre =0,
with a similar definition for the deviatoric plastic strain %,
where §, €, and e denote the mean normal stress, mean nor-
mal strain, and mean normal plastic strain, respectively. For
materials which are isotropic in reference configuration and in
the presence of plastic incompressibility (é? =0), we specify
the stress response by generalized Hooke’s law and the loading

6A topographical representation of this kind was used recently in a different
context by Casey and Lin (1983).

71t should be emphasized that even though one component of the stress may
be decreasing during loading while the corresponding strain component is in-
creasing (e.g., as in Fig. 2(b)) the material is not exhibiting softening behavior
in two-dimensional cycling.

8 A more expanded summary is contained in Sections 2 and 3 of Naghdi and
Nikkel (1984).
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Fig. 3(a) Comparison of the stress trajectory in S11 —Sqp plane
(measured in MPa) between the theoretical prediction ( ) an the
experimental data (---) from Lamba and Sidebottom (1978b) for OFHC
copper; the numerical calculation of the theoretical trajectory was ef-
fected with the use of equations (3.4), (3.15), (3.16), and the constants
(4.1). The prescribed strain path in the e44 — e4o plane is shown in the
inset. Calculation for a state of saturation was obtained in a similar man-
ner to that in Fig. 2(a). After the saturation was attained, the complex
path 0-1,1-2, ... ,7-8 was repeatedly traversed. Only the portion of the
stress trajectory which corresponds to the (post saturation) strain path
0-8 is shown.

functions g and fin strain space and stress space, respectively,

by’
&4(:))75&] [‘)’KL - (1 + &‘::))Yf&] —K

= (TKL _% &(K)’Y‘h) (TKL__—;" &(K)’)/‘]D(L) —x=f (2.2)

with

g=4p’ [71(L - (1 +

N (o, —a )+ ok, —c K
a=a(K)= o 5 s™ho 05.

(2.3)

Ko — K
In equations (2.2) and (2.3) the coefficients «,, a4, Kgy Kg are
constants and u is the elastic shear modulus. The constants «,
and o are so chosen that &(«) takes the value o, when k=x,
and takes the value o, when k=«,. .

We adopt the loading criteria of strain space as primary.
Then, after invoking the work assumption of Naghdi and
Trapp (1975b), the constitutive equations for the rate of
plastic strain é%; and the rate of work-hardening parameter
may be expressed as (see the development among equations
(36)-(42) in Casey and Naghdi 1981):

0, when g<0, or when g=0 and §<0,
m—(ZTKL—&’Y‘I%L), when g=0 and g>0
(2.4a,b)

9The loading functions in (2.2) with & being regarded as constant (rather than
a function of «) were used in the paper of Caulk and Naghdi (1978) and, with &
as a function of «, are the same as those used by Naghdi and Nikkel (1984).
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Fig. 3(b) Comparison of the theoretical (———) axial stress
response, measured in MPa, with the corresponding experimental data
(-~-) of Lamba and Sidebottom (1978b) for OFHC copper according to
the prescribed strain path in the inset of Fig. 3(a). Only the portion of the
stress response which corresponds to the (post saturation) strain path
0-8 is shown.
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Fig. 3(c) Comparison of the theoretical ( ) shear stress
response, measured in MPa, with the corresponding experimental data
(---) of Lamba and Sidebottom (1978b) for OFHC copper according to
the prescribed strain path in the inset of Fig. 3(a). Only the portion of the
stress response which corresponds to the (post saturation) strain path
0-8 is shown.

and
k= (B Trr +7 (1) Vhs, ) €Ky - @.5)
In equations (2.4) and (2.5), the quantities ,7 are defined by

A A K—K . K—Kg
B=b=(-—)p a=i=(-—"2)s, @8
Ko —Kg Ko — K¢
B,n are constants,
. dg I .
&= ders €x =4p (TKL 5 W’Y%L) Yxrs 2.7
and on the yield surface g = 0,
A=8ux>0, (2.8)
I‘=26uc+2[1 + ( %™ % ) (TKL - 'yf’(L)'y‘,}L] (BTMN
Ky — K 2
. &
+ihon) (v ——— i) 9

The yield function fin (2.2) is of the von Mises type: it is
quadratic in the deviatoric stresses and allows for translation
and change in size of the yield surface. The amount of transla-
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Fig. 4 A geometrical representation of the function ¢ (which
characterizes strain-hardening) as a surface exhibiting its dependence
on the plastic strain components ef; and ef,, plotted for fixed values of
the total strains (in this figure taken to be ey = e =0) for OFHC cop-
per having the material constants specified in equation (4.1). For dif-
ferent values of e41 and eq,, the surface merely translates parallel to the
plane of (¢§y, ef,) but does not change its shape. An example of how the
value of & may be determined from this plot is also indicated: At a
typical point on the surface, the values of the plastic strains efy, ef, are
known (the coordinate curves on the surface are drawn at plastic strain
intervals of 0.0002) and the corresponding point in the efy — ef, plane is
located. Then, the value of ¢ is measured by comparing the vertical
distance between the point on the plane and the point on the surface
with the scale on the ¢ axis.

tion of the yield surface is linear in the deviatoric plastic strain
and is also linear in « through the coefficient & defined by
(2.3). Also, the coefficient functions 8(«) and 7 () which oc-
cur in (2.5) are linear in «, they assume the respective values 3
and y at initial yield when k=«,, and both vanish at satura-
tion, i.e., when k=«,, k=0.

We also recall here that the strain-hardening behavior may
be characterized by means of a rate-independent scalar quanti-
ty denoted here by ® (Casey and Naghdi, 1981, 1283)-10 Dur-
ing loading the quantity ¢ has the same value as f/g, where f
= (9f/0sk; )Sgr and g is defined by (2.7),. With the particular
constitutive equations (i.e., generalized Hooke’s law) used
here and the work assumption of Naghdi and Trapp (1975b),
® can be expressed as

T
TTH+A’

and in fact since I' + A > 0, I' alone may be used to
characterize the strain-hardening behavior (Casey and Naghdi
1984b, equations (4.50) and (4.51)).

(2.10)

3 Equations for a Two-Dimensional State of Stress

Consider now the homogeneous deformation of an elastic-
plastic material sustained by a biaxial state of stress (one nor-
mal component and one shearing component) in which the
corresponding two components of strain are prescribed func-
tions of time. Lamba and Sidebottom (1978a,b) modelled this
experimentally by performing a strain-controlled combined

10} was demonstrated recently by Casey and Naghdi (1984a, equation (3.8))
that the quantity & is equal to the determinant of a certain rate-independent
fourth-order tensor which plays a fundamental role in the theory of plasticity
and'which arises naturally in relating the time rate of stress to the time rate of
strain.
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tension-torsion test of a thin-walled circular cylinder in which
the axial strain and the shear strain were prescribed functions
of time. With the notation s, (¢) for the axial stress and s, ()
for the shear stress, the two-dimensional state of stress can be
represented in matrix notation as

Hnaﬂ=—%—s”HbKLH+anamJ,§=—%—s“, @.1)
where the constant matrices ay; and by, defined by
010 2 0 0
lag M=)l 100 ,lbgl=f 0 —1 0O 3.2)
000 0 0 -1

are introduced for convenience.

The intended calculations require prescribing e;, and e,
parametrically as particular functions of time (which specify a
path in the e,; — e;, plane), while the other two components of
normal strain (e,, and e,;) remain so far unspecified and hence
unknowns. Since €8, = é§; = —1/2 ¢é%, and éf; = é§, = O by
equations (2.4) and (3.1), it follows that the plastic strain ten-
sor can be expressed in the form

lez, I =1lvg, I =% e by, I +efyllag, |, 3.3)
where e, and ef, depend only on time. From the stress
response (generalized Hooke’s law) we have

sy =E(e; —éf), sip=2p(ep—ehy), (3.4)

where E is Young’s modulus. From the inverted form of the
stress response, as well as (3.3) and (3.4),, and after adopting
the notation e, = e,, = e;; we obtain

ey ey 0
leg, I=|e, e, O 3.5)
0 0 e
where
v 1 1
e,=——fs“———£— eb=—vp e,,—T(l—Zu)ef1 (3.6)

and where » = (E—2u)/2u is Poisson’s ratio. Equation (3.6)
relates the unspecified components of strain to the axial strain
(which is known) and the axial component of plastic strain.
But e, is still unknown, inasmuch as ef; remains unknown un-
til all of the constitutive equations pertaining to a particular
two-dimensional strain path have been integrated.

In order to simplify some of the expressions that follow, we
introduce the abbreviations

3 1
M=s), == a()efy, N=si ——— &(x)efy. 3.7

Then3 with the use of equations (3.1) to (3.6), the loading
functions in (2.2) now assume the simplified forms

2 3 & 2
g= B[en- (145 )et]

A 2
+ 8u? [‘—’12 - (1 +%>e€2] —K,

2
f=—'3—M2+2N2—K. (38)
For the two-dimensional state of stress defined by equation

(3.1), A is still given by eqguation (2.8); but, on the yield sur-
face, I in equation (2.9) now assumes the special form
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4 - R
I‘=26u<+—3—[1 + (—“"—"‘) (Mez;l +2Ne11’2)] [M(ﬁs”

Ko —Ks

3 A
+——£~ ﬁe’{l> + 3N(6 S+ 7 e’{2>] .
In view of equations (3.1), (3.3), and (3.5), from (2.7) the
quantity g occurring in the loading criteria in strain space is
given by

(3.9

.8 : .8
g=——,uMe”+8pLNelz—TuMe,

3
(3.10a,b)
4 , . 4 .
:—3— EMe“ + 8[LN612 +T(3[L—E)Me¥1,
and the corresponding quantity f in stress space is
~ 4
f=_‘3“M~9.11+4N5:12, (3.11)

where in obtaining (3.100) the time derivative of equation
(3.6) has been used. It should be noted that ¢ depends on the
unspecified strain rate €, (or the unknown axial plastic strain
rate é%;); and hence the determination of whether the state of
strain at an elastic-plastic state is undergoing loading, neutral
loading, or unloading cannot in general be ascertained directly
from (3.10).

Since during loading the constitutive equation (2.45) for the
plastic strain rate contains g on its right-hand side, in view of
equation (3.10b) it is at once obvious that €7, occurs on both
sides of the equation in the case of axial plastic strain rate.
After solving this equation, a new form of the constitutive
equation results which dependes only on the specified strain
rates €;; and €;,. This equation then enables the constitutive
equations for the other components of plastic strain rate to be
expressed in terms of only é,, and é,, also. This procedure
along with equations (3.1) and (3.3) leads to the following ex-
pressions for the nonzero plastic strain rates during loading
(g=0, £> 0
,_4M_,p_2N_,_,_lép
ef; = 3 0 8, efh= 0 8, €8, = ek 5

where we have introduced the quantities Q and g defined by

(3.12)

Q=F+A——l9£(3u—E)Mz (3.13)

and

g'=g‘——:—(3p.—E)Méﬁ’1=—;i— EMé,, +8uNé,,. 3.14)
It is shown in Appendix A under the assumption that Q@ > 0
always, which represents a range of strain-hardening behavior
sufficiently general for our present purposes, that a knowledge
of only the prescribed strain rates é;, and é,, is sufficient to
determine whether the materal at an elastic-plastic state is
undergoing loading, neutral loading, or unloading. In fact,
with Q > 0 the quantity § may be used in special loading
criteria appropriate for the particular problem under discus-
sion. Thus, with @ > 0, the constitutive equations for the
plastic strain rate and the rate of work-hardening may alter-
natively be expressed as!!

0 , if g<0, (@)
0 , if g=0and §<0, (b)

&y = ) _ (3.15)
0 , ifg=0and §=0, (c)

eq. (3.12) , if g=0and >0, (d)

Myye emphasize that the loading criteria in equation (3.15) are derived from
the general form of the strain space loading criteria, and not postulated in an ad
hoc fashion.
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and

= (Bsur 4 ety ) e +2 (B + ik ) et (3.16)
where the loading criteria in (3.15a,b,c¢,d) correspond, respec-
tively, to an elastic state, unloading from an elastic-plastic
state, neutral loading at an elastic-plastic state, and loading at
an elastic-plastic state. We note that during unloading and
neutral loading it follows from equations (2.4a), (3.4),
(3.100), and (3.11) that § = ¢ = f, while during loading from
equations (3.4) and (3.11) to (3.14) we have

. T T
f=—i=
Q T+A
Results from the general theory similar to these and those ob-
tained in Appendix A are summarized in Table 1 of Casey and
Naghdi (1984c).

Before closing this section, we need to comment further on
the restriction Q > 0 which bears on the loading criteria in
equation (3.15). With reference to equation (3.13), since T
may be used to characterize the strain-hardening behavior,
with equations (2.8) and (3.8) the condition Q > 0 may be
seen to include hardening behavior ($>0) and perfectly
plastic behavior ($=0), but at first sight may appear to ex-
clude a small range of softening behavior.!? However, it can
be shown (Appendix A) that at an elastic-plastic state with Q
= 0, the applied strain rates ¢, and é,, can only be such that &
=< 0. But the expression (3.14), which occurs in the loading
criteria (3.15) must be capable of admitting all possible choices
of é,, and é,, (and hence capable of taking both positive and
negative values) for all physically realistic tests. Since a state
corresponding to Q < 0 is unnecessarily restrictive, it will be
excluded from consideration in the present development.

& (g=0,§>0). B.17)

4 Determination of Material Constants. Details of
Calculations.

Previously a procedure was suggested for determining the
material coefficients in the constitutive equations from the ex-
perimental data in a uniaxial cyclic loading test (Naghdi and
Nikkel, 1984). This procedure is by no means unique; and, in
fact, for data obtained from one-dimensional tests, other than
uniaxial cyclic tests, it may be desirable to use a different pro-
cedure. Such alternative procedures are likely to be more ad-
vantageous in two or three dimensional tests, With reference
to their experimental results for OFHC copper, Lamba and
Sidebottom (1978a) note that the peak axial stress attained
after the material has been cycled along a strain path such as
that in Fig. 1(a) is significantly higher than the peak axial
stress attained after simple uniaxial cycling. They go on to
state that this difference indicates that ‘‘. . . material proper-
ties obtained from tensile tests or even uniaxial cyclic tests will
not give accurate predictions of cyclic deformation under non-
proportional or out-of-phase conditions.””!* A conclusion of
this kind cannot be made independent of a particular theory
used and does not follow from the knowledge of only a part of
the experimental measurements (e.g., a part of the
measurements that leads to the calculated s,;). Rather, it re-
quires a detailed examination of the entire experimental data
in conjunction with the relevant constitutive equations.

12-This is because the condition @ > 0 places a greater restriction on T than
does the more general result I' + A > 0 (which is a consequence of the work
assumption of Naghdi and Trapp, 1975b).

13The term out-of-phase refers to the specification of ej; and ey, as
sinusoidal functions of time with the 90 degree phase difference between them,
resulting in an elliptic path in the e;; — ey plane.
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As can be seen from equation (3.7), , and (3.8), with k=x«;,
&(x) = o, and with f=0, the expression for &, in a two-
dimensional cycling test depends on s, 5,5, €f;, ef, as well as
&=oy. However, the expression for «, in the case of a “‘peak”’
axial stress (i.e., the value of s;, when s, = 0) will depend on-
ly on the axial stress s, in addition to other parameters such as
a, and the plastic strains. We further observe that in the biax-
ial tests under discussion the value of the parameter «,, which
represents the size of the loading surface in two dimensions, is
particularly sensitive to the values of the stresses but much less
so to the values of o, and the plastic strains. In view of the ex-
perimental result of Lamba and Sidebottom (1978a) men-
tioned in the previous paragraph, if «, is determined from
uniaxial cycling data alone, then the theoretical prediction for
the two-dimensional cycling experiments may not be as ac-
curate as when k; is determined from the entire experimental
data of a two-dimensional strain cycling test.

We keep the foregoing discussion in mind when describing
the alternative procedure for determining the material coeffi-
cients in the constitutive equations. A value for «, will be
determined from two-dimensional strain cycling experiments.
For our present purpose, it will suffice to determine the other
constants from uniaxial cycling data as before.!* Thus, a value
for «, follows from f=0 and the yield stress in uniaxial ten-
sion, and a value for o, can be determined from the slope of
the uniaxial stress-strain curve at saturation. By selecting a
point at saturation from the experimental data for a two-
dimensional cycling experiment, similar to points Q, R, S, or
T shown in the calculated results in Figs. 1(a~c) and with the
values of stress and plastic strain at such a point the value for
k, may be determined from f=0. We took the value «, to be
the average of the values obtained from points R and 7, in
order to have the best overall prediction for all loading paths
in the e, —e;, plane. The remaining constants may then be
determined from the uniaxial cycling data by the procedure
described previously (Naghdi and Nikkel, 1984). Using the
above procedure with the experimental data of Lamba and
Sidebottom (1978a, Figs. 2 and 3(a-d) ) for the OFHC copper
the material constants were determined to be

Xy Qg

= =8.14x 1073,
E E
B 7 -
—=2.30%x10"2, —=—9.38x 1075,
E E?
K, B

=4.03x 1078, %=1.93X10‘6,E—0.374, “.1)

E=115GPa.

In the course of identifying values for the coefficients ¢, and
ay, it was found that their values differed only by less than 0.3
percent. This suggests that if this difference can be neglected,
we could set o, =, approximately and then the coefficient %
in equations (2.5) and (2.6) will no longer require an indepen-
dent identification. This would make the task of determina-
tion of the coefficients much easier; and, in fact, with a, = o
the coefficient y can be determined in terms of «, and 3. To
see this, we recall that in the special case in which o, =, =«
(say) the constitutive equations used here reduce to a special
case of those employed previously by Caulk and Naghdi
(1978, equations (40), (56), and (70),). For their equations,

they obtained the restriction 9 = — o8/2 (see equation (70), in

Caulk and Naghdi, 1978). In view of the fact that the values
determined for o, and «; are essentially the same, for the pur-

Y11 contrast to &, for the relatively simple constitutive equations used here .

the determination of the other constants from the uniaxial tests seems to be
adequate.
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pose of comparison with the experimental data of Lamba and
Sidebottom (1978a,b) for OFHC copper, it will suffice to take
o, = g and n= —a,B/2.

The calculations summarized in Section 1 were carried out
by first parametrically specifying the strains e;; and e, as
functions of time, corresponding to a particular path in the
e, —e;, plane. The constitutive equations (3.15) and (3.16)
were then integrated numerically with the values (4.1) for the
coefficients. Finally, the stresses were calculated using equa-
tion (3.4).

To calculate ® in equation (2.10), a knowledge of A in equa-
tion (2.8) and T" in equation (3.9) is needed. The particular
representation of T' in equation (3.9) depends on the stresses,
as well as the quantities M and N which also involve the
stresses §,, and s,,. Then, in view of equation (3.4), I' may be
expressed in terms of the total and plastic strains. It follows
that & depends on total and plastic strains, as well as on «.
But, from the fact that on the yield surface g = 0 with the
function g given by (3.8),, it is possible to solve for « in terms
of the other quantities so that ¢ may be represented as a func-
tion of only e, e, €4;, and ef,. It is of interest to plot the
variation of ¢ with plastic strains for fixed values of e,, and
e;;. After making the substitutions indicated above, the
dependence of ® on the total and plastic strains may be ex-
pressed in the form

A 3 -1 -1
@:@(e’{l—<1+—4— 2‘,’) e“,ell’z—<1+—‘—1a;"——> e12>.

4.2)

For definiteness, we specify e;; = e, = 0 and then calculate
the value of ® for each ef;, ef, pair. The resulting plot using
the values (4.1) is shown in Fig. 4. It is clear from the
arguments of the function @ in equation (4.2) that this single
calculation provides all of the relevant information on the
variation of ®; and, for any other specified values of e;, and
e4,, the surface plotted in Fig. 4 will not change in shape but
will simply translate parallel to the ef, — ef, plane by the con-
stant amounts
-1
) €12

3 o, \ ! Lo
(” i E ) €urs (” 4
in the €%, and e, directions, respectively. It must be kept in
mind that the domain in the ef, — €%, plane must be such that
the value of « corresponding to the values of e, e,,, ef, and
ef, is between «, and ;. In Fig. 4, the outer boundary (with
the smallest value of ®) corresponds to k=, and the inner
boundary (with the largest value of ®) corresponds to x =«,. It
should be mentioned that some elastic-plastic states cor-
responding to points on the surface may not be reached by any
path, For example, on the inner boundary in Fig. 4, where « =
k,, the plastic strain is nonzero indicating some plastic defor-
mation must occur to reach an elastic-plastic state correspon-
ding to this edge of the surface. However, after plastic defor-
mation has taken place x cannot have the value «, (the value of
x at initial yield) while the material exhibits hardening
behavior except in the special case of purely kinematic harden-
ing. Thus, for the plot displayed in Fig. 4, no acutal elastic-
plastic state corresponding to the inner boundary of the sur-
face can be reached.

(4.3)

5 Concluding Remarks

In summary, a relatively simple set of constitutive equations
is used to predict various phenomena occurring in two-
dimensional strain cycling in the range of small deformation.
The calculated predictions are compared with corresponding
experimental results of Lamba and Sidebottom (1978a,b) with
good qualitative agreements. It is noteworthy that even during
the post-saturation behavior of the material, the constitutive
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equations used have adequate predictive capabilities as
demonstrated by the results in Figs. 2(a=c¢) and Figs. 3(a-c).
Furthermore, it may be emphasized that the theoretical
calculations successfully predict the erasure of memory
phenomenon which has significant practical utility in two-
dimensional, post-saturation strain cycling experiments.
Clearly, by exploiting this phenomenon, the response of a
material to strain cyclng along strain paths in different direc-
tions can be determined by performing experiments on one
specimen if a large cycle which erases the material’s memory
of the preceding smaller cycle is traversed after each smaller
cycle.

The main differences between the present calculations and
the experimental results can be attributed primarily to the
manner of identification of two of the material constants at
saturation, namely «, and «,. These values can be chosen to be
the same as those identified either from experiments in simple
tension (e;; = 0) or experiments in simple shear (e,; = 0). The
values resulting from experiments in simple tension can lead to
discrepancies in matching experiments involving mainly sim-
ple shear (such as those in Figs. 2(a-c) and 3(e-c)), and
likewise values chosen from experiments in simple shear will
affect the agreements between the theoretical and experimen-
tal results in simple tension. The choice for the value of the
constant «, used in the calculations (for details see Section 4)
was motivated by a desire to obtian the best overall agreement
with experimental results for all directions of the strain paths
in the e;; — ey, plane. Similarly, as noted in the last section, «
was chosen to be equal to «, in order to simplify the iden-
tification of the material coefficients for OFHC copper. The
slope of the calculated response curve in the s, — e, plane at
saturation can be shown to depend to some degree on «, so
that if a more accurate prediction of the slope of the curve
during loading along FB in Fig. 2(c) is desired an alternative
procedure for determination of «; could be used.

The plot displayed in Fig. 4 contains detailed information
pertaining to strain-hardening behavior for the particular
material used in the experiments of Lamba and Sidebottom
(1978a,b). Accessibility to such information or the data
representing ¢ for all values of total and plastic strains in the
domain of interest is clearly of value in analyses and computa-
tions. It should be possible in principle to determine the value
of @ directly from experiments. Casey and Naghdi (1984b,
equation (4.29)) have previously shown that the function &
can be interpreted in terms of the ratio of the outward normal
velocities of the yield surfaces in stress space and in strain
space. It is suggested that future experimenters provide direct
measurements concerning the yield surfaces in both stress
space and strain space and also consider the possibility of ob-
taining the values of @ directly in the course of their
experiments.

We close this section with some remarks concerning addi-
tional experimental data on two-dimensional cycling that have
become available very recently. McDowell (1985) has reported
experimental results for two-dimensional strain cycling of a
type similar to those of Lamba and Sidebottom (1978a,b); and
in principle, similar comparisons can be made with his data.
However, the data provided in McDowell’s paper are insuffi-
cient for the identification of all of the material constants ap-

1510 addition to the two elastic constants, there are six material constants (e,
o, B, 1, Kys ks) Which must be determined from experimental results. However,
for the special case in which @, = «y as utilized in Section 4, an additional
restriction obtained by Caulk and Naghdi (1978) can also be invoked and this
reduces the number of independent constants to be determined to the four (¢,
B, Ky ks). With o, # aj, the calculations will involve more complex expres-
sions and plots (for different values of e, e|,) of the function ® will exhibit
changes in shape and will not simply represent translations of the surface
parallel to the éf| —ef, plane as in the case when «, = ay.
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pearing in the constitutive equations used here.!® Also, it
should be noted that our approach for theoretical predictions
differs from the ‘‘two surface stress space model”’ used by
McDowell (1985) for comparison with his experiments.

Ohashi et al. (1985) have reported some experimental data
for two-dimensional stress cycling. They do not discuss any
theoretical predictions for comparison with their experiments.
While in principle, there should be no difficulty in making
such comparisons, the data provided is again insufficient for
the identification of all of the material constants appearing in
the constitutive equations used here.!?
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APPENDIX A

We include here the details of the arguments which
demonstrate that the special loading criteria in equation (3.15)
with g (rather than g) are consistent with the loading criteria
of the strain-space formulation, i.e., at an elastic-plastic state
with Q > 0 we establish the correspondence

g§<0 & g<0 , (unloading),
£=0 & g=0, (neutral loading),
g£>0 & g>0, (loading).

We first prove that at an elastic-plastic state with Q # 0, g
= Qif and only if § = 0. Sufficiency follows equation (3.12),
where if § = 0sois é%, = 0and then from equation (3.14) g
= 0 also. To establish necessity suppose that § = 0. It then
follows from equations (2.4) and (3.14) that § = 0.

In view of the result of the previous paragraph note that at
an elastic-plastic state with Q # 0, § # Oif and only if § # 0.
We now prove that at an elastic-plastic state with Q > 0, § >
0if and only if § > 0. To establish sufficiency suppose that &
> 0. If § < 0, then é2; = 0 by equation (2.4) and (3.14) im-
plies § = g, which is a contradiction and hence we must have g

830/ Vol. 53, DECEMBER 1986

> 0. To establish necessity, we suppose that & > 0, and this
implies that ¢ = g(I' + A)/Q from equation (3.17). In view
of the fact that T' + A > 0 (Casey and Naghdi, 1984b, equa-
tion (4.50)) and the fact that we are considering only the case
in which Q > 0 this implies § > 0.

As a consequence of the results of the preceding two
paragraphs, it follows that at an elastic-plastic state with Q >
0,8 < Oifand only if § < 0.

In the remainder of this appendix we demonstrate that if Q
in equation (3.13) is nonpositive at an elastic-plastic state, i.e.,
if Q < 0, then the applied strain rates é,, and €, can only be
such that § < 0.

We first prove that with Q < 0 we can only have § < 0.
Suppose £ > 0. If ¢ < 0, then equations (2.4) and (3.14) imply
£ = g which is a contradiction. Alternatively if § > 0, then g
= g(I' + A)/Q from equation (3.17). In view of the fact that
I' + A > 0 (Casey and Naghdi, 1984b, equation (4.50)) and
that we are considering the case in which Q < 0, it follows that
& < 0 which is also a contradiction. Hence, we can only have &
=0ifQ < 0.

Next, we prove that if Q=0, we can only have § < 0.
Again, suppose that § > 0. If ¢ < 0, then equations (2.4) and
(3.14) imply § = g which is a contradiction. Alternatively if g
> 0, with the use of the expression for g resulting from equa-
tion (3.14), and the identity resulting from equation (3.13)
after setting its left-hand side equal to zero, the constitutive
equation for the axial plastic strain rate from equation (2.4b)
implies § = 0 which is also concontradiction. Hence we can
only have § = 0if Q = 0.
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Asymptotic Fields of a Perfectly-
Plastic, Plane-Stress Mode I

P. Ponte Castaiieda
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Growing Crack

The asymptotic near-tip stress and velocity fields are presented for a plane-stress
Mode II crack propagating quasi-statically in an elastic-perfectly plastic Mises solid.

The solution is found to have fully continuous stress and velocity fields, and a con-
Sfiguration similar to that of the anti-plane strain problem: a singular centered fan
plastic sector ahead of the crack, followed by an elastic unloading sector and a con-
stant stress plastic sector extending to the crack flank. The impossibility of a plane-
stress Mode I crack solution having these properties is also discussed.

1 Introduction

Rice (1982) presented a complete analysis of the asymptotic
structure of the near-tip stress and deformation fields of a
crack growing quasi-statically in an elastic-perfectly plastic
solid. There, all possible solutions to the governing equations
in the plastic and elastic sectors are given for anti-plane strain,
plane strain, and plane stress. Drugan and Rice (1984)
presented a general study of the continuity conditions across
quasi-statically moving surfaces such as the interfaces between
these sectors.

In anti-plane strain, Chitaley and McClintock (1971) gave
the first successful assembly of sectors for the Mises material.
In plane strain, Slepyan (1974) presented the corresponding
assembly of sectors for the Tresca material in both Modes 1
and II. Independently, Gao (1980) and Rice et al. (1980) pro-
duced results for the Mises material in Mode I (v = 1/2), and
Drugan et al. (1982) generalised these results to the case of » #
1/2.

Although the plane-stress Mode II problem does not have
the practical importance of the corresponding Mode I prob-
lem, it has theoretical importance. It also has special
significance because no complete solution has yet been found
to the Mode I problem. In this paper we present a solution to
the plane-stress Mode II problem and throw some light on the
Mode I problem.

2 Formulation

With reference to Fig. 1, let x;(i = 1,2,3) be a Cartesian
coordinate system of fixed orientation travelling with the
crack tip such that the x, axis coincides with the straight crack
front. Furthermore, let ¢; be the unit vector corresponding to
the x; direction. Similarly, let r, § be polar coordinates cor-
responding to x,(a = 1,2) and e,, e; be the corresponding
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unit vectors. The crack tip moves quasi-statically with velocity
V = Ve, with respect to the stationary coordinate system X.
Thus in asymptotic analysis the material derivative is given by

()=-V(), M

The dependent variables of the problem are the in-plane
components of the stress tensor ¢, and the velocity vector v
(v, does not enter the formulation). The governing equations
are equilibrium with the inertia term neglected

Vea=0 @)

and the constitutive relations corresponding to an isotropic
Mises material satisfying the Prandtl-Reuss flow rule

D=/EY(1+»)E— (v/E)Tr(L)I+A'S (3)

Here E is the modulus of elasticity, » is the Poisson’s ratio, I
= e;¢, is the identity tensor, 8 = ¢ — (1/3) Tr(o)l is the stress-
deviator tensor, D = (1/2)[ Vv + (Vv)‘]is the strain-rate ten-
sor, ¥ = ¢ is the stress-rate tensor, and A° is a scalar such
that: (i) A* = O for elastic response, (#) A* = 0 for plastic
loading. In the second case the equations are supplemented by
the Mises yield condition

X4

Fig. 1 Crack tip geometry

DECEMBER 1986, Vol. 53/ 831
t © 1986
eorc

o%yréhst';vls%e http://www.asme.org/terms/Terms_Use.cfm



6,

02 Elastic

~ :

< o
Plastic \/ Plastic

Fig. 2 Loading history of particle P

0, =[(3/2)8:81"2=V3 1, ©)

where 7, denotes the yield stress in shear.
The boundary conditions of the problem are

0, (r,0) =04y (r,0)=v,(r,0)=0 (5)
as required by Mode II symmetry, and
0',9(7',7()=0'09(l',7r):0 (6)

because the crack faces are traction-free.

Rice (1982) has shown that the governing equations admit
only three types of asymptotic solutions. Thus near the crack
tip we can only have three types of sectors: elastic sectors, and
plastic sectors of either the constant stress or centered fan
type. Here we will look for a solution with a centered fan sec-
tor ahead of the crack (0 < # < 8,), followed by an elastic sec-
tor (8, < 6 < 6,) and a constant stress sector extending to the
crack face (8, < 6 < ). This configuration is schematically
depicted in Fig. 2.

According to Pan (1984) we need to impose continuity of all
the components of the stress tensor across each elastic-plastic
boundary

lo,9] =[0,] = [og] =0 Q)

where | ] denotes the jump in a quantity as 6 increases in-
finitesimally. He also shows that we can impose continuity of
the velocity vector, unless the stress state at the interface meets
certain specific conditions, in which case discontinuities in the
velocities cannot be ruled out. Here we will look for a solution
with a continuous velocity so that we impose

[v,]=1ve] =0 ®

3 Solution

The leading order terms in the asymptotic expansion of the
stress and deformation fields in the three sectors can easily be
calculated and are given below. Note that the boundary condi-
tions have already been imposed in these expressions.

(i) Centered fan sector
0, =T7,C080 0, =—7,81N0 0p= —27,5in0 ®
v, =—3/2)V(7,/E)sin20ln (r/R) (10)
v, =3V (7,/E)[1 — (4/5)c0s20 + B(cost) ~21In(r/R)
A= —(3/2)(V/E){(6/5)cos8 + B(cos) ~¥2Yin(r/R)/r (11)
(i) Elastic sector
a1y = (7,/ DA (20 +5in20) — A,c0520 + C},]
o1 =(1,/H[4A Inlsindt + A cos20 + A, (20 +sin20) + C|,1(12)
09 = (1,/4)[— A c0s20 + A, (20 — sin26) + C,,]
v, =V(7,/E)AIn(r/R)

v, =V(1,/E)A,In(r/R)
(iii)y Constant stress sector
0;,=0 011=\/§TO 0y, =0 14
v, =V(1,/E)YD,In(r/R) .
1 1 (15)

vy = V(1,/E)D,In/r/R)
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A" =(1/V3)(V/E)[cost — 1/(3 cost)] ~1(D, + D,tanf)/r  (16)

These fields involve ten unknown constants (A4,, 4,, B, Cy,,
Ci1, Cy, Dy, Dy, 6, and 6,), and must be subjected to the five
continuity conditions given by equations (7) and (8) across the
two boundaries for a total of ten conditions. A solution to this
nonlinear algebraic system was found with

0,~13.31383 deg
A, =D = ~0.689%4
B~=—0.18814

Cy, = —0.38413

6, ~179.61254 deg
A, =D, = —0.00387
C, ~0.26953

Cyy ~ —0.04160

17

and the associated stress and velocity fields are depicted in
Figs. 3 and 4. Note that the yield condition is nowhere
violated, and in particular that ¢, < ¢, for §; < < 6,. Also
note that A* > 0 near the crack tip in both plastic sectors.
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4 Concluding Remarks

The results of this problem agree in form with those of the
other two anti-symmetric cases, anti-plane strain Mode III and
plane-strain Mode II. Thus it is found that in all these cases
the solution has continuous stress and velocity fields, and the
same configuration: a plastic sector ahead of the crack which
produces singular strains, followed by an elastic unloading
sector and a reverse plastic flow sector on the crack flank
which produce no additional singular straining beyond the
unloading level.

Vis-a-vis the plane-stress Mode 1 problem, we find that
assuming a similar assembly of sectors does not yield a solu-
tion with continuous stresses and velocities. To see this, we
remark that the velocities in the centered fan sector would be
(Rice, 1982)

v,=—3V(r,/E)sin?0 In(r/R)

0 (18)
vg= —3V{(7,/E) (sing)~ 2 HO (sing)"2cos2¢ d¢
+ B] In(r/R)
Mode I symmetry would then require
v, (r,0)=0 (19)

This would make B vanish, which in the context of the
previous formulation would leave only nine unknowns to
satisfy ten conditions. Hence, it is impossible to find a con-
tinuous asymptotic solution to the plane-stress Mode I pro-
blem with the given configuration of sectors.

A somewhat similar situation appeared in the plane-strain
Mode I problem where a discontinuity in the tangential com-
ponent of the velocity, consistent with the material model, had
to be admitted. Thus it is conceivable that discontinuities in
the velocity may have to be introduced in the solution of the

Journal of Applied Mechanics

plane-stress Mode I problem. Pan (1984) has considered such
discontinuities.

Finally, we point out that in addition to the plane-stress
Mode I problem, the Mises plane-strain Mode II problem with
v # 1/2 remains to be solved. For » = 1/2 the solution ob-
tained by Slepyan (1974) for the Tresca material also holds for
the Mises material.,
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A simple form of consistency relations befween generalized forces and
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displacements for systems exhibiting power-law behavior is presented. The later
discussion focuses on certain details regarding applications of the relations to
nonlinear fracture mechanics, emphasizing the finite element analysis of a single

edge-cracked strip subjected to remote tension under plane strain conditions.

Introduction

Within the last decade there has been a serious computa-
tional effort towards obtaining numerical solutions to prob-
lems of nonlinear fracture mechanics. The handbook format-
ted reference (Kumar et al., 1981) gives extensive tabulations
of important parameters (J-integral, CTOD, etc.) for various
configurations, loadings, and material behaviors, which
makes it useful for engineering analysis, and the review of
prior work in the field permits its use as a good starting point
for further research. The later work of Shih and Needleman
(1984) exposes some quantitative discrepancies between the
two results. These discrepancies cause confusion and implicit-
ly raise the legitimate question, ‘‘who is right?’’ The purpose
of this work is to help resolve the matter of quality of reported
data.

There are three parts in this paper. The first one focuses on
the derivation of consistency relations between generalized
forces and displacements in fairly general types of nonlinear
systems, including the class of traction prescribed boundary-
value problems for power-law isotropic materials, exhibiting
in pure tension stress-strain behavior

€ oN\"
@)
0 9o
where ¢, and o, are reference strain and stress values, and # is
a material exponent varying from one for the linear material
to infinity for the rigid plastic material.

The second section discusses some specific features of solu-
tions for fracture mechanics configurations, stressing both the
validity of the application of the consistency relations in prin-
ciple and their potential use in the detection of errors.

The paper is concluded with a numerical example to which
the consistency conditions are applied—the single edge-
cracked strip subjected to remote tension under plane-strain
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part by ONR/Solid Mechanics under grant N00014-80-C-0706.
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conditions. The results are compared against the data reported
by Kumar et al. (1981) and Shih and Needleman (1984).

Throughout the paper we use boldface letters for vectors,
matrices, and tensors. Dot stands for an appropriate inner
product. All computations reported herein have been per-
formed using the ABAQUS finite element program on a
DATA GENERAL MV-10000 computer.

Consistency Relations

Let us consider some body loaded by a set of generalized
forces Q. The set of generalized displacements is taken as
derivable from the constitutive potential F, which depends on
the overall geometry, material properties and the forces:

oF
=, 2
q 30 ¥))
We confine our attention to the class of potentials which are
both convex and homogeneous functions of Q degree (n+ 1):

F(aQ; +(1-0)Qp) =aF(Q)) + (1 - )F(Qy), 3)
F
59 Q-+ DF. @

In equation (3) it is understood that Q,, Q, are arbitrary
sets of generalized forces and 0 <« =< 1. In the relation (4), we
adopt Euler’s Theorem on homogeneous functions as a defini-
tion. One of the important properties of convex functions is
the positive semidefiniteness of the Hessian matrix I' (tangent
compliance in the force-displacement framework):

*F
r 307 )
The inner product of I' with Q®Q leads to an important con-
clusion that the potential functions F defined above are
nonnegative.

The alternative definition of a homogeneous function
allows us to reduce the effective number of independent
variables by one; the most general representation serving our
purposes is:

F(Q)=f®)r(Q}"", 6

where f(x) is a nonnegative function of the reduced set x,
which dimension is one less than that of Q, and r(Q) is an ar-
bitrarily defined positive function in the Q space. The key
point of the forthcoming derivation is that the generalized
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displacements in equation (2) are the partial derivatives of the
same function and, therefore, should be related. We limit our
demonstration to the case of two generalized forces. The ex-
tension to a multidimensional set is transparent and will not be
considered here. In this case equation (6) may be reduced to
1 93

X)L, Q:=0,>0, x:1=
n+1f()Q » @i=0) 0,
Straightforward differentjation leads to the following expres-
sions for qand I':

F= 0]

[(n+l)f—xf’} 0"
q= =, (8)
Vi n+1
(n+ Dnf-2nxf’ +x%f" symmetry o
) { nf —xf" 7 } el

®

where prime denotes differentiation with respect to x. To en-
force positive semidefiniteness of I' we require both I',, and
the determinant of T' to be nonnegative, which gives

S"=0, 10
" n 12>
5 ALY )

But since the function f(x) is nonnegative, condition (11) is
sufficient to guarantee positive semidefiniteness.

Introduction of an auxiliary function y, in a way a con-
jugate of x, and given by

-2 _ _‘_f‘__, , 12)
@  (m+Df-xf
permits the rewriting of condition (11) in a simpler form:
y’ =0. (13)

Now, instead of considering the related pair of functions
f(x) and f’(x) to describe the generalized displacements, we
can use the pair f(x) and y(x) related via (12). If values of f(x)
and y(x) are given at some point, say x =X, fxy) =/5,y(x0)
=Y., then integration of (12) leads to

* y(ndt
X)=/q€ n+1 S -———)
fo9=reemn (1) P
But for any value of x=x, with xy<¢=<x we may write the
following inequality
Yo YO y)
T+ty, ~ 14+t~ 1+tp(x) °
which, after the integration gives us the main result of this sec-
1+xy, 1+ xy(x)

tion: .
< <__f__> n+1 < T
1+ Xo¥0 Jo L+ xop(x)

It is important to mention that (11) and (13) are equivalent
only if g,>0 for all the points within the interval-[x,, x],
which implicitly imposes conditions on both x, and x.

14

(15)

(16

Application to Fracture Mechanics

A broad class of problems of fracture mechanics can be
described by a generic problem — one is given a configuration
containing a crack, loaded by forces Q, and is asked to deter-
mine the value of the J integral (Rice, 1968) to characterize the

Journal of Applied Mechanics

local fields (Hutchinson, 1968; Rice and Rosengren, 1968) and
q — displacements, at the remote distances, due to the in-
troduction of the crack,
q=q'-q", (17)

where q and q” stand for generalized displacements in two
auxiliary problems. The first one is a prescribed traction
boundary-value problem for the given configuration. The sec-
ond one is identical, but there is no crack.

The constitutive potential F(Q) becomes equal to the dif-
ference in the complementary energies of the auxiliary prob-
lems:

1
F =——S E'«T! — EF e THdV,
Q=— |, ®-T-E"T)

(18)
where T and E stand for the stress and strain tensors,
respectively.

The connection between this class of problems and the one
described in the first section is obvious but, nevertheless, there
are some important details to be considered both due to the
necessity to perform numerical analysis and the special
features of the fracture mechanics problems per se.

At first, we would like to address the matter of the possible
loss of the homogeneous structure of F(Q). In principle, the
linearity of equilibrium, compatibility equations, and bound-
ary conditions, combined with the constitutive law, requires
an analytical solution to the problem to be homogeneous. But
if we have to model an incompressible material and, therefore,
employ a penalty procedure in numerical analysis, we can en-
counter deviations from homogeneity. The simplest way to in-
troduce a penalty is by linear relations between isotropic com-
ponents of the stress and strain tensors:

KUO

rT= trE.
3 r

(19)
€

We argue, heuristically at best, that as K tends to infinity, the
influence of the hydrostatic stress diminishes, and material
response tends toward incompressibility. An attempt to con-
serve homogeneity by using a power-law penalty may easily
lead to numerical problems as we operate with large numbers.
Therefore, we can claim that degree of compressibility and
deviation from the homogeneous structure are implicitly
related, and in the limiting case of a large K, material tends
towards both homogeneous and incompressible response. The
straightforward application of (16) may be of use in detecting
errors in interpretation of penalty term for sophisticated varia-
tional formulations combining both regular displacement-
based and hybrid (displacement and pressure) formulations of
the finite element method, as implemented, for example, in
ABAQUS. Later on we present a numerical example for this
relation.

The question of convexity is especially interesting for the
fracture mechanics problems. The difficulty here is that there
is no single boundary-value problem which may be directly
analyzed to determine F(Q), but rather two auxiliary prob-
lems. Convexity of each problem is guaranteed by the
monotonicity of the stress-strain curve or, more precisely, by
the convexity of the strain energy density function (Marsden
and Hughes, 1983). The function F is nonnegative (Rice,
1968), but is not necessarily convex. The straightforward
mathematical example is F(Q,, Q,)= 1Q, Q, |1+,

In order to demonstrate the possible loss of convexity in a
physical problem, we address the case of a penny-shaped crack
embedded in an infinite isotropic power-law matrix subjected
to axisymmetric remote loading, characterized by the axial
and radial stresses Q, and Q,, respectively. We consider three
materials which can be generated from (1) as tensorial exten-
sions. The first one is the incompressible material given by
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3 A n-—1 S
= —a(-2) , (20)
2 gy Jy

!
3 L
——s-s) 2,
(5

where S is the stress deviator and we take n=3. The second
material is linear elastic (n=1) with Young’s modulus
E=o0,/¢, and Poisson’s ratio ». The last case is an isotropic,
power-law material, compressible material, whose constitutive
equations are derived from (20), (21) by substitution of the
tensor T itself for the stress deviator S. The values of gy, €,
and » are not important because they appear as constant
multipliers.

The first example is treated in detail by He and Hutchinson
(1981), for the case Q, >0, @, > (Q,. The suggested functional
fit to the numerical solution islgiven by

o (1+3) (2527 (2)"

%0 0o

@n

g

where a is the crack radius. The above expression gives us con-
cave F(Q), which can be seen directly from deriving the Hes-
sian matrix. The formula is derived from a perturbation
technique, agrees well with numerical solutions providing
x<0.6, and for larger x it fails to give an accurate estimate (He
and Hutchinson, 1981). The finite element analysis of the pro-
blem, which we have conducted, shows that at approximately
the same point (x=0.6) the complete numerical solution gains
convexity; therefore, we may conclude that there is condi-
tional convexity in this case.

The well-known solution (Sneddon, 1964) for the isotropic
linear material coincides with (22) for n=1 and »=1/2, and is
given by

8(1—1?) S
Q) Y 1.

This expression gives only one nonzero component, I';;, of the
Hessian matrix, which, of course, retains positive
semidefiniteness, but relations (16) degenerate to triviality.

By performing a finite element analysis we find that the
third material gives us an unconditionally convex potential,
and the main result of the first section is of use.

In the above examples we have encountered three possible
situations for two-dimensional Q space; namely, relations (16)
are relevant at some points in the domain, they are relevant
throughout the Q space, or they cannot be applied at all. The
heuristic conclusion may be drawn if we consider the dimen-
sions of the Q space of the two auxiliary and the main prob-
lem for all three materials. In the first example the solution of
the problem without the crack depends only on the applied
equivalent Mises stress &. If we introduce a new set of
generalized forces, namely

2
0=27% o009,

where the first equation of (24) defines the applied hydrostatic
pressure and the second equation defines the equivalent Mises
stress, then the dimension of Q’-space is one in the context of
the problem without the crack. The main and the other aux-

(23)

24

iliary problem, on the other hand, exhibit two-dimensional .

load space. It is clear from (23) that an analogous situation oc-
curs with the linear elastic material, except that the main prob-
lem is the one which has the reduced space. The potential due
to the introduction of the crack does depend on the single
force Q,, but, by superposition, is independent of Q,. Only

for the last example is there a truly two-dimensional Q space.

for all three problems.
It is clear that in the first two examples there exists some set
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Fig. 1 Single edge-cracked strip

Q, which essentially forms the null-space of F(Q) for the main
or the auxiliary problem. Obviously, it is hydrostatic pressure
for the incompressible material and stressing parallel to the
crack plane for the main problem in the linear case. The loose-
ly defined induction is that, in order to employ (16), all three
problems must have the two-dimensional Q space. A more
rigorous statement would, perhaps, require the definition of F
on the complement of the null-space.

The conclusion is heuristic but, nevertheless, seems to
rehabilitate the ‘‘misbehavior’” of the otherwise mathemat-
ically ‘““loyal’’ equations.

It is important to note that this conclusion does not put any
question marks on the substantial body of theoretical and
computational effort (Budiansky et al., 1981; Rafalsky, 1985)
in terms of the derivations and the implementation of a varia-
tional principle for determination of F directly, because here
we deal only with the generalized force space of boundary
tractions, rather than with a function space of Ritz procedure.

To conclude this section we would like to mention the
possibility of including the J integral into a gradient structure
analogous to (2), which leads to the correlation between near
and far fields and, of course, to another group of consistency
relations. The procedure that was initially suggested by Parks
et al. (1983) and later was applied by Shih and Needleman
(1984) is essentially based on finite difference approximation
of the gradient scheme for planar and axisymmetric problems.

Numerical Example

A single edge-cracked strip, Fig. 1, subjected to a remote
loading under plane-strain conditions is considered. The
dimensions are:
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Fig. 2 Finite element mesh

a=10, b=20, L=60.

The constitutive behavior is modeled by (19)-(21) with
numerical values of material constants:

gy=1, ¢=1, K=10%, n=5.

The values of o, and ¢, do not correspond to-any real
material, but as long as we are able to scale solutions, the idea
of operating with more computationally convenient numbers
is rather helpful. The finite element discretization is given in
Fig. 2. The plane strain eight-node hybrid element with nine
integration points and a bilinear interpolation for pressure is
employed. .

The remote forces per unit thickness are tensile load N=20
and varying positive bending moment M, tending to close the

Journal of Applied Mechanics

Table1 Pure tension data,n=5,K= 106, alb=1/2
Reference f y h
Kumar et al. 83.90 - 2.393 309.9

Shih and
Needieman 113.1 - 2.430 407.4
current -+ 99.00 - 2.677 390.2

Table 2 Combined loading data, K = 106, n=>5, alb=1/2}

z f y Lower | Intermediate | Upper
Bound Value Bound
.0000 | 99.039237 | -2.677448 - - -
.0001 | 98.881223 | -2.676500 | 1.000268 1.000266 1.000268
.0002 | 98.720673 | -2.675612 | 1.000535 1.000537 1.000536
.0003 | 98.5664139 | -2.674622 | 1.000803 1.000802 1.000804
.0004 | 98.405337 | -2.673701 | 1.001071 1.001071 1.001072
.0005 | 98.247815 | -2.672751 | 1.001338 1.001338 1.001341
0006 | 98.090018 | -2.671816 | 1.001606 1.001606 1.001609
0007 | 97.929625 | -2.670958 | 1.001873 1.001880 1.001878
.0008 | 97.776636 | -2.669905 | 1.002140 1.002141 1.002147
.0009 | 97.618779 | -2.668991 | 1.002408 1.002411 1.002416
0010 | 97.461915 | -2.668057 | 1.002675 1.002679 1.002685

Table 3 Pure tension data for variable penalty term, x=0, n=5,
alb =1/2

lOgK h f Y LTmin
0 393.7 | 101.8 | -2.644 | .0060
1 390.5 | 99.30 | -2.674 | .0012
2 390.3 | 99.05 | -2.676 | .0008
4 390.2 | 99.05 | -2.677 | .0008
6 390.2 | 99.04 | -2.677 | .0008

crack. We are interested in the pure tension solution and apply
bending only for the purpose of simulation of conditions (16).
The generalized forces are identified as Q,:=N, Q,:=M/b
with corresponding pair of generalized displacements g,: =68
and g,:=60b. It is understood that the generalized
displacements refer to the contribution due to the crack, as
discussed in the previous section.

The potential F(Q) and the J integral are taken in conve-
nient dimensional forms

1 N n+1
FQ)= P oo b2f (%) (—;07> , 25)
N n+1
J=04eqbh(x) < oD ) . (26)

The results of the computations are given in Table 1. We
conclude that the current analysis gives results close to those
of Shih and Needleman (1984) for the values of the rotation
and the J integral; the displacement is somewhere between the
earlier reported data. It is worth mentioning that the main
point of discrepancy between the previous data is in the near
field quantities; therefore, our results rather support the data
reported by Shih and Needleman (1984).

The next part of our analysis is concerned with the simula-
tion of data for relations (16). It is obvious that in this exam-
ple problem, consistency relations can be of importance. But

T1n the upper block of the table, relations (16) are not valid, in the next block
they should be valid according to (27), (28), and in the last part relations (16) are
unconditionally valid.
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on the other hand, if values of x and x, are sufficiently close
we expect the interference of the numerical noise in the
tabulated data to be substantial; therefore, we have to decide
on a minimum value, x,,;,; such that for all x—x,=x_;,, con-
sistency relations give us reasonable conclusions.

We adopt a very simplified estimate. The difference be-
tween bounding terms in (16) at the pure tension limit x, =0 is
(x—xp)(¥ — o), and this should remain positive in the most un-
favorable case. As we have four kinematical data entries in the
above formula, then we require S

y—yozde,, @7)

where e, is the relative error in q. From the homogeneity and
dimensional considerations we can take:

28)

where ey, is the relative error in nodal reaction force in the vir-
tual work sense, and in the analysis with the ABAQUS pro-
gram, the maximum value of this error has been set at 10~4. In
expression (28), we have neglected a dimensionless constant
multiplier expected to be of order unity. Relations (27), (28)
form the implicit conditions on x,;,. The results of computa-
tions are given in Table 2 and give x,;, =8.107%, whichisin a
fair agreement with conditions (27), (28) which give the value
of X, =3.107%, Therefore, we may claim that our data is
probably acceptable.

The section is concluded by the consideration of the penalty
term as a possibility for the loss of homogeneity. In this set of
computations we take K varying from 1 to 10°, keeping the
rest of the material constants to be the same.

The results of Table 3 show that the maximum difference
for various K= 100, in x,,;,, J integral, and q, only appears in
the fourth digit. These results suggest that one might be able to
use moderate values of the penalty K. There are clear advan-
tages to such a procedure because the computations converge
more rapidly and there is less chance to encounter numerical
difficulties. For small values of K (below 100) the most sen-
sitive parameter turns out to be X, though the physical
quantities remain within an acceptable variation.

e, = neg,
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Eulerian-Lagrangian Kinematic
Description

An extension of the Eulerian-Lagrangian kinematic description (Haber, 1984) to
elastodynamic problems is presented. Expressions are derived for field variables and
material time derivatives using the new kinematic description. The variational equa-
tion of motion is written in a weak form suitable for use with isoparametric finite
elements. The new kinematic model allows a finite element mesh to continuously ad-
Just for changes in the structural geometry, material interfaces, or the domain of the

boundary conditions without a discrete remeshing process. Applications of the new
model to mode I dynamic crack propagation demonstrates its advantages over mov-
ing mesh methods based on conventional Lagrangian kinematic models. Numerical
results show excellent agreement with analytic predictions.

Introduction

Dynamic analysis in solid mechanics is usually based on a
Lagrangian kinematic description in which the motion of par-
ticles is measured from a known material configuration. In
finite element analysis, this implies that the material geometric
discretizaton is selected a priori and the finite element mesh is
required to follow the material motion.

There are certain problems that require frequent or con-
tinuous remeshing if the mesh is forced to follow the material
motion. These include situations in which either the structural
geometry, material interfaces, or the domain of the boundary
conditions change with time; and may pertain to either large
or small-deformation behavior. For example, in dynamic
crack propagation the material particle associated with the
crack tip changes as the crack propagates, and it would be im-
possible to describe correctly the crack-tip motion without a
remeshing process. The displacement and velocity fields need
to be updated correctly for the new material discretization to
accomplish the remeshing. This is usually done approximately
in a conventional Lagrangian description using interpolation
techniques (Nishioka and Atluri, 1980a). Incremental contact
behavior is another example that calls for some form of
remeshing (Haber and Hariandja, 1985). Bazant et al. (1978)
have applied a special form of an Eulerian description to mode
I dynamic crack propagation problems using a moving coor-
dinate system centered at the crack tip. The finite element
mesh is translated as a rigid body to follow the crack-tip mo-
tion. This procedure is restricted to semi-infinite strips whose
surfaces are parallel to the direction of crack growth. Also,
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appropriate dynamic boundary conditions must be determined
for the leading and trailing edges of the finite element mesh.

The mixed Eulerian-Lagrangian kinematic description
(ELD) (Haber, 1984; Haber and Hariandja, 1985) provides an
alternative to conventional remeshing procedures to overcome
these problems. Haber (1984) presents a general development
of the ELD for large-deformation analysis. The ELD shares a
similar basic concept with the arbitrary Lagrangian-Eulerian
(ALE) descriptions used in fluid mechanics (Donea et al.,
1977; Belytschko and Kennedy, 1978; Hughes et al., 1981).
However, the displacement-based ELD is appropriate for
analysis in solid mechanics, and is distinct from the ALE
models that use material velocity as the primary unknown. A
specialization of the ELD to small-deformation behavior is the
basis of explicit expressions for energy release rates used to
analyze mixed-mode crack problems (Haber and Koh, 1984,
Haber and Koh, 1985). To date, the ELD has been applied
primarily to static problems.

In this paper the ELD is extended to the analysis of dynamic
problems. A convenient fixed domain, defined in a special
reference coordinate system, is selected as the spatial reference
configuration. The mapping of the reference configuration to
an actual material domain, defined in the global coordinate
system, varies with time. The motion of material particles,
other field variables, and the field equations are all expressed
in the reference coordinate system. Expressions for material
and spatial time derivatives in the ELD are presented and ap-
plied to the variational equations of motion. A special weak
form of the variational equations of motion is presented for
implementing the dynamic ELD in isoparametric finite ele-
ment procedures. Here, the variation of the mapping between
the reference and material configurations constitutes motion
of the finite element mesh. Example analyses of dynamic
crack propagation problems are presented to demonstrate the
new model. Advantages of the dynamic ELD over conven-
tional kinematic models are noted. Further applications of the
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Fig. 1 Eulerian-Lagrangian kinematic model

ELD to dynamic crack propagation problems will be reported
in a later paper.

Kinematics

The ELD kinematic model is illustrated in Fig. 1. A fixed
Cartesian coordinate system is used to describe the material
and current configurations, denoted by volumes ¥ and v.
Superscripts #; and #, are used to refer to two distinct times.
An independent spatial reference configuration v” is selected
which is invariant in time. A location on the reference con-
figuration is denoted by its position vector x” defined in a
separate reference coordinate system. At any time ¢ a reference
vector x” is mapped onto a material particle identified by its
position vector X’ in the material configuration. This mapping
varies with time, so the material volume associated with v”
changes. Changes in the material particle associated with a
fixed coordinate x” are the Eulerian part of the kinematic
model; the displacement of a particle u’ is the Lagrangian
part. The reference coordinates x” are the only independent
spatial variables and both the displacement field and the map-
ping to the material configuration change with time.

u=u(x’,t) (1)
X=Xx",t) )

Hereafter the superscript denoting time is omitted for brevity.

The following notation for differential operators is used.

3

o=, 2, ®

i X
The Jacobian of the mapping between X and x” has com-
ponents J; = X ; and the inverse, or Eulerian, Jacobian com-
ponents are J, = x{ ;= J 1, Differential volumes dV and dv"
in the material and reference configuration, respectively, are
related by dV = Jduv’, where Jis the determinant of the Jaco-
bian components J It is assumed that the determinant of the
Jacobian is posmve at all points in the structure. Differential
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Fig. 2 Specialization of the ELD model to isoparametric finite
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areas dA and da’ in the material and reference configuration,
respectively, are related by dA = K,da"; where K, is an area
metric between two configurations.

In the following, it is assumed that the deformations at all
times can be adequately described by the engineering strain
tensor; but that finite changes in the mapping X(x", #) are
possible. The use of large-deformation strain measures in the
ELD is addressed by Haber (1984) for static problems, and has
no effect on the dynamic part of the formulation. The com-
ponents of the small-deformation strain tensor are

%=

Time derivatives in the two coordinate systems are written
as

(T + i) 1G]

a( ) . C .
37 lxriea = (*); Material time derivatives 5)
90 =(); Spatial time derivatives (6)
0t 1XTfixed ’ P
The material and spatial time derivatives are related by
M=) =) X=0 )= ()X, )

and the spatial time derivative of the inverse Jacobian is ex-
pressed as (see equation (25) in Haber, 1984),

1
Jf.= 1i Jr+Af _ —
im Al (/5 )

— T X 1 T ®
A0

Then the velocity and acceleration of a material particle are

ui=di—u,~;ij=ll-——uikjij» (9)
* & . . .
w =1 — 20 X+ 2 X X —uy, X+ ug, JkXXk (10)

Variational Equations of Motion

In this section the governing equations for an elastodynamic
problem are formulated in the reference coordinate system.
The equilibrium and constitutive relations, written in the

material configuration, are
+F;=p u (1)

(12)

Gij;

0= Cyeu
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where F; are components of body force per unit volume, oy
are components of the Cauchy stress tensor, and Cj;, are com-
ponents of the elasticity tensor. The mass density p is assumed
to be uniform over the volume V. The strain-displacement
relations are defined in equation (4). The displacement and
traction boundary conditions are

(13)
14

in which i, and T; are prescribed displacements and surface
tractions, 4, and A, are surface regions in the material con-
figuration on which displacements and tractions are pre-
scribed, and r; are the direction cosines of the surface normal
vector.

Let du; denote a kinematically admissible variation of the
displacements at time ¢ and let de; = 1/2(8u;,; + du;,). After
substitution of equation (10) into the variational equations of
motion we obtain

u;=u;(x",t)

Ul'jnj=Ti= Ti(X',t) ) QnAT

onAd,

S o;8e,;dV — S Fidu,dV— S Tu,dA + S pli;ou,dV
v v AT v
_ SV 2pﬂi; jX,ﬁu,dV+ SV 2pu,~; quj;ka(suidV

- SV pu;, ; X;oudV+ SV oty 5 X; X, Su,dV=0 15)
The last integral in equation (15) includes a second-order
spatial derivative of the displacements, which would require
the trial functions in an assumed-displacment solution pro-
cedure to be C; continuous. This requirement can be inconve-
nient in finite element solutions, so the Gauss theorem is ap-
plied to the last integral to relax the continuity requirement.
Finally, the variational equations are rewritten in the reference
coordinate system;

S , 0,0e;Jdv" — S . Fidu,Jdv — S , TouK,da’
v v ar
; pii du; Jdv" — Sv’ 201, 5 T XS Jdv

pui.kjlel,mjijjauider

s
v

pu; o T X, Xindu,K ,da’

s
a

- S o i X;du Jdv

Pui,kjijjXI,m jmlauijdvr

r
v

- S P T X X oy Sy JAV =0 16)

where o is a surface area in the reference configuration cor-
responding to A4 7. Equation (16) can serve as the basis of weak
formulations of general, linearly elastic dynamic problems.
Equation (16) can be simplified for certain special cases.
The surfaces of a finite body are constrained by Xen = 0 to
prevent material motion across the physical boundaries of the
structure. In this case the second surface integral in equation
(16) vanishes. Note that the constraint does not hold when the
reference configuration is mapped onto a subdomain of a
large structure as in Bazant et al. (1978). In this case, some
portions of ¢” do not represent physical structure boundaries.
When the mapping changes only in the X, direction, as in the
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analysis of mode I dynamic fracture problems, equation (16)
reduces to

| oudeydar |  Fouar
_ Sa’r T.6u,K da’ + Sv’ pii;bu, Jdv
~ Su’ 201, iy X 6, Jdv
- Su’ pu; Ty X 61 Jdv

| oS G20 T T =0 ()
It is easily verified that the variational equation of motion by
Bazant et al. (1978) for uniform p is equivalent to equation
(17) if a moving spatial domain centered at the crack tip is
chosen as the reference configuration in the dynamic ELD for-
mulation. It should be noted that this equivalence is only valid
for the special case of constant-velocity, uniform motion of
the spatial domain. In fact, Bazant’s equation is not valid for
general nonuniform motions.!

Isoparametric Finite Element Model

This section presents a specialization of the dynamic ELD
kinematic model to isoparametric finite element formulations.
Finite element expressions are written for a general three-
dimensional linear elastodynamic problem using equation
(16). In general, the motion of a spatial domain can be either
known or unknown in advance. In this paper the finite ele-
ment formulation is only developed explicitly for a known
mesh motion, but it can be extended to the case of unknown
motion, as will be discussed later.

In the isoparametic specialization of the EL.D a mapping is
established between a mesh of isoparametric elements and an
actual material domain. The kinematic model is depicted in
Fig. 2. The parent element geometry is selected as the spatial
reference configuration for each element. A local natural
coordinate system is used as the reference coordinate system in
each parent element. Motion of the finite element mesh is
represented by changes in the isoparametric mapping. The
displacement field, the element geometry and other field
variables are interpolated using isoparametric shape functions
as,

u=h,u, u=HU, (18a)
d=hay, ., u=HU, (18b)
i, =h,i, , i=HU, (18¢)
du;=hy bu, , ou=HSU, (18d)
X;=h,X,, , X=HX, (18e)
X;=hX, , X=HX, 185
X.=nX, , X=HX, (18g)

where A, are element shape functions, the subscripts io in-
dicate the component in direction { at node « ranging from 1
to the number of nodes in the element. The matrix H is the
usual interpolation matrix containing the element shape func-

I'The left-hand side of equation (20) in Bazant et al. (1978) is missing the term
{yoc dc/dxy du;/dxy duidV which arises from a convective term in the spatial
time derivative of du;/dx; for the case of general nonuniform motion. This in-
tegral cancels with the corresponding right-hand side term. For uniform motion
these terms are zero, and have no effect.
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tions, and column matrices with subscript e contain quantities
measured in the global coordinate system, but evaluated at the
element nodes.

Equations (18) are used to obtain a discrete form of equa-
tion (16),

BUTE(S ., BTEBJdv] + g . PHTDGJdv]
14 Ve

e

- S . PHTAGJdv} + S , oHTAGA K, da;
Ve ae

- S . PHTSGJdv] — S . PGTATAGJdv})U
Ve

Ve

+ouTz({ | onTHIaN) U

Ve

+ouTz(- | 20H7AGav;) U
Ve

=8U TE(S . HTF Jdv] + S , HTTEK,,dae’> 19
Ve ar

in which the summation symbol indicates assembly over the
number of elements, and v} and @ are volume and area in the
parent element geometry. The column matrices U, U, and U
are assembled forms of the corresponding element matrices. B
and E are the strain-displacement transformation and elastici-
ty matrices. Other matrices and the scalar quantity A4, are
defined in Appendix 1. The reader is cautioned that U and U
do not contain material velocities and accelerations, but rather
first and second-order spatial time derivatives of displacement
at the finite element nodes.

The finite element equations obtained from equation (19)
are

MU+CU+KU=P

where M is a consistent mass matrix, C and K are nonsym-
metric “‘effective damping’’ and stiffness matrices, and P is a
load vector. Such nonsymmetric matrices are common in mov-
ing mesh procedures (Nishioka and Atluri, 1980a; Bazant et
al., 1978). Matrix expressions for M, C, K, and P are
presented in Appendix I. The solution to equation (20) can be
obtained by either implicit or explicit time integration
methods.

The matrices in equation (20) are evaluated based on the
geometry at time ¢ + Af when implicit integration is used. This
presents no problem for cases in which the history of mesh
motion is known. For cases where the element mesh motion is
not known (e.g., crack propagation prediction, free surface
and moving boundary problems), the variational equation (16)
can be rewritten using incremental expressions for both the
displacement and the mapping. This renders equation (16)
nonlinear with two sets of unknown variables: increments in
the displacements Au and in the mapping AX. One way of
solving the problem is to approximate AX based on conditions
at time ¢, and then treat the problem as a known mesh motion
problem. Iteration might improve the prediction of the mesh
motion. Another way is to add AX as unknown solution
variables and solve a linearized form of equation (16). This
procedure requires additional constraint equations, derived
from appropriate criteria (e.g., crack propagation criteria or
moving boundary definitions), to determine the mesh motion.
Explicit integration methods, based on known geometry at
time ¢, produce simpler finite element expressions. Further
study and tests are needed to demonstrate the practicality of
the method for problems with unknown mesh motion.

20
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Numerical Examples of Mode I Dynamic Crack
Propagation

In this section the dynamic ELD formulation is applied to
the analysis of a mode I dynamic crack propagation problem.
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Fig. 5 Normalized stress intensity factor for a mode | dynamic crack
propagation problem (v = 0.2 Cy)

Results of finite element solutions are presented, and com-
parison is made with analytic predictions and other numerical
results using conventional kinematic descriptions.

A square plate with an edge crack of length a, is subjected
to statically applied prescribed displacements under plane
strain conditions. After a given time the crack propagates with
constant velocity, while the prescribed displacements are
maintained. The dimensions and material properties are
described in Fig. 3. Three different crack velocities are con-
sidered: v = 0.2, 0.4, and 0.6 C,, where C; is the shear wave
speed. This problem is similar to the problem solved by
Nilsson (1972), involving steady-state solutions for the pro-
blem of a semi-infinite crack propagating with constant veloci-
ty in an infinite strip.

A mesh of linear strain triangle (LST) isoparametric
elements is used to model the upper half of the structure. Four
quarter-point singular LST isoparametric elements (Barsoum,
1976) are used to model the crack-tip elements. Quarter-point
isoparametric elements are often used to model the singular
strain field near the crack tip in stationary crack problems
because they are simple to implement and available in most
finite element programs. However, in a conventional
Lagrangian kinematic description, the use of quarter-point
elements does not generate the desired singularity of order
r~12 in the material velocity field for a dynamically pro-
pagating crack. The convective term in equation (9) in the
dynamic ELD does introduce the appropriate singularity if
quarter-point isoparametric elements are used. The singularity
vanishes for a stationary crack. Thus, there is no need to use
special singular elements, as in Nishioka and Atluri (1980a),
which introduce compatibility problems at the interfaces be-
tween the singular and conventional elements. The finite ele-
ment mesh used in the present study for v = 0.4 C; is shown in
Fig. 4. The mesh in Fig. 4(a) represents the initial crack
geometry. As the crack propagates, the mesh changes con-
tinuously to model the crack growth. The final mesh at a/W
= (.5 is shown in Fig. 4(b).

The finite element solutions were obtained using implicit in-
tegration with Newmark’s parameters § = 0.5 and 8 = 0.25.
The initial crack length @, is 8 mm, and the change in crack
length per integration time step is Afev = 0.2 mm. The
dynamic energy release rate for the propagating crack was ob-
tained by considering the increments in global external work
and internal energy during a time step. The stress intensity fac-
tor (SIF) was computed from the energy release rate using the
relation given by Freund (1973). The SIF values plotted in
Figs. 5-7 are normalized by the SIF of a stationary, semi-
infinite crack in an infinite strip, K°(0) = u E/hY2(1—»?).
To indicate the expected long-term behavior, normalized
values of Nilsson’s steady-state solution are plotted as dashed
lines. :

Correct tracking of the SIF is critical in the study of crack
initiation, propagation, and arrest in brittle materials. The
dynamic SIF for a running crack in a half plane can be ex-
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Fig. 7 Normalized stress intensity factor for a mode | dynamic crack
propagation problem (v = 0.6 Cg)

pressed as the product of a universal function of crack-tip
velocity k(v) and the SIF of the equivalent stationary crack
(Freund, 1973). Thus, the SIF immediately after the crack
starts propagating should be & (v)K(0), where K (0) is the SIF
for a stationary crack of length @,. This implies a negative
jump in the SIF when the crack begins to propagate; because
k(v) < 1.0 for » > 0. Normalized values of k(v)K,(0) using
finite element solutions for K,(0) are marked on the vertical
axes in Figs. 5-7. Previous finite element solutions have not
been able to reproduce the expected SIF jump. For all crack-
tip velocities studied, the present method predicts values of
SIF virtually identical to k(v)K,;(0) immediately after the
crack starts propagating, and a steadily increasing SIF until
the time ¢, when the first reflected waves arrive at the crack
tip. In the long term, the SIF approaches Nilsson’s steady-
state solution.

Numerical results obtained with moving singular elements
implemented in a conventional Lagrangian mesh (Nishioka
and Atluri, 1980b; Nishioka et al., 1981) are presented for
comparison. This method requires frequent remeshing with in-
terpolation of field variables to the new node locations.
Results are shown in Figs. 5-7 for a special singular element
with propagation-eigen-functions (Nishioka and Atluri,
1980b) and the usual quarter-point isoparametric elements
with a global energy balance computation (Nishioka et al.,
1981). Upward arrows indicate the times at which a remeshing
process is performed in the moving singular element pro-
cedure. For v = 0.2 C;, the results obtained with the quarter-
point and propagation-eigen-function singular elements are
nearly identical, so only the results of the latter method are
plotted. Unlike the results obtained with the dynamic ELD,
the propagation-eigen-function results do not match the
analytic prediction of an instantaneous drop in the SIF as the
crack begins to propagate. The SIF values are overestimated,
and the error is larger for higher crack-tip velocities. A distur-
bance in the SIF is reported in (Nishioka et al., 1981) for the
quarter-point isoparametric element procedure at higher
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crack-tip velocities each time remeshing is performed. This
might be an artifact of the displacement discontinuities (in
time) that are produced by remeshing operations in a conven-
tional Lagrangian description. In the dynamic ELD formula-
tion the displacement field evolves continuously as the mesh
moves, and no disturbance of the SIF is observed.

Conclusions

A version of the Eulerian-Lagrangian kinematic model for
the analysis of elastodynamic problems has been developed.
Variational equations of motion, suitable for finite element
formulations, were derived using the new kinematic model.
The new formulation is particularly effective for analyzing
problems in which the structural geometry or the domain of
the boundary conditions change with time. The ELD allows
the finite element mesh to change continuously without a
discrete remeshing process, so the displacement and velocity
field remain continuous in the time domain. In applications to
mode I dynamic crack propagation problems, the new
kinematic description correctly models the singularities in
both the displacement and material velocity fields when com-
bined with singular quarter-point isoparametric elements.
Numerical examples demonstrate the advantages of the ELD
with respect to conventional kinematic descriptions and show
excellent agreement with analytic predictions. The ability to
correctly predict the jump in the SIF at the onset of crack pro-
pagation is a significant indication of the reliability and ac-
curacy of the dynamic ELD. Further details of implementa-
tion and analysis results for dynamic crack propagation pro-
blems will be reported in a later paper.

In the present work the consistent mass matrix is used and
the nonsymmetric equations are solved directly. Whether it is
possible to improve the accuracy or numerical efficiency of the
solution by using a lumped mass matrix (Bazant et al., 1976),
symmetric approximations to the stiffness and effective damp-
ing matrices or indirect equation solvers (Nishioka and Atluri,
1980a); Bazant et al., 1978) has not yet been studied.
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APPENDIX 1

Finite Element Matrices

This appendix presents matrices for general three-
dimensional isoparametric finite element analysis based on the
dynamic ELD kinematic model. As before, the summation
symbol indicates assembly over the number of elements. The
consistent mass matrix in equation (20) is

A=
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The stiffness matrix is defined as
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Here, matrix A has the same form as A with X being replaced
by X. D and 8 are defined by introducing the following two

vectors:
b=A+G-X,, q=aH-X, @7

where a = X, ,,J,;. Then

bJy biJy bJy 0 0 0 0 0 0
D= 0 0 0 bJy by bJy 0 0 0
0 0 0 0 0 0 bJy, bJy by
(28)

and matrix 8 is obtained by replacing b; in D by g;. When the
mapping changes in the X, direction only, matrices D and S
are identical, and the corresponding integrals in equation (26)
cancel.

Journal of Applied Mechanics

The scalar A, K, in equation (26), where A, = X;n;, is ex-
pressed as,

jzzjaz - j32j23
AlKa:XeT'HT' f32j13 - j12i33 (29
j12f23 - j22j13

Note that the surface integral in equation (26) will vanish for
finite bodies.
The load vector in equation (20) is
P=I ( g _HTF, Jdv] + S ) HTTeKadag> (30)
Ve ar

where F, and T, are vectors containing nodal intensities of
body force and surface traction for each element.
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Experimental observations suggest that the speed of propagation of torsional waves
in a solid, elastic wave guide with a noncircular cross section is inversely propor-
tional to the density of the fluid adjacent to the waveguide. Thus, by measuring the
speed of propagation of the torsional wave, one can infer the density of the fluid.
Additionally, the above procedure may be utilized to measure, among other things,
liquid level and the composition of binary solutions. A simple theory is derived to

correlate the torsional wave speed and the fluid density; the theoretical results are
also compared with experiments.

1 Introduction

The effect of adjacent fluid on the transmission of stress
waves in solids may be utilized to measure various fluid
characteristics. For example, since the speed of propagation of
torsional stress waves in a rod with a noncircular cross section
decreases as the density of the adjacent fluid increases, one
can determine the fluid’s density by measuring the wave'’s
speed of propagation. A device which operates on the
aforementioned principle (hereafter referred to as the ‘‘tor-
sional wave sensor’’) can be installed permanently, in line, to
monitor continuously the density and other fluid
characteristics such as liquid level, composition of binary
suspensions, etc.

Prototypes of torsional wave sensors were manufactured by
L. C. Lynnworth (1978). Experiments were conducted with
these sensors being used for the measurement of fluid density
(Lynnworth, 1977), liquid level (Miller et al., 1980) and void
fraction of wet steam (Arave et al., 1978). Based on his ex-
perimental data, Lynnworth (1077) derived an empirical cor-
relation between the speed of the stress wave in the wave guide
and the adjacent fluid’s density. It appears, however, that a
quantitative predictive theory for the torsional wave sensor
has not been derived yet. In this paper, I derive such a theory
and then compare its predictions with the experimental data.

2 Theory

An elastic rod of length L and density p, with a uniform
noncircular cross section is submerged in a fluid of density p,
and subjected to a torsion pulse. z is a coordinate along the
rod axis. The angle of rotation (¢) per unit length of the rod is
0¢/8z. Accordingly, the elastic energy in the rod is

E, =-;_S'“ GD(—?E—) "z, (1)

where D is the torsional rigidity and G is the shear modulus.
The rate of deformation is d¢/d¢, and the corresponding
kinetic energy of the rod is
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asb= 3,31

Fig. 1 The flow field (stream lines) around a rotating prism with a rec-
tangular cross section (aspect ratio a/b 3.31)
1 & 99 \ 2
E =—~S I (——) dz, 2
2 ) o Pl 3t ( )

where I; denotes the polar moment of inertia of the rod’s cross
section.

As the torsional wave passes through the waveguide, ac-
celeration and deceleration of the fluid occurs. To the first ap-
proximation, I assume that the fluid motion is two-
dimensional and inviscid. To illustrate the effect of the
waveguide’s deformation on the adjacent fluid, I reproduce in
Fig. 1 a description of the flow field (streamlines) around a
rectangular prism, of aspect ratio 3.31, rotating in an inviscid
fluid.

The corresponding kinetic energy (£;) of the fluid is

()

where I, denotes the fluid’s ‘‘apparent’’ polar inertia.

The assumption of inviscid fluid behavior can be justified
on the grounds that the thickness of the viscous boundary
layer is much smaller than the dimensions of the waveguide’s
cross section. The thickness of the viscous boundary layer is of

E,=

the order (»T)'/2, where » is the fluid’s kinematic viscosity and

T is the wave’s period. For example, for a waveguide
operating at a frequency of 50 kHz in water, (»7)'/?> ~10~°m,
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Fig. 2 The ratio between the fluid’s apparent inertia (/) and the cross
section’s polar inertia (/) as a function of the aspect ratio (a/b) for rec-
tangular and elliptical cross sections
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Fig. 3 The K factor (the ratio of the speed of propagation of torsional
waves in a waveguide with a rectangular or elliptical cross section and
that in a waveguide with a circular cross section) as a function of the
aspect ratio a/b

while the waveguide’s cross-sectional dimensions are of the
order of 10~3m.

Given the assumptions stated above, it follows that D, I
and I are not functions of z. Consequently, the corresponding
Lagrange equation is

2 62
09 229 @
ar? az?
where
I 172
= KJ——<1+ f"f) ©)
S SpS

and K=VD/I,<1. In order to obtain a quantitative relation-
ship between ¢ and the ratio of fluid-solid densities (o;/p;),
one needs to obtain explicit expressions for K, I, and I,
which depend on the shape of the cross section alone. Here,
two different cross-sectional geometries are considered: an
ellipse and a rectangle. The former was chosen since the cor-
responding parameters (K, I, and [;) are readily available and
the latter was used to facilitate comparison with Lynnworth’s
(1977) experiments.

Elliptical Cross-Section. For an elliptical cross section of
axes 2a X 2b, Milne-Thompson (1968, p. 260) and Sokolnikoff
(1983, p. 122) have, respectively, reported that

2 _ p2y2 2
——;f =——————(a 5 , and K=————ab

~ 2ab(a +b?) ©

Journal of Applied Mechanics

I,/I; and K are depicted as functions of the aspect ratio a/b,
where a> b, in Figs. 2 and 3, respectively.

Rectangular Cross Section. To obtain /,/I; for a rec-
tangular cross section of dimensions 2a X 2b, 1 follow a pro-
cedure devised by Bickley (1934). The derivation is lengthy
and therefore is not reproduced here. I note in passing that
Bickley’s paper contains a few misprints. (Corrections are
available from me upon request). Calculated values of the
ratio I,/I; are depicted in Fig. 2 for aspect ratios 1 =a/b=<10.

As the ratio a/b— o, the apparent inertias around the rec-
tangle and the ellipse approach the same limit of wa*/8. In the
case of the ellipse, I, approaches the limit from below while, in
the case of the rectangle, the approach is from above. The
limit corresponds to the apparent inertia of fluid adjacent to a
flat plate of length 2a. The same is not true, however, with
regard to the cross-sections’ polar moments of inertia. The
ratio here is

(Is)rcctangle . 16

(Is)ellipse 3

for all a/b, which suggests that for a/b > 2.5 sensors with ellip-
tical cross sections are likely to be more sensitive than their
rectangular counterparts.

According to Sokolnikoff (1983, pp. 128-132) the K value
for rectangular cross section is

can @Cn+m a

4 192 - 2 b
_ _ 7
T@n| ( ) z:: @n+1)° O

where a> b. This infinite series converges rapidly and it is suf-
ficient, for any practical purpose, to retain only the first term
in the series. The variation of K as a function of the aspect
ratio a/b is depicted in Fig. 3.

3 Comparison With Experiments

A few experiments involving the torsional wave sensor have
been carried out by Lynnworth (1977). In these experiments,
wave guides with rectangular cross sections were submerged in
various fluids and torsional pulses were induced at one end of
each rod, using a magnetostrictive transducer. The resulting
waves were reflected from the rod’s other end and intercepted
by the original transducer which alternatively operated as a
transmitter and as a receiver. The time span between transmis-
sion and reception was then measured. Lynnworth
documented the ratio between Dt (the difference between
transmission time in a waveguide submerged in fluid and in
air) and the transmission time ¢ for waveguides surrounded by
air.

According to equation (5)

Dt I 0 172
2 1+_f__f_) 1 8
t ( I, ps ®

when the transmission time in air is assumed to be about the
same as in a vacuum.

For I/I; ps/p< <1, this expression can be approximated
as

2 1 If Pr )
r 2 I, ps

to yield a linear relationship between D¢/t and p;/p;.

In Fig. 4, the ratio D¢/t is depicted as a function of the den-
sity ratio (os/p;) for rods of various cross sections (a/b=1.05,
2.46, 2.93, and 3.75). The curves represent the theoretical
results (equation (9)) where the ratio I,/I; is obtained from
Fig. 2. The crosses correspond to Lynnworth’s experimental
data. The sensor material was stainless steel (SS 304). The
fluids used were: n-Pentane, Ethyl alcohol, Benzene, Water,
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Fig. 4 The ratio Dt/t is depicted as a function of the density ratio p;/pg
for stainiess steel waveguides with rectanguiar cross sections of
various aspect ratios. Dt denotes the difference in the transmission time
in a waveguide submerged in fluid of density p; and the same waveguide
in air. t is the transmission time in air.
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Fig.5 The ratio Dt/t is depicted as a function of the aspect ratio a/b for
stainless steel waveguides with various rectangular cross sections. The
waveguides are submerged in water.

Chlorobenzene, Carbon-tetrachloride, and Ethylene-bromide.
The deviation in Fig. 4 between the theoretical predictions and
the experimental data is typically well below 20 percent. Since
Lynnworth (1977) did not report the experimental uncertainty
of his experiments, it is impossible to comment whether the
above difference is within the experimental error.

In Fig. 5, the ratio Dt/t is depicted as a function of the
aspect ratio (a/b) for stainless steel sensors (a/b=1.05, 2,
2.41, 2.46, 2.49, 2.93, 3.3, and 3.75) submerged in water. The
density ratio p,/p, is maintained constant. The solid lines and
the crosses correspond, respectively, to theory and experi-
ment. The disagreement between theory and experiment is
smaller than 12 percent.

In Fig. 6, Dt/t is again depicted as a function of the density
ratio p;/p; for sensors of aspect ratio a/b = 2. The crosses and
stars correspond to Lynnworth’s experimental results and the
solid lines, to the theoretical predictions. The stars relate to a
sensor made of fused silica submerged in the same fluids
detailed in Fig. 4, and the crosses correspond to sensors made
of graphite, Magnesium, Aluminum, Titanium, stainless steel,
copper 129, and Tungsten and submerged in water. The devia-
tion between theory and the experiments is smaller than 25
percent. :
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Fig. 6 The ratio Di/t is depicted as a function of the density ratio p;/pg
for waveguides made out of a variety of materials

4 Conclusions

A simple theory has been advanced to predict the perfor-
mance of a torsional wave sensor. Despite the simplicity of the
theory which neglects three dimensional and viscous effects, a
favorable agreement with experiments is obtained.

The importance of the theory is that it enables one to op-
timize sensor performance. To improve sensor sensitivity, one
must maximize the ratio I,/I; while minimize the density of
the wave guide (p,). For both the rectangular and elliptical
cross sections, {,/1; increases monotonically as the aspect ratio
(a/b) increases. However, for practical reasons, the aspect
ratio a/b cannot be increased without limit. A minimum value
must be set for (b) to assure structural integrity and the value
of (@) should be well below the wave length of the torsional
wave in order to minimize dispersion. Conceivably, I,/I;
might be maximized more effectively with cross sections other
than those investigated here. A search for the optimal cross
section would probably be accomplished most efficiently using
numerical techniques rather than the analytical approach
taken in this note.
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Beams Under Large Overall
Motions—The Plane Case: Part |

The dynamic response of a flexible beam subject to large overall motions is tradi-
tionally formulated relative to a floating frame, sometimes referred to as the shadow
beam. This type of formulation leads to equations of motion of the form g(y, y, t)
= 0, that are implicit, nonlinear and highly coupled in the inertia terms. An alter-
native approach is proposed whereby all quantities are referred to the inertial frame.
As a result, the inertia term enters linearly in the formulation simply as mass times

acceleration. Crucial to this formulation is the use of finite strain rod theories
capable of treating finite rotations. Numerical examples that involve finite vibra-
tions coupled with large overall motions are presented in Part II of this paper.

Introduction

The dynamics of a flexible beam undergoing large overall
motions is typically formulated relative to a coordinate system
that follows the rigid body motion of the beam, sometimes
referred to as the shadow beam (Laskin, Likins, and
Longman, 1983). The introduction of this floating frame,
relative to which the strains in the beam are measured, is
motivated by the assumption of infinitesimal strains. This
assumption has been used by several authors, such as, to name
a few, Ashley (1967), Grotte et al. (1971), de Veubeke (1976),
Canavin and Likins (1977), Kumar and Bainum (1980), Kane
and Levinson (1981a,b), and Kane et al, (1983). With the
assumption of small strains, the use of a floating frame allows
a simple expression for the total potential energy of the beam.
By contrast, the expression of the kinetic energy of the system
takes a rather cumbersome form. The resulting equations of
motion, although restricted to small strains, are nonlinear and
highly coupled in the inertia terms due to the presence of Cor-
iolis and centrifugal effects as well as inertia due to rotation of
the shadow beam. Moreover, the Galerkin discretization in
space variables, leads to a system of implicit coupled nonlinear
differential equations in time of the form g(y, y, ) =0 (e.g.,
Song and Haug, 1980). An essential characteristic of this
system is that it cannot be transformed to a standard explicit
form y=g(y, ), without appending an algebraic constraint.?

1Formerly at the University of California, Berkeley.

20ne can always set y = z, and append the algebraic constraint g(z, y, t) = 0.
This is a DAE system, and not a standard ODE system (Petzold, 1982).
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Thus, use of the mode shapes of the structure as a Galerkin
basis, a procedure often employed (see, e.g., Likins, 1974) ap-
pears to be of little value in the general case due to the highly
coupled nature of the resulting semi-discrete equations.
Moreover, the complex nature of these equations has often led
to simplifying assumptions; see, e.g., Winfrey (1971), Erdman
and Sandor (1972), and Baghat and Willmert (1973). We refer
to Song and Haug (1980) for a review of several approaches in
the dynamic analysis of mechanisms and machines.

In this paper, we propose an approach based on a
philosophy opposite to that outlined above. The kinetic energy
of the system is reduced to a quadratic uncoupled form simply
by referring the motion of the system to the inertial frame.
This results in a drastic simplification of the inertia operator,
which now becomes linear and uncoupled, while the stiffness
operator emanating from the potential energy functional
becomes nonlinear. Conceptually, the essential step needed in
developing this alternative approach is the use of rod theories
capable of accounting for large rotations of the beam. It is im-
portant to note that the basic characteristic of the appropriate
strain measures in these theories—as discussed by Reissner
(1972, 1973), Antman (1972, 1974), Simo (1985), and Simo
and Vu-Quoc (1985)—is their invariance under superposed
rigid body motions.

From a computational standpoint, the substantial advan-
tage of the proposed approach over the traditional shadow
beam approach lies in the much simpler structure of the
resulting equations. As shown in Part II of this paper, by in-
troducing a Galerkin semi-discretization in the space
variables, one obtains the standard nonlinear system of ODE’s
that typically arises in nonlinear structural dynamics: M q +
D q + P(q) = F (see, e.g., Belytschko and Hughes, 1983). In
addition, this approach has the advantage of automatically ac-
counting for large strains. Within the present context, there is
little to be gained by introducing at the outset the additional
small strain assumption.

As a basis for our discussion, we choose a specific problem
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T(1) Reference (Initial)
Configuration
2 ull
Fig. 2.1 Basic kinematics. Floating and inertial frames.

to introduce our formulation: the dynamics of a flexible robot
arm. This model problem consists of a flexible beam with one
end at the origin of the inertial frame {e,, e,, e;} (see Fig.
2.1). The robot arm is allowed to rotate about the axis e;, but
the entire motion of the arm is restrained to the plane {e;, e,}.
It will become clear, however, that our formulation can be ap-
plied to a more general setting of flexible plane beams subject
to large overall motions. We shall also show through
numerical examples that our formulation can be employed
directly in the analysis of a system of flexible beams connected
by hinges, i.e., the multibody dynamics problem.

2 Classical Approach Based on Small Strains: Floating
Frame

In this section we summarize the equations of motion for a
rotating flexible beam using the shadow beam approach and
assuming small strains superposed onto large rigid body rota-
tions. Our purpose is to exhibit the main drawback of this ap-
proach. Use of the floating frame, although allowing a simple
expression for the potential energy, leads to a cumbersome ex-
pression for the kinetic energy of the system. This results in
equations of motion with highly coupled nonlinear terms in-
volving the time derivatives of the state variables. From a
computational standpoint, the numerical integration of these
equations is a nontrivial task.

2.1 Basic Kinematic Assumption. Consider the rotating
beam shown in Fig. 2.1, Let ¢ be the position vector of a
material particle initially located at X = X,e; + X,e, in the
undeformed (reference) configuration. Here {e,, e, } is the in-

ertial frame attached to the fixed undeformed configuration.-

In addition, we introduce a floating frame {a, (¢), a, (¢)} that
follows the rigid body motion of the beam, i.e., the shadow
beam. The basic kinematic assumption is that plane sections
remain plane after deformation. Accordingly, we set

6 (X, X5,1): = ¢(X |, 1) + X, 6,(X11) 2.1a)

where

850/ Vol. 53, DECEMBER 1986

bo(X1,1) 1 =1X, + 8, (X ,0)]a, (1) + i,(X, 1) ay (1),
(X)) =cosa (X ,t)a, (t) +sin& (X ,0)a, (1),
t(X,,t): = —sin& (X, f)a, (7) +cosa (X, t)a, ().
For notational simplicity, explicit indication of the arguments
X,, X;, and ¢ will often be omitted. Since the motion is
planar, ¢; = t; = a;. Note that {t;, t,} defines a moving
frame that follows the deformation of the beam with t, always
contained in the deformed cross section and t; perpendicular
to the cross section. Using matrix notation, relations (2.15), ,
may be expressed as
} . (2.2

t, e - cosé
=Af , Wwhere A: =
t, a, sin&

Although it is possible to develop the formulation without in-
troducing any restriction on the size of the strain field, the
assumption of small strains is typically introduced ab-initio, as
discussed below.

(2.1b)

—sin@

cos&

2.2 Motivation: Total Potential Energy. By introducing
the floating frame {a,, a,} one can enforce at the outset the
following infinitesimal strain assumption:

B 1 —-@&
a@small (= 10°) & A =
a 1
2.3)

The strain 4 and the curvature £ relative to the floating frame
{a,, a,} are then defined as

ii;, and i, small

F=¢{—t, k=a'ty, (2.4a)
where (¢)’:= d(+)/dX,. In component form, ¥ is expressed as
F=7181 722, (2.4b)

where
Vi=8{, Fy=il;—a& (2.40)

One refers to 4, and 4, as the axial strain and the shearing

strain, respectively. Denoting by EA, GA;, and EI the axial,

shear, and flexural stiffnesses of the beam (relative to the

floating frame {a,, a,}), the potential energy is expressed as
1

[ p— 2 =2 T(&' 2 ds
II 3 S[O,L] {EAY* + GA 45+ EI(&')*)

+gxr —T(2)Y(2) (2.5
where II;,; is the potential energy of the external loading

acting on the beam and T'(¢)e, is an applied torque at the axis
of rotation e, of the robot arm.

2.3 Kinetic Energy. The kinetic energy of the system takes
a rather cumbersome form compared with the simplicity of
(2.5). To obtain the appropriate expression, we introduce the
time derivative relative to an observer attached to the floating
frame. Accordingly, we define

y._9¢

T (2.6)

The following expression for the material time derivative,
denoted by a superposed ‘‘dot”’, is standard in rigid body
mechanics (Goldstein, 1980),

.V

d=¢+wWXo, 2.7
where w is the angular velocity of the floating frame. For the
plane case under consideration, the angular velocity w is given
as

dy

w=—2 o =ia,,

o 2.8)
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where a;:=a; Xa, is fived. Since the time derivative of the
floating basis is

_ﬁi = \Laz, a,= —‘ri/al, 2.9
it follows from expressions (2.15) that
t =G+, th=—(E+¥t,. (2.10)

Thus, we arrive at the following expression for the time
derivative of the position vector ¢

.y . L ,
o=@+ ¥[—iha, +(X; +i)a,] - X,(&+ ¥y,
v .
Qo =ilia, +ia,.

(2.11a)

2.11b)
The kinetic energy of the system obtained from the expression

. )
K S{O'L]X[___:_’ 4] PTG AX 0%,
where p(X;, X;) is the density and I¢l2:=¢? + ¢3. By
substituting (2.11) into (2.12) we obtain

1

—-Z—S[w [A4, (i} + i)+ I, (&+)*1dX,

(2.12)

K=

1 pe s JUNgS
b A iy + (X 4 )]

2
+ 2 [(X, +@3,)? + iB31)dX, (2.13)
Here, the inertia constants A, and 7, are defined as
A= S[ _h__lL] p(X1,X5)dX,,
22
I,:= S[___,._ 1] P XXX, @14

2’2
2.4 Equations of Motion: Coupled Inertia Terms. The
equations of motion may be systematically derived by means
of Hamilton’s principle. Accordingly, we require that the
action

L:= S[: o (K—-1II)dt be stationary, (2.15)
112

for arbitrary paths connecting two points at time ¢, and ¢, in
the configuration space. Substituting expressions (2.5) and
(2.13) into (2.15) and making use of standard arguments in-
volving integration by parts, we arrive at the following equa-
tions governing the extensional and flexural motion of the
beam

A,y — Yty — 2, — 2 (X, + ;)] - EAd{=0,
Ay + (X, + ) + 29, —§2i5,)] — GA, (i3 — &) =0, (2.16)
I (&+{)—El&" —GA,(ii;— & =0.

Appropriate boundary conditions automatically follow from
the stationarity condition (Fung, 1965). In addition to equa-
tions (2.16), one obtains the following constraint equation ex-
pressing the overall balance of angular momentum of the
system

B, (A0 + )2+ 1+ 1, )ax,

A, (X + )ity + ity }dX,

+2¢S

[0,L]

* g[O,Ll A, (X + )iy = iy JdX, + S[o,q 1,6dX, =T(1)

(2.17)

The highly nonlinear nature of the coupled system
(2.16)-(2.17) involving the variables {#,, i,, &, ¥} should be
noted.

Journal of Applied Mechanics

Remark 2.1. The Euler-Bernoulli formulation is obtained
form the above equations by assuming that shear deformation
is negligible. Accordingly, we let (7, — &) — 0, and GA; — =
so that GA(il; — &) — V where Vis the shear force acting on
the cross section of the beam. Equations (2.16),; governing
the transverse and flexural vibrations of the beam may be
combined to obtain

Aty + Elil,™ — I ig + A, ) (X, + i)+ 2l —§2ii,)] =0
(2.18)

The first two terms in (2.18) correspond to the standard linear
Euler-Bernoulli beam theory. This equation is often attributed
to Rayleigh (e.g., Fung, 1965, p. 321) who accounted for the
contribution of section rotary inertia to the transverse vibra-
tion of the beam. The third one gives the contribution of the
rotatory inertia and is often neglected in structural applica-
tions. The last three terms within brackets arise as a result of
coupling between deformation and rigid body motion. These
terms represent the inertia due to rotation of the shadow
beam, the Coriolis and the centrifugal effects, respectively.
The crucial role of the term y2i, related to centrifugal force in
(2.18) with regard to the stability of a rapidly rotating beam is
discussed in detail in Simo and Vu-Quoc (1986).

3 Proposed Approach Based on Finite Strains: Inertial
Frame

By contrast with the formulation outlined above, we pro-
pose an alternative approach whereby the structure of the iner-
tia operator becomes linear and uncoupled. This is achieved
by referring the basic equations of motion to the inertial
frame. As a result, drastic simplification of the inertia (tem-
poral) part is obtained by shifting the nonlinearity of the pro-
blem to the stiffness (spatial) part of the equations of motion.
Conceptually, the essential step needed to develop this ap-
proach is the use of finite strain rod theories capable of ac-
counting for large rotations. In section 3.3, we summarize
from a physical standpoint the appropriate finite strain
measures. We refer to Reissner for the plane case, and
Reissner (1973, 1981), Antman (1974), Simo (1985), and Simo
and Vu-Quoc (1985) for the three-dimensional case. An essen-
tial characteristic of these strain measures is their invariance
under superposed rigid body motions.

From a computational standpoint, the substantial advan-
tage of the proposed approach over the shadow beam ap-
proach discussed in Section 2 lies in a much simpler structure
of the resulting equations. This structure corresponds to the
standard nonlinear system of ODE’s that typically arises in
structural dynamics. In addition, we automatically account
for large strains.

3.1 Basic Kinematic Assumption. As in Section 2, the
basic kinematic assumption is the condition that plane sections
normal to the axis of the beam in the undeformed configura-
tion remain plane, i.e.,

O (X1,X5,0): = ¢o(X,2) + Xyt,(X,1) G.1a)

The difference between assumptions (2.1a¢) and (3.1q) is that
the position vector ¢, and the moving vectors {t,, t,} follow-
ing the deformation of the beam are now expressed relative to
the inertial frame {e,, e,}. Accordingly, we set

Oo(X151): = [X; +u (X, 0)]ey +uy(X,t)e,,
t(X,,t):=cosf (X, ,t)e; +sind (X,,t)e,,
(X ,t): = —sinf (X;,t)e, +cosd (X,t)e,.

As in equation (2.2), we shall use matrix notation and express
relations (3.16), 3 as

(3.1b)
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t €, cosf —sind
=A! , where A: = . 3.2)
t, e, sinf  cosf

Note that the floating basis {a;, a,} plays no role in the pre-
sent formulation.

3.2 Motivation: Kinetic Energy. We show that the kinetic
energy of the system relative to the inertial basis reduces to the
standard quadratic uncoupled form. To see this, note that
from equation (3.2) the rate of change of the moving vectors
{t,, t,} is given by

i, =6t,, t,=—6t,. 3.4
Hence, the time derivative ¢ of the position vector ¢ is ob-
tained as

6=y — X061,
bo =118, +iize,.
It follows from equation (3.5) that lgl2:= ¢} + ¢3 has the
expression
@2 = [42 + 3] + X362 ~ 26X, (cosbui, + sinbi,).  (3.6)
Upon integrating p (X, X,)l¢l12 over [0, L] X [~ (h/2), h/2],

we arrive at the following expression for the kinetic energy of
the system

(3.5)

1 ) ] .
KETSIO , WA, G+ i) +1,671aX,. G.7a)
Here, as in equation (2.13), the inertia coefficients 4, and I,

are given by equation (2.14).

Remark 3.1. The case of a flexible beam attached to a rigid
body considered in Levinson and Kane (1981) can be readily
accommodated within the present formulation by modifying
expression (3.7a) for the kinetic energy. Let my be the mass of
the rigid body, and I its inertia relative to an axis parallel to
e, = t; and passing through the connecting point with the
beam. The kinetic energy of the composite system, then, is
given by

1 . 1,
Ko =K+—= mgldo@.0 P +—— L°0.0)  (3.7b)

where K is given by (3.7a).

Remark 3.2. It is noted that expression (2.13) for the kinetic
energy in the shadow beam approach may be exactly recovered
from equation (3.7) simply by employing the coordinate
transformation

X, +u, cosy —siny X, +1,
= (3.8)
U, siny  cosy iy
That is, the expression for the kinetic energy of the system is

independent of any particular assumption on the magnitude of
the strain field.

3.3 Potential Energy: Invariant Strain Measures. Within
the context of large strains, a physically reasonable definition
of the strain field in the beam is also provided in vectorial
form by expression (2.4)

yi=05—t;, x=0"t;. (3.9a)

The physical interpretation of v is clear as shown in Fig. 3.1. v
measures the difference between the slope of the deformed
axis of the beam and the normal to the cross section defined by
t,, and « is the rate of rotation of the cross section along the
undeformed length of the beam. In component form, relative
to the inertial frame we have from equation (3.15) the follow-
ing expression for y .

vY="v€, + 7,8, =[(1 +ui)— cosfle, + [u; —sinfle, (3.95)
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Alternatively, relative to the moving vectors {t,, t,}, from
relation (3.2) we have the following expression

y=Tt, +T5t,,

T, 1+ u{—-cost
=A' : .
T, u, —sind

The analogy between expressions (2.4a,b,c) and (3.9a)-(3.9b)
should be noted. We now assume the same expression for the
potential energy, relative to the moving frame {t,, t,}, as the
one considered in the small strain shadow beam approach
discussed in Section 2. Accordingly, we set

1
H:=—5[0L1 (EAT? + GA,T3 + EI(6")?}dS

(3.10a)

where

(3.10b)

2

+ T pyr— T(£)6(0,1) (3.11)

Remark 3.3. The components of the strain y in the basis
{t,,t;} denoted by [I', I';]* are invariant under superposed
rigid body motions on the beam. One can see this by consider-
ing the rigid body motion composed of a superposed transla-
tion ¢(#), and a superposed rotation §(¢) represented by the
orthogonal transformation matrix

(3.120)

cosf —sinf
Qt):= [ J

sin@  cosf

The transformed quantities in the expression of T'; in equa-
tions (3.10) above are as follows

95 (X1,0) =e(0) + Q1) ¢, (X1,0),

Fri=¢k e +oh e, =Qs., (3.12b)
o4’ T+uy
ie., =Q , (3.12¢)
b’ u;
A+ =QA, (3.12d)

Since t} = cos(B+0)e; + sin(B+0)e,, it follows that

y =T+t =) ' —tf, (.13a)
where
Iy A+ ba1’ B {cos(6+0) } _ {Fz }
T} Y sin(8+6) S, J.
(3.13p)

The invariance under superposed rigid body motions of the
curvature k follows at once in the plane case from expression
(3.9a). This invariance property of the strain measures is
essential for the success of the proposed approach.

Remark 3.4. It can be shown that definition (3.9a) and ex-
pressions (3.90), (3.10) follow from a rigorous argument
based on the equivalence of the stress power for the general
three dimensional theory with the reduced stress power of the
(finite strain) beam theory; see Antman (1972, 1974) and Simo
(1985).

Remark 3.5. We shall be concerned only with spatially fixed
loads, which do not depend on the deformed configuration, as
opposed to follower loads that are configuration dependent.
Simo and Vu-Quoc (1985) give a treatment of follower loads
in the general context of the three-dimensional finite strain
beam. Accordingly, the potential of the distributed loading in
(0, L) is given by
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1 +U|l

Fig. 3.1 Physical interpretation of the strain components of a beam in
the finite strain case

pyr= S[O 4 [mefe, +neg,ldX, (3.14)
Here, n(X,, t):=n,(X,, f)e; + A, (X, {)e;, and m (X, ¢)
:=m(X,, t)ey are the external force and torque per unit of
reference length acting on the beam. :

Remark 3.6. Dissipative mechanisms with viscous force pro-
portional to the velocity can be readily accommodated in the
formulation. To this end, the first variation of equation (2.15)
is augmented by a velocity dependent dissipative term Wj
defined by
WD:= - S S [nD°5¢0 +mD'60e3]dX1dt, (3.15)

[, 10.L]

where 8¢, and 6fe,; denote arbitrary variations, and n, and
m, are the velocity proportional viscous force and torque. For
simplicity, we assume the expressions

npi=pd, by, mp:=pul,fe;. (3.16)
In the linear case this dissipative mechanism is often referred
to as mass proportional damping, and becomes progressively
ineffective in the high frequency range of the response. Alter-

native dissipative mechanisms typically involve inelastic con-
stitutive behavior, e.g., viscoelastic response.

3.4 Equations of Motion: Uncoupled Inertia Terms. As in
Section 2, the equations of motion governing the evolution of
the system may be systematically obtained from Hamilton’s
principle. Standard manipulations yield the final result

’

. . 1+u{—cosf .
A, bp+ud, by~ | ACA! —n=0,3.17a)

u; — sinf

LO+ul,6—EIB”

_u2

y 1t 1+u{—cos .
ACA! —m=0. (3.17b)
1+u{ u; —sinf

Journal of Applied Mechanics

We recall that A and C are given by

EA 0
C:=
0 GA,

cosf —sinf

, A=
sinf

Equations (3.17a,b) comprise the system of nonlinear partial
differential equations governing the response of the system.
Note that these nonlinear equations are linear in the time
derivative terms.

To define the natural boundary conditions, and for subse-
quent developments, we introduce the notation

n 14 uj—cosf
{ ‘} . = ACA! . mi=EI'.  (3.18)

m uj —sind

} . (3.17¢)

cosf

Here, n(X,, #):=n(X,, t)e; + ny(X,, t)e, and m(X,, t)
:=m (X, t)e; represent the internal force and internal mo-
ment acting on a deformed cross section of the beam. For the
robot arm in Fig. 3.1 we have the following natural boundary
conditions

m(0,¢) =T(t)e;, m(L,t)=n(L,t)=0. (3.19)

These boundary conditions follow automatically from
Hamilton’s principle and the appropriate expression for Il ;.

3.5 Conservation of Global Momenta. Within the pro-
posed approach global linear and angular momenta are
automatically satisfied, and do not provide an additional con-
straint. This is in contrast with the shadow beam approach in
which the basic equations of motion (2.16) must be sup-
plemented by the global angular momentum condition (2.17)
for the evolution of the system to be completely determined.
To verify conservation of global linear and angular momenta
we rewrite equations (3.174,b) with the aid of equation (3.19)
as

L-n'~i'=0, H-m’'—¢,{xn—-m=0. (3.20a)

Here L(X,, t) denotes the linear momentum per unit length,
and H(X|, ¢) the angular momentum per unit length relative
to the centroid of the deformed cross section. Using equation
(3.1) we have

L:=S h 1 pedXy=A,¢,
[_ 272 ]

H:= S ii] pld — do] X $dX, =1, 0e;, (3.20b)
[" 2" 2

where e;: =e, X e,. The global linear and angular momentum

of the system denoted by IL(#) and IH(¢), respectively, are

defined as

IL(t):=§

J0,L]x [—»:—L] pl/') dX,dX,,

2

(3.21)

mm::S i ,,]p¢x¢dX1dX2.

oaix[ =5

Making use of the identity ¢ X ¢ = (¢ —dg) X ¢ + ¢y X ¢ the
global angular momentum is expressed as

]H(t):S[OL] [H+ ¢y xLldX,, (3.22)
where L(X,,#) and H(X,,t) are given in equation (3.20b).
Differentiating equation (3.22) and using equation (3.20a), we
obtain the following condition involving the applied load and
boundary conditions

[ + ¢ X A)AX;.
[0,L]

. X1=L
TH = [m + ¢ X n] |X i +S (3.23)
.

Condition (3.23) states that the resultant torque of the applied
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loading equals the rate of change of the total angular momen-
tum, Similarly, for the global linear momentum we obtain
. Xy=L
IL=n l :
X1=0

+ S ndx,, (3.24)
10,L]

which states that the resultant force of the applied loads equals
the rate of change of the global linear momentum. Equations
of motion (3.20q) along with definitions (3.20b) are general,
and remain valid in the three dimensional theory. Thus, the
foregoing discussion leading to expressions (3.23) and (3.24) is
not only restricted to the plane case.

4 Concluding Remarks

In this paper, we have presented a new approach to the
dynamics of a plane beam under large overall motions. The
essence of this approach is the fully nonlinear plane beam
theory that can account for finite rotations as well as finite
strains. The appropriate strain measures in the beam theory
are invariant under superposed rigid body motion; such in-
variance is the necessary ingredient to the success of the pre-
sent approach. The motion of the beam is completely referred
to the inertial frame. We thus obtain the expression of the in-
ertia term in the equations of motion simply as mass times ac-
celeration. By contrast, in the shadow beam approach, one
obtains a nonlinear and highly coupled inertia operator; hence
a special computer code must be devised to solve the resulting
system. In our approach, the inherent nonlinear character of
the problem is transferred to the stiffness part of the equations
of motion; this results in equations of motion that arise
typically in nonlinear structural dynamics. As demonstrated in
Part II of this paper, the dynamics of flexible beams under
large overall motions can be analyzed in any existing nonlinear
finite element program. Without alteration in the formula-
tion, one can apply this approach to the dynamics of a system
of flexible beams connected by hinges, as shown by our
numerical examples. In addition, the approach proposed in
this paper can be readily extended to accommodate inelastic
constitutive behavior, and can be used to treat a wide range of
problems including the dynamic analysis of an earth-orbiting
satellite composed of beam elements. Finally we note that,
conceptually, the proposed approach readily carries over to
the fully three dimensional case. Further comments on possi-
ble extensions of the proposed methodology are given in part
II of this paper.
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Beams Under Large Overall
Motions—The Plane Case: Part I

The numerical treatment of the methodology proposed in Part I of this paper is con-
sidered in detail. Unlike traditional approaches, a Galerkin spatial discretization of
the equations of motion, now referred to the inertial frame, yields the standard form
of nonlinear structural dynamics: M4 + Dq + P(q) = F, with M and D constant
matrices. Numerical examples that involve finite vibrations coupled with large

overall motions are presented. These simulations also demonstrate the capability of
the present formulation in handling multibody dynamics.

1 Numerical Approximation: Galerkin Method

In this section we discuss the numerical treatment of the
nonlinear partial differential equations developed in Section 3
of Part I. The basic strategy is to perform a Galerkin
discretization in the spatial variable leading to the standard
system of ODE’s in the time variable characteristic of
nonlinear structural dynamics. This system may then be solved
discretely using standard time stepping algorithms (e.g., the
Newmark family). The finite element method provides an
established technique for constructing the (spatial) basis func-
tions necessary to perform the Galerkin discretization. Expres-
sions of the matrices resulting from the application of this pro-
cedure are given in the appendix.

1.1 Weak Form of Equations of Motion—Spatial
Diseretization. The equations of motion (3.14) of Part I may
be put in the following form

Id(X,,t) +Ad(X,,0) +Pld(X,,0)=f(X,0, (lL.1a)
where
I. =Diagl4,,4,.1,], A: = Diag[uA,,p4,,u1,], (1.15)
X, +u(X,,0) A, (X,2)
d(X,,t):= Uy (X;,t) , B(X 0= { Ay(X),0)
0(X,,0) m(Xy,t)

Equation (1.14) is a nonlinear partial differential equation in
the generalized vector d (X, ) € V;, where V, is the space of

lFormerly at the University of California, Berkeley.
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admissible (generalized) displacements.? This equation is
linear in the terms involving time derivatives, i.e., the accelera-
tion d in the first term and the velocity d in the second term.
The third term P[d], on the other hand, is a nonlinear dif-
ferential operator in the space variable X,€(0,L). This
nonlinearity results from the coupling between large overall
motions and (finite) strain deformations in the beam. Con-
verning the applied load n and M, see remark 3.5. The weak
form G(d,y) of equation (1.1a) is obtained by integrating over
the spatial domain (0,L) CR the dot product of this equation
with an arbitrary weighting function 9€ ¥,.% That is

G(d,'I))I=SOL 71 d+Ad+P[d]—fldX, =0,vqeV,  (1.2)

The final exp;ression is obtained from (1.2) by integration by
parts on the spatial derivatives entering P[d], so that only first
order spatial derivatives are involved in G(d,y). We refer to
the appendix for the details. The displacements d(X,,f) and
the weighting function 5(X,) are then interpolated in the
spatial variable X, according to

N
d(X,0= ), ¥, (X)), (1),
I=1

N
n(X)= ), ¥ (X)) (1.3)

I=1

Upon introducing the spatial discretization (1.3) of d(X,f)
and of n(X)) into the weak form (1.2), we obtain the semi-
discrete equation of motion in matrix form

Mi(z) +Dd () +P(q(t)) =F(¢) (1.4)

ZA possible choice for ¥; could be ¥j:= (d e [H'(O,L) x C*(, )3
'"1‘x1:0=“2‘x1=0=0» and 'x1=0

3 ¥V, could be chosen to be Vy:= {4e H o, L)]3 | with appropriate bound-
ary conditions for 4 such that y;n; + nyn, -+ 13m=0 at the boundaries)
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where M and D are constant mass and damping matrices,
respectively, q(#) := [q;(?),...,qy(£)) denotes the
generalized displacement vector, P(q(¢)) the vector of inter-
nal forces depending on q(¢), and F(¢) the applied load vec-
tor. Details of the expressions of M, D, P(q(?) ), and F(¢) can
be found in the appendix.

Remark 1.1. In the absence of dissipative mechanisms (e.g.,
damping) the system has a well defined energy function H =
K + II. The Galerkin procedure outlined above is then
equivalent to a standard Raleigh-Ritz approximation based on
(1.3),. See, e.g., Meirovitch (1970).

Remark 1.2. In the shadow beam approach restricted to
small-strains, one may also use the modal superposition
method to discretize spatially the displacements [if,,i,] as in
(1.3). For this purpose, consider equations (2.16) of Part I.
One first eliminates & from equation (2.16) using (2.16),. The
semi-discrete equation of motion of the system is then obtain-
ed by projecting the resulting equations (2.16) onto the or-
thogonal basis of mode-shapes of the Euler-Bernoulli can-
tilever beam. However, no matter which discretization pro-
cedure is used, the resulting semi-discrete equations of motion
system constitute a system of highly coupled nonlinear dif-
ferential algebraic equations (DAE). The solution of this com-
plete system of DAE’s is not a trivial task, and requires a
specially designed computer code (Benson and Hallquist,
1985). Numerical integration methods for DAE systems may
be found in Gear (1971a,b), Petzold (1982), and Gear and Pet-
zold (1984). The solution of the standard nonlinear structural
dynamics equation (1.4), on the other hand, is much simpler
and may be carried out using any nonlinear structural finite
element code. A time stepping algorithm solution procedure
will be outlined in the next section.

Remark 1.3. Multibody Dynamics. In Section 5, we will
show through numerical examples that the proposed approach
can be applied without alteration in the formulation to study
the dynamics of a system of flexible bodies connected through
hinges. It is indeed a simple matter to model such a system in a
finite element program. The shadow beam approach, on the
other hand, leads to a much more involved formulation, e.g.,
as in Hughes (1979), Likins (1974), Song and Haug (1980),
and Sunada and Dubowsky (1980).

1.2 Time Stepping Scheme—Temporal Discretization.
The semi-discrete equations of motion (1.4) can be trivially
rephrased into the standard form of a system of nonlinear
ODE’s, y = g(y,?), by settingy : = {q,q]. This standard ODE
system can be integrated by a variety of time stepping
algorithms (Gear, 1971), which must be consistent with (1.4)
and stable for some range of the time step. We refer to stan-
dard textbooks such as Gear (1971) and Richtmyer and Mor-
ton (1967) for precise definitions of these concepts. Two basic
strategies in devising algorithms for (1.4) may be adopted:

(a) Explicit schemes: Typically, high accuracy may be
achieved by employng high order methods. A classical exam-
ple is furnished by the family of Runge-Kutta methods. It is
well-known that the main drawback of explicit schemes is the
severe limitation on the time step imposed by their restrictive
stability characteristics.

(b) Implicit scheme typically possess very robust stability
characteristics. Classical examples are the trapezoidal rule,
which is the highest order A-stable method possible (Dahl-
quist, 1963), the stiffly stable methods of Gear (1971b), and
the family of algorithms devised by Newmark (1959) and
widely used in nonlinear structural dynamics (Belytschko and
Hughes, 1983). :

Here, motivated by stability considerations, attention is
focused on the Newmark family of algorithms for solving

856/ Vol. 53, DECEMBER 1986

(1.4), which includes the trapezoidal rule as a special case. The
behavior and stability characteristics of the Newmark
algorithm applied to /inear problems is well established, e.g.,
see the analysis of Goudreau and Taylor (1973), and Hilber
(1976). For completeness, we shall outline the basic steps in-
volved in the numerical solution of (1.4) by the Newmark
algorithm.

Let q,, denote the approximate solution to g(#,) at time ¢,,.
Similarly, v, = q(¢,) and r, = §(¢,) represent the approx-
imate velocity and acceleration at time ¢,, respectively.
Assume that the solution {q,, v,, r,} at time 7, has already
been obtained, i.e., the momentum equation (1.4) is satisfied
at time ¢,

Mr,+Dv,+P(q,) =F, (1.5)

where F, = F(¢,). We now aim at satisfying the momentum
equation (1.4) at time ¢, ,, i.e.,

Mr,,+Dv, +P(q,,)=F,,, (1.6)

The Newmark time stepping algorithm defines the relationship
between {q,,,, Vs+1» Tn.1} according to the following
formulae
1
q q Vv T B B
=l m . Tn r 1.7a
n+1 h2 ﬂ h B ﬁ n ( )

V,,+1=Vn+h[(1—7')l'"+Tl'n+]], (17b)

where h:=t¢,, —t, denotes the time step size, and (8, 7) are
the parameters of the Newmark algorithm. We note that
B=0.25 and 7=0.5 correspond to the trapezoidal rule; this
choice of the parameters 3 and 7 renders the algorithm uncon-
ditionally stable in the linear case,* and second order accurate.
Substitution of equation (1.74) into (1.6) yields a system of
nonlinear algebraic equations in terms of q,,, ;.

The resulting nonlinear algebraic system may then be solved
employing the classical Newton-Raphson method. Let q@, ,
denote the value of q,,, at iteration (i) of the Newton-
Raphson algorithm, and Aq{i" the incremental dis-
placements. As an initial guess for {dq,,,, V,41, Fuey), ONE
may choose the starting value q%) | to be the same as the con-
verged value in the previous time increment, i.e., q,,; the initial
values v | and r{?), follow from the Newmark scheme (1.7):

a i =4, (1.8a)
1
———8
O | 32 (1.8b)
i = hﬁ B n .
VO =V, + Al —7)r, + 77 (1.8¢)

At iteration (i) of the Newton-Raphson scheme, the lineariza-
tion about q{’} | of the system of nonlinear algebraic equations
yields
1 T . .
[—h‘{ﬂ— M+E b +KT(Q§'11)]A¢1§.'31‘) =F,
~Mr{); -Dv{], —P(q{) ) 1.9
It should be noted here that while the mass matrix M is

positive definite, the tangent stiffness matrix Kr(q;,) may
be positive semi-definite. The system of equations (1.9) is of

4Roughly, the notion of stability corresponds to well-posedness of the semi-
discrete problem. In the nonlinear case the appropriate concept of stability re-

_mains unsettled, and several notions of stability have been proposed (A-

stability, spectral stability, stability in the energy sense, etc. ..). See, e.g.,
Belytschko and Hughes (1983), Gear (1971b), Chorin et al. (1978).
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Material Properties:
EA=GA;=10,000.

EI =1,000.
Ap= 1.

P
Ip=10.

Ee.Mesh: 10 linear elements

Time history of Y(1):
e
~2 f
15 i 2 3 4 5 6 7 8 8 101
: e (D .
~3 e
10 ~1
o] 25 1
Fig. 1(a) Displacement driven flexible robot arm; problem data

Tﬁ.z

=50 1745 =40

=15 rad

Fig. 1(b) Displacement driven flexible robot arm. Repositioning se-
quence to stop angle y = 1.5 rad. Time step size h = 0.5.

=15 rad

Fig. 1{c) Displacement driven flexible robot arm. Free vibration about ¥
= 1.5 rad. Time step size h = 0.5.

the form KAq(i? = F where the matrix K is banded, sym-
metric, and positive definite. Solving for Aq{*D, and up-
dating (¢, , v{2,,r{),), we obtain the value of {gq,,,,

Vui1s Fae1) at iteration (i+ 1) as follows

QP =q8, +Aql) (1.10a)
. . T .
viiED =vil, *9E Aqfitp (1.100)
(i+1) (i) ' 1 (i+1)
i ?"n+1+‘}72‘5 Ag; (1.10¢)

The iterations are continued .until convergence is attained

Journal of Applied Mechanics

within certain tolerance. A basic characteristic of Newton’s
iterative method is that the asymptotic rate of convergence is
quadratic.

2 Numerical Simulations

In this section we present a series of numerical simulations
that illustrate the formulation and numerical procedure
discussed in Sections 3 of Part I. Our purpose is to exhibit:

(@) The simplicity of the numerical procedure. Essentially
any existing nonlinear structural finite element dynamics code
could be employed. Here we employ an extended version of
the computer program FEAP developed by R. L. Taylor and
documented in Zienkiewicz (1977), chapter 24.

(b) The capability of the proposed formulation to
automatically handle finite strains superposed onto large
overall rigid body motions. This includes flexible bodies in
free flight. Viscous effects can also be accounted for easily in
the formulation.

(¢) Theimmediate applicability of the proposed approach
to the dynanics of a system of interconnected flexible bodies
without alteration of the formulation.

It is emphasized that no simplification is made in the
simulations that follow in the sense that Coriolis and cen-
trifugal effects as well as the inertia effect due to rotation are
automatically accounted for. The deformed shapes in all
figures reported in this paper are given at the same scale as the
geometry of the beam, i.e., there is no magnification of the
structural deformations.

In all simulations reported herein, the trapezoidal rule
(Newmark algorithm with 7=0.5 and 8= 0.25) was employed.
Numerical operations were performed in double precision in a
VAX 11/780 under the Berkeley UNIX 4.2 BSD operating
system.

Example 2.1. Flexible Robot Arm. This simulation is con-
cerned with the repositioning of a flexible beam rotating
horizontally about a vertical axis passing through one end.
The finite element mesh consists of 10 elements with linear
isoparametric interpolation functions for both displacement
and rotation. To avoid the well known ‘‘shear locking”’
phenomenon (Zienkiewicz, 1977), a uniformly reduced one-
point Gauss quadrature is employed to integrate the tangent
stiffness and residual. The mass matrix, however, is integrated
exactly with two-point Gauss quadrature. Two cases are
considered.

2.1.1. Displacement Driven Flexible Robot Arm. The
geometry, material properties, finite element mesh, as well as
the time step size used in the integration are given in Fig. 1(a).
The robot arm is first repositioned to an angle of 1.5 radians
from its initial position. This is achieved by prescribing the
rotation angle ¢ (¢) = 6(0, ¢) as a linear function of time, as
shown in Fig. 1(a); the sequence of motion during this reposi-
tioning stage is depicted in Fig. 1(b). Once the rotation angle
Y (¢) is fixed at 1.5 rad for all time ¢ = 2.5, the robot arm then
undergoes finite vibrations as shown in Fig. 1(c).

2.1.2. Force Driven Flexible Robot Arm. The robot arm is
now driven by a prescribed torque T'(¢) applied at the axis of
rotation e;, as shown in Fig. 2(a). The applied torque is
removed at time ¢ = 2.5; the robot arm then undergoes a
torque-free motion. The simulation is terminated after com-
pletion of one revolution, as shown in Figs. 2(b) and 2(c).

Example 2.2. Flying Flexible Rod. A flexible rod with free
ends, initially placed in an inclined position, is subject to a
force and a torque applied simultaneously at one end, see Fig.
3(a). The applied force and torque are removed at the same
time £ = 2.5, so that the subsequent free flight of the rod ex-
hibits a periodic tumbling pattern. It should be noted here that
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Fig. 2(a) Force driven flexible robot arm; problem data

t=2.5

t=2.0

t=15

t=1.0

_______ 1=05 —
T1=o.o £

Fig. 2(b) Force driven flexible robot arm. Sequence of motion during
application of torque. Time step size h = 0.5.

t=30

Fig. 2(c) Force driven flexible robot arm. Sequence of motion after
removal of applied torque.

the boundary conditions (3.19) of Part 1 now become m(0,?)
=m(L,t) = n(0,t) = n(L,?) = 0during the free flight stage.
Two cases are considered.

2.2.1. Flexible Beam in Free Flight. The motion of the rod
during application of loading is shown in Fig. 3(b). The stiff-
ness of the rod is low enough to exhibit finite deformations. A
close-up of the first two revolutions is shown in Fig. 3(c) while
the entire sequence of motion is depicted in Fig. 3(d).

2.2.2. The “Flying Spaghetti.’’ The bending stiffness EI
of the rod is lowered by a factor of 5 relative to the simulation

in 2.2.1. This dramatic reduction in stiffness results in the se- -

quence of motions depicted in Fig. 4.
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Materiai Properties:
EA=GA4=10,000.

E1=500.
T /\ "o
p=10.
Fe.Mesh: 10 linear elements.
©
8 Time history of F(t)and T(t):
T(t)
800
J 0 25 t
X FOOLN F(1)=T(t)/10,
L
' 6 C T

Fig. 3(a) Fiexible beam in free flight; problem data.

t=2.5
[

t=0.5

Fig. 3(b) Flexible beam in free flight. Sequence of motions during ap-
plication of loading. Time step size h = 0.1, plot after each 5 time
increments

Fig. 3(c) Flexible beam in free flight. Free flight of the beam after

- removal of loading—close-up on the first 2 revolutions. Time step size h

= 0.1, plot after each 5 time increments

Fig. 3(d) Flexible beam in free flight. Free flight—entire sequence.
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Material Properties:
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EI=100.
Ap=1
Ip =10.

A
Fig. 4 The “flying spaghetti.” Time step size h = 0.1, plot after each 5
time increments.

Example 2.3. Multi-Body Dynamics. Two examples will
be considered to illustrate the applicability of the present for-
mulation to the dynamics of multibody systems.

2.3.1. Multi-Component Robot Arm. The robot arm con-
sidered in Example 2.1.1 is in this example stiffer by a factor
of 100, and consists now of two flexible components con-
nected together by a hinge at midlength. The two-component
robot arm is subjected to the same prescribe rotation ¢ (¢) =
6(0, t) as in Example 2.1.1. The problem data are summarized
in Fig. 5(a). The sequence of motions is shown in Figs. 5(b)
and 5(c). Note that while the first component vibrates about
the stop angle ¥ (¢) = 1.5 rad for ¢ = 2.5, the second one
undergoes a complete revolution about the connecting hinge at
midlength.

2.3.2. Multibody System in Free Flight. A two-body
system consisting of two flexible links connected by a hinge, is
initially at an inclined position. The system is set into motion
by applying a force and a torque at one end of the lower link,
as shown in Fig. 6. The applied loads are subsequently re-
moved at time ¢ = 0.5, so that subsequently the articulated
beam undergoes free flight. The lower link, indicated by the
letter A in the figure, then moves in the same clockwise direc-
tion as the applied torque, whereas the upper link, indicated
by the letter B, moves in the opposite counter clockwise
direction.

Example 2.4. Spin-Up Maneuver. The flexible robot arm
considered in Example 2.1.1 is now subject to a “‘spin-up”’
maneuver by prescribing the angle ¢ (¢) = 6(0,¢) for t€R . as
follows

V(1) =
6 112 15 )2 ( 27t )]
e (= — 1 ad 0<t=<l15 sec
15[2+<21r AT g
2.1
(67— 45) rad t>15 sec

This type of motion was proposed in Kane et al. (1985) to il-
lustrate how naive linearized approximations may lead to
grossly inaccurate results, i.e., instability of a physically stable
system. The motion is also of practical interest in applications
such as helicopter rotor blades or aircraft propellers. The
material properties and time history of ¥ (¢) are shown in Fig,
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Material Properties:
EA=GA4=1,000,000.
EI=100,000.

i
p=t

F.e.Mesh: 4 quadratic elements.

Time history of Y (1t ):

22'
Y(1){rad)
1.5 °® S
wit) o( i g,
0 05 1 23 hinge

Fig. 5@ Multibody dynamics: displacement driven, multi-component
robot arm; problem data

Fig. 5(b) Multibody dynamics: displacement driven, multi-component
robot arm. Repositioning sequence to stop angle y = 1.5 rad. Time step
size h = 0.1,

Fig. 5(c) Multibody dynamics: displacement driven of multi-
component robot arm. Vibration of robot arm about stop angle, and
revolution of flexible appendage about connecting hinge. Time step size
h = 0.01, plot after each 10 time increments.

Material Properties:
EA=GA¢=1,000,000.

EI=10,000. Time history of F(t) and T(t)
AP= 1. T(1)
15=1 forlink A 160.0
Ip =10, for link B
Fe.Mesh: 4quadratic elements.
05 t
F(t}=T(t)/4.
A B

2

BABTA A A A A §

Fig. 6 Multibody dynamics: articulated beam in free flight. Time step
size h = 0.05, plot after each 5 time increments.

DECEMBER 1986, Vol. 53/ 859

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Material Properties

EA=28 X107
GAg= 1% 107 5¢
EI=14 X 10°* 53
Ap=12 o=
Ip=6x%X10™* Q=
p=6x10 gs_
P
F.E.Mesh: 4 quadratic elements 5 g‘

0.0 6.0 120 18.0 24.0 30.0
Time

ng
\pm(j R £

i

I

Fig. 7 Spin-up maneuver; problem data
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Fig. 8(a)-(d) Spin-up maneuver. Several deflected shapes during first
revolution. Time histories for displacement components and section
rotation relative to the shadow beam. Time step size h = 0.005.
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Fig. 9(a), 9(b) Damped vibration: cantilever beam. Velocity proportional

viscous force; problem data; maximum deflected shape; time history of
vertical tip displacement.

7. Deflected shapes for several values of ¢ during the first
revolution are depicted in Fig. 8. Also shown in this figure are
the time histories of the displacements #(L,t), #,(L,t)
relative to the shadow beam, and the section rotation &(L,¢).
The results of Fig. 8 clearly exhibit the centrifugal stiffening
effect: after an initial deflection during the acceleration phase,
1€[0,15], the centrifugal force straightens the robot arm in the
constant angular velocity phase, ¢ > 15. The exact solution for
the steady state extension of a pinned-free beam with length L,
axial stiffness EA and mass per unit length pA, spinning with
constant angular velocity w can be easily shown to be

tanal pA
7] st) = - 1]; =
a,(X,t) L[ T where a 4/ 5

For this particular example w = 6rad/sec, L = 10 and pA/EA
= 3/7 x 10~7. Expression (2.2) then leads to a steady state
extension at the free end of #;(L,t) = 5.14 x 10~*%, This
result is in complete agreement with the computed solution
(see Fig. 8). The small periodic vibration of the beam about
the floating frame during this steady state phase is noted.

) 2.2)

Example 2.5. Damped Finite Vibration of a Cantilever
Beam. This example illustrates how simply viscous effect can
be included in our formulation. A cantilever beam is initially
subject to a concentrated end load. Subsequently, the load is
removed, and the beam undergoes free vibration. Figure 9
shows the material properties, the maximum deflected shape,
and the time history .of the vertical tip displacement. Only
velocity proportional damping is considered here; more
general dissipative mechanisms warrant a separate treatment.
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3 Concluding Remarks

We recall that in the proposed approach the inherent
nonlinear character of the problem is transferred to the stiff-
ness part of the equations of motion. This approach results in
equations of motion that arise typically in nonlinear structural
dynamics. Consequently, the dynamics of flexible beams
under large overall motions can be analyzed in any existing
nonlinear finite element program, as demonstrated through
several numerical examples. Without alteration in the for-
mulation, one can apply this approach to the dynamics of a
system of flexible beams connected by hinges, as shown in ex-
amples 2.3.1 and 2.3.2, Further, we will address the following
points in forthcoming publications:

(i) The approach proposed in this paper can be readily ex-
tended to accommodate inelastic constitutive behavior. In par-
ticular, general viscoelastic response that extends classical
linear models such as the Kelvin and standard linear solids to
finite strains. In many applications, this is of practical impor-
tance since, as noted in Remark 3.6 of Part I, velocity propor-
tional damping is ineffective at high frequencies.

(ii) It will be shown that the algorithmic treatment pro-
posed in Section 4 remains essentially unchanged if general-
ized viscoelastic models are considered. Only a modified stress
update is necessary. This applies to more sophisticated models
accounting for damage effects.

(iii) The methodology presented in this paper can be
employed for the dynamic analysis of an earth-orbiting
satellite composed of beam elements. However, one must
carefully treat separately the far field and the near field to
avoid ill-conditioning. The gravitational force field as well as
satellite control actuator forces are configuration dependent
and require special treatment.

iv) Conceptually, the proposed approach readily carries
over to the fully three dimensional case. This extension relies
on a proper treatment of three dimensional finite rotations in
both the structural deformations of the beam and in the
overall motions. For the static case, such a treatment is
available in Kane et al, (1985). The dynamic case, however,
warrants a separate treatment.
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APPENDIX

Finite Element Matrices

In this appendix, we shall give the expressions of the rele-
vant matrices discussed in Section 1; namely, the mass matrix
M, the damping matrix D, the internal forces vector P(d), the
tangent stiffness matrix K, (d), and the applied forces vector
F(1).

Using the spatial discretization (1.3) in the first term of the
weak form of the equations of motion (1.2), i.e., the inertia
term, the mass matrix is obtained at once as

M=S[0L] ¥ (X OI¥ (X,)dX, .1a)
with
¥ (X)) =¥,(X)), ... ¥y (X)) (A.1b)

The damping matrix D is obtained exactly as in (4.1a), but
with A in the place of L.
Next, by making use of (3.17) and (3.18) of Part I, we may
rephrase the third term in the weak form (1.2) as follows
=18 +ny€; +n3€;,
A4.2)
o mP1ax, == [ finitmong+ym

a3 {1+ uidn, —uzn; J1dX,

Integrate by parts (A4.2),, and recall that 9,71, + 9,1, +13m=0
at the boundaries. There results

ny(d)
S[O,L] "'P[d]Xm = S[O,L] D[(d)‘f[' nz(d) Xm (A.3a)
m(d)
with D, (d) denoting the following differential operator
d iy
dX, 2
D@:= | 0 o= —(l+u) (4.35)
0 1 d
0 -
ax,

Introducing the discretization (1.3), into (4.3a), we obtain the

expression for the discrete internal forces.
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ny(d")
nz(dh )
m(d")
In (A.4), the superscript # in d” is used to designate the spatial
approximation to d (X,f) according to (1.3),. The same nota-
tion will be used throughout in this appendix.

We now undertake the linearizagion of §joz; # « PldldX,
about a fixed configuration d = d. This linearization pro-
cedure and the spatial discretization (1.3), lead to the expres-

*
sion for the tangent stiffness matrix K, (d) appearing in (1.9).

For the developments that follow, it proves convenient to
rewrite equation (3.18) of Part I as

P =| D@ X, (A4

Ni(d) 1+u] 1
Ny@) bi=C | A { w3 t-d0b],
M(d) 6’ 0
ny(d) N(d)
nd - =A@) | Ny(d) (A.5a)
m(q) M(d)
where
cosf —sinf O
C:=Diag[EA,GAg,E], A(a): = | sinf cosd O (A.5b)
0 0 1

* . . .
The linearization about d is based on the notion of directional

derivative at d in the direction Ad:= [Au,, Au,, A6]'. The
following linearized quantities are needed:

0 —A0 0
dil Ald+ead= | a6 0 0 A@d), (A.62)
€ le=
0 0 0
Ny
d * * *
d—l . N [@+a)-CA@D,@Ad,  (A.60)
e fe=
M
0 0 Au

i| OD1(5+eAd)n= 0 0 —Aul | 4. (A.60)
00 o0

The linearization of the second term in the weak form (1.2)
then follows at once

d \
= {S{w n-P[d+eAd]dX1} -

[, P1@n @CA (@D, @addx, (A7)

+ SM D, G(d)D,AddX,

in which the differential operator D, and the matrix G(:i) are
defined below
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d d
D,: =Di [ < ]
=Dl e ax,
0. 0 -nd (A.8)
G@d): = 0 0 ()

~m@ @ — 1+ EDn )+ Eny@)]

Let us now introduce the spatial dlscretlzatlon of Ad(X,) in
the same manner as in (1.3),

Ad(X,)= E ¥ (X,)Aq, (4.9)

I=1

Using (1.3) together with (4.9), we fmally arr1ve at the expres-
sion for the tangent stiffness matrix at d" = d

KT(d")=K(d")+KG(d”) (A.10a)

*
where K(d") represents the material part of the tangent
stiffness,
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K@= | @) xIA@)CA @)D, @ Cx,)ax,

s

(A.10b)
and X ( ah) the geometric part,

K (d4): = Sw , DY (X)IGE@)D, ¥ (X)dX,  (4.100)

It is clear that the applied load vector F (¢) is given by

’il(XI’t)

F(f)=S[0,L] ¥ (X)) dX, (4.11)

ﬁZ(Xl ,t)
m(Xy,t)

The integration in all of the above matrices may be performed
numerically using Gauss quadrature. For the tangent stiffness
matrix Kz, we use uniform reduced integration to avoid shear
locking.
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Free Rotation of an Elastic Rod
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With an End Mass

This paper models a rotating space satellite with a long flexible antenna. Large
deformations of the elastic rod are caused by the centrifugal forces. Bifurcation
analysis shows the effect of end mass on the critical rotation speeds above which

sinuous equilibrium configurations occur. The nonlinear governing equations are
then integrated numerically. We find a class of solutions with a looped configura-
tion whose existence requires a certain minimum total energy and minimum angular
momentum. Catastrophic changes are possible.

Introduction

Space structures often rotate due to necessity. This type of
motion is called ‘‘free rotation’’ since the system is not in-
fluenced by outside forces and moments. When the structure
is flexible, large deformations may occur due to centrifugal
forces. Previous work on free rotation includes only two
sources: the rotation of an elastic rod (Wang, 1982) and the
rotation of an elastic ring along a diameter (Wang, 1983).

The present paper studies the elastic deformations due to
the free rotation of a long, thin, elastic rod with an end mass.
This situation occurs in the case of an artificial satellite with a
long appendage or antenna. For example, the Radio
Astronomy Explorer Satellite (Stone, 1965) used a 460 m
antenna for detecting low-frequency signals. These antennas
are very flexible due to weight considerations and due to ease
of storage during launching. We wish to determine the possi-
ble equilibrium configurations and the conditions under which
they may occur.

Formulation

Consider a spherical satellite of mass m with an originally
straight antenna (slender elastic rod) of length £and density p.
Figure 1 shows one possible configuration of the system which
is in steady rotation with angular velocity 2. We shall put
Cartesian axes (x’, y'), rotating with the system, at the center

“of mass, where x’ coincides with the axis of rotation. For Q #
0 the rod may remain straight if it coincides with the axis x’
(Case 1) or coincides with the axis y’ (Case II). There may be
other curved equilibrium configurations as well.

If the rod is slender enough, the local moment M is propor-
tional to the local curvature:

do

M=El —— .
ds’

M

Here EI is the flexural rigidity, s’ is the arc length from the
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mass, and @ is the local angle of inclination. The coordinates
(x’, y’) and (s’, 6) are related by
dx’ dy’
— f, ———=sinb 2
=005 0, — @

Consider an elemental length ds’ of the rod. A local moment
balance gives

M+dM=M—ds’ cos 6§, pQ2y"ds’ ®)

If we normalize all lengths by £, and drop primes, equations
(1)-(3) yield

d%6
e =J% cos § 4
d*u .
W =sin @ (5)
where
us={ yds (6)

and J = fp”* Q% (EN~" is an important nondimensional
parameter representing the relative importance of length and
rotation to flexural rigidity. Since other parameters are
generally constant, J is a measure of rotation rate Q. Ats = 0
we expect the centrifugal force of the rod to balance the cen-
trifugal force of the end mass:

mQ2y’ (0) +§, pQ2y"ds’ =0 W)

or

du
w(0) =« — 0). (8)

* Here « is the ratio between the end mass and the rod mass, «

= m/(pf). The other boundary conditions are
do do
=0, — (0)=——(1)=0. 9
u()=0, —— (O)=—— (1) ©

Equations (4), (5), (8), (9) are extremely nonlinear. There are
two trivial solutions resulting in a straight rod:
0=u=0 (10)
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Fig. 1

—t

v v vl
Fig. 2 The six different Cases

which is a rotation along the axis of the rod, and
L )N

2’ 2 2+

representing rotation perpendicular to the rod. In what

follows, we shall investigate the cases where the antenna may
be curved.

T 52

an

Bifurcation

As rotation speed, and thus centrifugal force, is increased
by some means, the state represented by equation (11) remains
invariant. However, the rotation along the axis, equation (10),
may lead to curved equilibrium states. The bifurcation proper-
ties are studied by a perturbation about small 6 and u. The
governing equations linearize to

z:f =Ju, %ﬂ). (12)

The general solution is
#=c, sinh Js+ ¢, cosh Js+ ¢, sin Js+ ¢, cos Js 13)
u=J"2(c, sinh Js+ ¢, cosh Js—c; sin Js—c4 cos J5).  (14)

The boundary conditions, equations (8) and (9), yield the con-
dition for a nontrivial solution:

aJ(cos Jsinh J—sin Jcosh J)+cos Jcosh J—1=0.  (15)

For given a, equation (15) is solved numerically for the eigen-
values J. The results for nontrivial J are given in Table 1. The
rod would remain straight if the rotation speed is so small such
that J < J,. When J > J,, the first bifurcation occurs and the
configuration shown in Fig. 2 (Case III) is possible. When J >
J,, the second bifurcation, an S-shaped configuration (Case
1V), may occur. The higher bifurcations correspond to higher
J. See Fig. 2.

When the end mass is absent, = 0. The bifurcation values

Journal of Applied Mechanics

0
fs,m’ yds

‘—HM‘*dM
o
(2]

The coordinate system

M
A
Table 1

[e 3 ‘]l J2 J3

0 4.73004 7.85321 10.99561
0.2 4.29292 7.31747 10.40160
1 4.04183 7.13384 10.25663
o 3.92660 7.06858 - 10.21018

agree with those of the rotation of a single flexible rod studied
by Wang (1982). The effect of increased end mass is to
decrease the bifurcation value J,, or the critical rotation
speed.

Numerical Integration

For large deflections, equations (4), (5), (8), (9) must be in-
tegrated numerically. It is better to turn the two-point
boundary value problem into an initial value problem as
follows. Set

t=(~9sJ, v=Jtu. (16)
The original equations become
d*v .
—d72—=v cos 6, T=sm 6. an
The initial conditions are
db
vl =0, I limo =0. (18)

Given 6 |,_, and any dv/dt|,_, we integrate equations (17) and
(18) by the fifth order Runge-Kutta-Fehlberg algorithm until
db/dt is zero again, say at ¢=¢*. Then

- (%)
a= ——>0.

d
o

(19

We see that J and « are obtained inversely. By adjusting
dv/df|,_, one can obtain the results for a specific «. We find

1 du 1
u(0)= 7 u(J), W(O) = v(J) o0

db

00)=01,=r, —— (©)=0.

In order to determine the equilibrium configuration of the
system, we set .

@n

where « is the unknown axial distance from the end mass to
the center of mass. Then

x=x+a

—-‘—1—)5— =cos §, x(0)=0 22)
ds

Equations (4), (5), (20), (22) are integrated numerically. The
shape is obtained by
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Fig. 3 Maximum amplitude. Letters correspond to States in Figs.
(6—8) —a = 0; —s— s o =

0.2, — — —a = o,

100}

501

Fig. 4 Maximum force: — o = 0 ——a = 0.2, — — — @ = ®

d
x=ji—a, y=d_:' ©3)

The location of the center of mass is found by

24

1 1
a= S X ds
a+l Jo

Figure 2 shows schematically the equilibrium configurations
of some of the lowest modes. As rotation rate is increased
while other parameters are fixed, Case II is stable, while Case I
may become unstable and bifurcate into Cases III, IV, VI,
when the critical rotation speeds J;, J,, J; are reached. Case
V, however, does not bifurcate from a trivial state and, thus,
cannot be predicted from the linearized equations. Only by
numerical integration of the nonlinear equations can we deter-
mine the configurations of Case V. Higher rotation rates may
lead to more complicated equilibrium states.

Figure 3 shows the maximum amplitude y(1) = b as func-
tion of normalized rotation rate J. For Case 11, the maximum
amplitude is

1+a
b o 25)
The value of b ranges from 1/2 fora = 0to 1 for o = . The
amplitude of Case I, of course, is zero. As rotation rates are
increased, Case III solutions bifurcate at J;, and Case I'V solu-
tions bifurcate at J,. Of interest are the Case V solutions
which do not bifurcate from zero. In general, the amplitudes

of Case V solutions may increase or decrease with J. Thereisa .

minimum rotation rate below which Case V solutions do not
exist (J, = 6.9, 6.1, 4.8, for o = 0, 0.2, oo, respectively).

866/ Vol. 53, DECEMBER 1986

Fig.5 Maximum local moment: — o =0} —e—a = 0.2, — — — o =

Fig. 6 Configurations for Case IIl. J = 5.6; At = 0;B: ¢ = 0.2;Ci ¢ =
10;D: ¢ = oo,

The above mentioned Cases are the only ones found below J
= 10,

Figure 4 shows the maximum force experienced, occurring
at the first intersection of the rod with the rotation axis. This
force, normalized by EI/#, is calculated from

’

“Ee

Unlike the amplitude, the force increases without bound as Jis
increased. Case V curves show a characteristic minimum due
to nonbifurcation. For Case II, a simple formula can be ob-

tained:
[ ( + ) ]
2 2 o

Figure 5 shows the maximum normalized moment,
represented by the curvature df/ds. For both Cases I and II
the moment is identically zero. For the other Cases, the max-
imum moment occurs at some interior point. The effect of the
mass ratio « is to shift the curves towards the left. Figures 4

F =0 e (26)

@7

- and 5 are important in the design of satellites with long

antennas,

Figure 6 shows some equilibrium configurations for Case II
at the same rotation rate J. As « is increased, the location of
the end mass becomes closer to the rotation axis. Figure 7
depicts Case I'V configurations for fixed o = 0.2. The elastic
rod becomes more sinuous with increased rotation. Case V,
not studied before, has a characteristic looped shape (Fig. 8).
The conditions for its existence will be discussed in the next
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Fig.7 Configurations forCase V.o = 0.2;E:J = 7.48;F.J = 8.08;G:J
= 8.56; H: J = 10.41.

o ol o o

K L M N

Fig.8 Configurations forCaseV.a = 0.2;K:J = 8.77; L:J = 7.29; M: J
= 6.2; N: J = 6.2

section. We note (e.g., from Fig. 3) that for given J, the solu-
tion is not unique. The States M and N in Fig. 8 have the same
rotation rate.

Energy and Angular Momentum

The total energy of a freely rotating elastic system consists
of two parts, the kinetic energy and the strain energy. The
elastic rod has both kinetic and strain energies while the end
mass has kinetic energy only. Thus, total energy is

1 1
[ QZS 2
¢'=—p Poyds

EI¢l /s do\?2 1
— —_— — mQ22y?(0). 28
+2£’So(ds) ds +—5= mPEYH0) 8
Normalizing with EI/2{ we obtain
1 do 2 1
6=S (—) ds+ J* U y2d5+ay2(0)]. 29
0\ ds 0

The total energy can be integrated numerically since 8(s) and
y(s) have been determined previously. Figure 9 shows ¢ plotted
against J. The total energy of Case I is zero for our idealized
infinitesimally thin rod and point mass. For Case II the energy
is entirely kinetic and increases rapidly from J = 0:

e=J* [——}—— ————1—] .
3 Q+wp?

For Cases III and IV the total energy bifurcates from zero at
J, and J,. It is interesting to note that the Case V solutions not
only require a minimum rotation rate J but also a minimum
total energy in order to exist. The minimum energy re-
quirements are e,;, = 76, 64, and 51 for @ = 0, 0.2, and oo,
respectively. For example, when a satellite system is disturbed
by an impact from a meteor, if the sum of the energies of the
meteor and satellite is less than ¢, then Case V will not
oceur.

Another characteristic of free rotation is the total angular

E2))
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Fig. 9 The total energy ¢ as a function of J
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Fig. 10 Total energy and total angular momentum: — ¢ = 0; — — —
o =

momentum which, after normalizing with &pEI, can be ex-
pressed as

1
fm=J2[SO yzds+ay2(0)]. 32)
Similar to total energy, the angular momentum also shows a
minimum for Case V, 9, = 0.41, 0.40, 0.32 for « = 0, 02,
oo, respectively. Thus 9, is an additional necessary criterion
for the existence of Case V.

For sufficiently large values of J, ¢, and 9, the system may
rotate in one of the several admissible configurations. Which
final equilibrium state actually occurs depends on its
dynamical history (not studied here). All cases presented in
this paper are locally stable except Case I when J > J,. In
general, for small changes in energy or momentum, the state
of the system tends to adjust slightly but remains close to its
previous state unless a catastrophe happens.

In Fig. 10, the total energy is plotted against total angular
momentum. If an ideal free rotating system is in equilibrium
at State Q of Case III, say, it would remain there due to con-
servation of momentum and energy. However, minute irrever-
sible friction would gradually decrease both energy and
angular momentum such that the State moves slowly from Q
to R and eventually into the origin. The situation is different
for Case V. With a gradual loss of energy and momentum
both States S and T (on different branches) move toward State
U, where a further minute decrease causes large changes (a
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catastrophe). We would expect that angular momentum 3N
will be conserved while total energy e drops abruptly toward
another Case at States V, R, or W. This sudden transforma-
tion may cause large amplitude transient oscillations of the
elastic rod which may eventually dissipate the excess energy
through internal heating.

Discussion

Space structures are becoming increasingly larger and more
flexible. Structural problems unique to space are not found on
earth. Free rotation is one of the examples. In this paper, we

868/ Vol. 53, DECEMBER 1986

found many characteristics of nonlinear mechanics: bifurca-
tion, nonuniqueness, nonexistence, catastrophic change, etc.
Further work, especially in the dynamical area, should be
investigated.
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Stretching and Bending of

Rotating Beam

The effect of uniform high-speed rotation on the simplest representation of a

N. G. Stephen
Lecturer.
P. J. Wang'

rotating blade is analyzed according to the linear theory of elasticity. The blade is

modeled as a uniform prismatic beam of general cross section rotating about a prin-

Department of Mechanical Engineering,
University of Southampton,
Southampton, England S09 5NH

c:'pal se?tion axis perpendicular fo the centroidal axis. This quasi-elastostatic three-
dmensronal_ problem is reduced to a two-dimensional boundary value problem to
which solutions for the amenable circular and elliptic cross sections are given. For

sections not possessing two axes of cross-sectional symmetry, the theory predicts
curvature of the blade center line.

1 Introduction

The determination of stress and strain fields in prismatic
rods of arbitrary cross section due to forces applied at the ends
of the rod only, is known as Saint-Venant’s Problem. Solu-
tions have been obtained for tension, pure bending, torsion,
and bending due to a terminal shearing force (Sokolnikoff,
1956); apart from their direct application, these solutions pro-
vide justification and limitations to the technical theories used
in “‘strength of materials’’. Exact solutions have also been ob-
tained for body force gravity loadings of rods and beams pro-
ducing longitudinal extension (Sokolnikoff, 1956) and
bending (Love, 1944). In principle, exact solutions can be ob-
tained for any case in which the forces applied to the beam
along its length can be represented by rational integral func-
tions of the beam axial coordinate (Almansi, 1901).

In the present paper the authors give the solution for a beam
rotating about a principal axis perpendicular to its centroidal
axis, as shown in Fig. 1. Such a centrifugal body force loading
is of obvious importance in the design of turbine blades, where
a knowledge of the deformed shape of the blade due to rota-
tion and thermal effects is required before subsequent vibra-
tion analysis. The physical model analyzed here is the simplest
representation of a rotating blade, having no pretwist or taper,
and a “‘setting angle’’ fixed by cross-sectional shape; the coin-
cidence of the x axis of rotation with a cross section principal
axis precludes twisting of the blade which would otherwise
arise due to asymmetric “‘body force loading’’ in the y direc-
tion, Apart from classical interest, the solution should provide
a test for approximate methods of analysis.

2 Blade Model

The problem to be solved is the determination of stress,
strain, and displacements of the prismatic isotropic beam
shown in Fig. 1; the z axis coincides with the beam centroidal

1Visiting Research Fellow from the Maritime Transportation Institute of
Shanghai, The People’s Republic of China.
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Fig. 1 Rotating blade model

axis and the x and y axes are principal. The beam is assumed to
rotate in a horizontal plane about a vertical axis through the
end z= 0 with constant angular velocity @ rad/sec. The surface
generators of the beam are assumed free of traction, and no
specific constraint is placed on the displacements at the end
z=0.

3.1 Elasticity Equations
We have to satisfy the equilibrium equations

~
aax+.?_7_}_y+_m.i=
dax ay 0z
d a d
%Uiyu%mmy:o > (la,b,0)
dr,  dr, Ao,
+—L +pQ%z=0
ox ay 0z p J

subject to the boundary conditions on the surface generators

opol+T,,m=0
Tygol+o,m=0 (2a,b,c)
Tl +7,m=0

where £ and m are the direction cosines.
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The conditions at the free end z=L are not specified except in-
sofar as all the stress resultants are required to be zero. Addi-
tionally, the following equations of compatibility must be
satisfied: .

d%e, %, _ 027,y
ay?  axr  axdy
626y 8¢, aZyyz
= 3a,b,
32 3y?  adyaz r (Ba,b,c)
¥, 0%, 327,‘2
x> = 9z? 0x0z )
2 Y
20%¢, 9 (_ Ny | Vx| avxy)
dyoz  Ox ox ay 0z
20%, @ (a'yyz s B'yx},)
= — + > (4a,b,
0x0z Oy \ Ox oy 0z (4a,0,)
2%, =_<?_<6'yyz + ey a'yxy)
oxdy 0z \ Ox ay iV4 J

3.2 Semi-Inverse Solution

The solution was originally obtained by assuming stress and
strain components to be quadratic functions of the axial coor-
dinate z, i.e.,

0= 0D + o0z + 0
e =P +eNz+e® )
etc.

and by adopting a procedure very similar to that employed by
Love (1944) for the consideration of a beam subjected to
distributed transverse loading.

We now employ a semi-inverse procedure and assume the
following:

@ 7, = Tye = Yxz = Yyz = 0,
(b) planar stresses and strain o,, 7, 0,, and v,, to be in-
dependent of z, and
(c) longitudinal strain given by
- e, , 242
61—60+E (LA =28 =k x—kpy+e,(x* +y%) ©)

where ¢,, €,, k,, and &/ are constants to be determined.

The first two terms in equation (6) are consistent with the
elementary longitudinal strain expected, the second two terms
allow bending, while the final term allows distortion of the
cross section into a paraboloid of revolution and is suggested
by the known solution for longitudinal loading in a beam due
to self weight.

The equilibrium equations (la, b, ¢) reduce to

-~

aax+ﬁ-§l=0

ox Iy

ar,,  do,

— Lo P2y=0 7a,b,
x oy oy - (7a,b,0)
a

Z

-

the compatibility equations (3a,b,¢) become

870/ Vol. 53, DECEMBER 1986

d%, &%, _ 8%y, )
ay*  axr  dxdy
d%, o,
a___zz + 5 =0 S 8a,b,c)
3%, 0%, ~0 ‘
axz  az? )
and equations (4a,b,c) become
3%, )
aydz
8%, ©Oa.b
= >~
3oz @:0.)
3%,
axay )

We note that (9¢) is immediately satisfied by the choice of ¢,.
The equilibrium equations (7a,b) are satified by introducing
the stress function & (x,y) such that

3?d — 029 e pQ2y?
S T Ty T e 2 10909
Now from the Hookes’ Laws
ag 14
6X:FX_E (0,+0,)
ey=~(—7—Ey——% (az+0x) ' (lla,b,c)
[ 14
GZ:EZ_E (0x+0,)

the first two when differentiated twice with respect to z give
0%, _ 9%, __r #a, _ Q22
azt  az? E 372 E
by virtue of equation (7c¢). The compatibility equations (8b,c)
thus require

d%e, _ d%c, _ —vp2?

x? ay? E
which enables the constant e; to be evaluated as ¢ =
—vp2/2E. The direct longitudinal stress o, may be con-
structed from (11¢) as

o2
0, =Fe, +—2— (L?—z%)— Ex,x—Ex}y

92
—% (x2+y2)+V(0x+0y)

and integrating over the cross section gives the tensile force
resultant as
pAQ?

2 __ 52
2 (L*-z%)

T= S S o,dxdy =EAe, +

ppQ?

2

,+1)+ vS S (o, +o,)dxdy
where I, = S S x2dxdy, I, = S S yidxdy.
The area integral s S (o, +0,) dxdy may be expressed as
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S S (0, +0y) dXdy=S g {i (x0, +¥7y)

dx
a
+"é; (x‘l'xy +yay )}dxdy

8o, 3Txy> ( d7,, da, )}
- Iy 29\
S S {x< ax oy ) T Gax Ty ) SR

The first integral transforms to the line integral

S {x(o d+T1m)+y(1,,l+0,m)}ds

which is zero by virtue of the boundary conditions (2a,b),
while the second integral reduces to

S S pQ2y? dxdy,
by virtue of the equilibrium equations (7a,b).
Thus we find, VS S (0, +0,) dxdy=vpQ?L,, and the tensile

force becomes
pAQ?
2

To evaluate the constant ¢,, we require the tensile force 7 to
be zero at the free end z=L, giving

T=EAe,+

vpQ?
(L2 =)+ 5= (L~ 1),

vpQ?
©©=2pa H~L)
from which
AQ2
=222 (12— ), (12)

as expected from the elementary theory.
To evaluate the constants «, and «, we construct the bend-
ing moments

M, = 3‘ § ya dxdy and M, = — E g xo,dxdy.
Firstly
2,
MX=S S {Ee,,y+T (L?—z*)y—Ek,xy

ppO?
2 (X +y2)y+v(o,+o, )y] dxdy,

and the first three terms become zero, as the centroidal x and y
axes are also principal, giving

—Ex}y?—

vpQ?
M,=—Ex, I, ———

> S S (x+y%)y dxdy

+v§ S (0x +0,)y dxdy.

Now the area integral may be expressed as

[ treomr e[ (2 (520 0o
7 ;xz V1) Jaxay

' do, aT,,y> ( »? —x2> (6rxy aoy)}
- + +—=) dxdy.
S S {xy ( x o/ T\ 2 ax | ay Y
The first integral transforms to the line integral

2,2
S Ixy(axl+1xym)+ (y 2x )(Txyl+oym)}ds

a
+a—x (xyax+ (

~Journal of Applied Mechanics

which is zero by virtue of the boundary conditions (2a,b),
while the second integral reduces to
92
-p-i— S g (2 =x%)y dxdy

and hence the bending moment M, becomes
M,=~EILx —VpQZS S X2y dxdy.

Similarly we find

pp§)2
My=EIyK0-"-2— S S (32 —x¥)x dxdy.
Now since these bending moments are independent of z and
are required to be zero at the tip z = L, the constants (cur-
vatures in the xz and yz planes, respectively) are found to be

vpQ2
Ky = 2L, S S (2 —xDx dxdy
, poQ? (13)
k)=~ ET S S X2y dxdy

Before considering in detail the two-dimensional problem
and determination of the stress function &, the remaining
unknown strains ¢, and ¢, may be readily calculated from the
Hooke’s Laws (11a,b), and the stress and strain components
listed as

P@ )
O'X =—‘5y‘—2—“
L. e
7 gx? 2

92
o =-‘°2— (L2~ 22) — Ex,x—Exly

vpQ? [ I,—1,) — ]
Fo S (x2 g
5 = (x*+ %)
3?9 P Q2y2
+v< + ) )
ax? ? 2
3*d
»= gy e =0
vpQ? ,
@=——r (L2 = 22)+ wr, X+ vkly
v2pQ? [(Iy»«IX) )
_— |y X + 2]
E I (x*+y%)
. (1-22) 8%  »(1+v») ( 22% p92y2> - (14)
E ay? E ax? 2
ppQ? ,
&=~ (L2 —22)+ vk, x+vkly
p2pQ2 I,—L) 5
-y MY X + 2]
2E [ A (4%
N (1_,,2)< e p92y2) p(l+v) 3*®
E ax? 2 E ay?
pQ? ,
€ =E »(sz - z2) KX — KoY
vpQ? [ I, ~1,) 2, 2 ]
+ X (x4
3B I (x*+y%)
1 8®
» Yoe =y =0

Yoo~ T3 aoa
G 0xdy ),
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3.3 Two-Dimensional Problem

The equilibrium equations (7a,b) have been satisfied by in-
troduction of the stress function &, through equations
(10a,b,c). From the calculated strain components in equation
(14), compatibility equation (8a) requires

2
Véb= — (Vl+3u ) o2

—2

as)

while the remainder (8b,c, 9a,b,c) are seen to be satisfied.
The boundary conditions for & becomé, from equations
(2a,b) and (14),

d %

a(—ay )=o

d ( 8<I>>_p92y2 dx
ds\ ax / 2 ds

(16)

3.4 Solution to Two Dimensional Problem

3.4.1 Circular Cross Section.
x%+y2—~R?=0, we find

B — (V+3V2 oQ?

For the boundary
T ) e R

o
Kt 17
64 an

curvatures x, and «, are both zero, and hence stresses are:

5
g O m X 2+ RN - 2R,

Q2
+ o (R =22 - p?)
e
n=ry () L (18)
v(3+vw)
R A Qz R2_ 2__2 2
+8(1_V2)p ( 2x* —2y%)
(1-r—4r%)
Txy=—Wp92xy
Tag =Ty, =0 J
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3.4.2 Elliptic Cross Section.
»¥/b* — 1 = 0, we find

For the boundary x%/4%> +

A x2 yz 2 pQZ b2 pQZ
PP YE S S 3 PO P
g0\ T % & 7 X a9

curvatures «, and «, are both zero, and hence stresses

~

A x 32
°x='z—“2(‘az—+7;z——l)
A 32 )2
o= ()
020 / X2 »?
3 (Tz*?z‘“l)

o2
0, = ) (L2 _ZZ)

N vp292 {( a ;b2> e +y2)} Fo (20)
()=
+ (1 +%2—>y2 - (@ + bZ)}
To=—Axy, 7,=71,=0, y
where

B2 p+3 a*b?
a=o0 - (125 ] ~
Ll P 1= /1 3d% + 2420 + 30°
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Circular Plates Under Uniform
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A consistent theory for linear elastic behavior in which the strains are small but in
which the displacements and rotations can be large is applied to the bending of a
long rectangular plate and of a circular plate by uniform pressure. Within the range
of small-strain, linear elastic behavior, the theory provides solutions for all
slenderness ratios of the plates and magnitudes of the loading. Thus the theory

bridges the gap between the classical theory and the nonlinear structural theory of
Foppl and von Kdrmdn. The results show that the von Kdrmén equations provide
accurate solutions for thin plates for which deflections are not small.

1 Introduction

The classical theory of elasticity treats deformations in
which the displacements, strains, and rotations are small, and
uses linear stress-strain relations which are suitable for the
description of materials such as metals in the elastic range.
The difficulties involved in the solution of the equations of the
classical theory has led to the development of technical
theories for elastic deformations of beams, plates, and shells,
and there is now an extensive literature on applications and
refinements and modifications to the theories (see, for exam-
ple, the classical books by Love, 1927, and Timoshenko and
Woinowsky-Krieger, 1959, and survey articles by Nagdhi,
1972, and Koiter and Simmonds, 1973). For a body slender in
one or more dimensions, such as a thin beam or plate, a large
deflection or rotation of one part of the body relative to
another is possible although the strains remain small and
within the linear elastic range over the entire body. Technical
or structural theories for large deflections, such as Kirchhoff’s
theory of rods and the theory of Foppl and von Kérman for
plates, mainly rely upon the kinematics of the deformations
and overall equilibrium equations, and apply to very thin rods
and plates (see Love, 1927). Some writers have used finite
elasticity theory together with asymptotic expansions based
upon small parameters such as a depth-to-length ratio or a
strain measure (see Parker, 1984 and the references cited
therein) to justify structural theories. Here we use a consistent
theory for linear elastic behavior with small strains which was
developed by Shield (1984). In this theory the strains are small
enough that second order terms in the stress-strain relation can
be neglected, but there is no restriction on the magnitude of
rotations and displacements. The theory bridges the gap be-
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tween the infinitesimal theory and structural theories for
slender bodies, and it can provide results for geometries and
loadings for which neither of the theories applies.

Shield (1984) applied the theory to pure torsion of a very
long cylinder and to the bending of a cantilever beam by an
end load about a principal axis of the cross section. Other suc-
cessful applications of the theory include the analysis of the
deformation of a rod or beam by end loads and the bending of
a beam by its own weight (Im, 1985; Shield and Im, 1986).

Here we treat the bending of a long strip and of a circular
plate by uniform pressure. The basic formulas and equations
in the theory are reviewed briefly in Section 2. Section 3 deals
with the bending of an infinitely long strip loaded by pressure
on its upper surface with support conditions on its long sides.
For small deflections, the plane strain modification of the
generalized plane stress solution (see Love, 1927, pp. 363-364)
provides the solution, and for a very thin strip, the von
Karman equations have been used (see Love, 1927, pp.
559-564). In the present approach, the deformation is con-
sidered to consist of small displacements which distort cross
sections relative to the middle surface of the strip, together
with rotations and translations of the cross sections which
vary along the span. The infinitesimal solution is used to guide
the form taken for the deformation relative to the midsurface
of the strip and this approach leads to a solution valid for all
values of the span-to-depth ratio of the strip. Because of the
pressure loading, the expressions for the bending moment and
axial force resultants contain constant terms; these terms
become second order and negligible for a thin strip experienc-
ing deflections comparable to its thickness. For thin plates
with depth-to-span ratios not greater than 0(e¢'/2), where ¢ is a
measure of the maximum strain in the plates, the predictions
of the von Karman theory are confirmed, and accurate results
are obtained for the transition range in which the pressure is
carried by the bending moment as well as by tension in the
plate. The bending of a circular plate by uniform pressure sup-
ported on its edge is examined in a similar manner in Section
4, The classical theory for a moderately thick plate again
guides the choice of the displacement field, and gives the solu-
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tion when the deflections are small (see Love, 1927, p. 481).
For large deflections, on the other hand, nonlinear plate
theory has been applied (see Stoker, 1968, for example). As in
the case of the long strip, the von Karman equations are found
to give accurate results for thin circular plates when thickness-
to-diameter ratios are 0(¢!/2) or less.

2 Basic Formulas

We suppose that a body occupies a region V of space in its
reference state B. In a deformation of B, a typical particle in-
itially at the point x; moves to the point y; referred to a fixed
rectangular Cartesian coordinate system. The Cauchy strains
C;, are given by

Co=YriVrk: ey
A repeated Latin index implies summation over the values
1,2,3 and a comma is used to denote partial differentiation

with respect to x;. For deformations with small strains, the
Green strain tensor e;; is written as

1
eik=—2‘(cik—5ik)=0(€), 3]

where ‘0>’ denotes order of magnitude, ¢ is a dimensionless
loading parameter representing the amount of strain induced
in the body, and §; is the Kronecker delta. From the polar
decomposition theorem (Truesdell and Noll, 1965) we have

yi,k =VimSmik (3)

Here r,, is a proper orthogonal (rotation) tensor, and the right
stretch tensor s, is the positive definite square root of Cy,

SimSmk = Cig- )]
Using equations (2), (3), (4), we find that
Sy =08y +eu+0(?), ry=y,;+0(). 5)

We assume that the first partial derivatives of e; are 0(e)/A,
where 4 is a reference length involved in the description of a
body and the loading causing the deformation. It can then be
shown that (see Shield, 1984)

Tigj =0(€)/h, Yipe=0(e)/h. ©

The equilibrium equations in terms of the Lagrangian stress
tensor T, are given by

aTy;
ox;

where F; are the components of the body force measured per
unit volume of the reference state B.

An elastic material has a strain energy W per unit volume of
the reference state which is a function of the deformation gra-
dient y;, only through the strains Cy or e;. When the strain
energy W is written symmetrically in ey and ey, the
Lagrangian stress tensor T}, and the Kirchhoff stress tensor oy
are given by

aw  dy; oW dx;
= = » O =T
ay ik a-xr aerk ay r
To 0(e), o are true stresses associated with directions in the

deformed state of line elements which were initially parallel to
the coordinate axes. Substituting for T}, in (7) and multiplying

+F;=0, Q)

oW
= ®

dey

Tki

by dx,/dy,, we find that the equilibrium equations can be writ-'

ten as
60’ ik . ax i
E—C'k— + ol + Fy e =0, ()]
where the Christoffel symbol is given by
. 9%y, Ox
" x0x, Ay

— -1
- Cim (erm,k + Ckm,r — erk,m)-
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Fig. 1 Force and moment resultants for a long strip under uniform
pressure

For linear elastic behavior for small strain deformations, it is
sufficient to take W to be

W= ) Cikmn€ik€mn>  Cikmn = Cmnik = Ckimn>»

where ¢, are the usual elastic moduli for small strains. The
stresses a;;, are then given by

(10)

Consistent with the accuracy of the assumption of linear
behavior for small strains, second order terms are ignored in
calculating the strains e from equation (2). With ey, ,=0(e)/ A
as assumed earlier, the Christoffel symbols in equation (9) will
be 0(e)/h. Thus neglecting terms of the order of Ee?/h , where
E is a typical elastic modulus of the material, the equations of
equilibrium become

Ok = CikonnCmn

0w p 0% o, an
X, Wy
in which dx;/9y, is evaluated to 0(1). To our order of ac-
curacy, it is only necessary to satisfy equation (11) to 0(e).
If the tractions are prescribed on a portion Sy of the surface
S of V, then

Tuny=onyine=1; on Sy,
where T,- are the applied tractions of order Ee and n; is the unit
outward normal to S. Equivalently we have

. 0x;
oty =T, e

To the present order of approximation dx;/dy, in equation
(12) need only be evaluated to 0(1) and #; are then the com-
ponents of the applied traction in the directions of line
elements that were originally parallel to the coordinate axes.
For zero surface tractions o, n, must vanish to 0(e) on S

(12)

=f; on Sg.

3 Bending of an Infinitely Long Strip by Uniform
Pressure

In this section we consider the bending of an infinitely long
strip by uniform pressure. The strip is initially horizontal and
supported on its long edges. The upper surface is subject to
uniform pressure p, while the lower surface is free from trac-
tion. The weight of the strip is neglected but it could be in-
cluded as in the beam treated in Im (1985), and Shield and Im
(1986). The support conditions and the loading do not vary
along the length of the strip so that we have a plane strain
problem. For small deflections, the plane strain modification
of the generalized plane stress solution (see Love, 1927, pp.
363-364) provides the classical linear theory solution, and for
a very thin strip, which can have deflections comparable to the
thickness of the strip, the von Karmén equations have been
used (see Love, 1927, pp. 559-564). Here we obtain solutions
for all values of the span-to-depth ratio.

A rectangular Cartesian coordinate system is taken with
origin at the center of the cross section and with the x axis ver-
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tically downward and the z axis along the span-direction. The
ends of the span are at z= +/, and the lower and upper sur-
faces of the strip at x= +A. The coordinates of the deformed
middle plane are denoted by X(z) and Z(z), and then the ex-
tension e of the middle plane is given by

X247 =(1+e)?,

where a prime denotes differentiation with respect to z. We
use 8(z) for the inclination to the horizontal of the tangent to
the deformed middle plane along the z coordinate (Fig. 1).
Then we have the relations

sinB=X"/(1+e),
and we can take
Y1=X(z) +ussinf+ (x+u)cosp,
Y1 =2(z) +uscosf— (x+u,)sing,

cosB=Z2'/(1+e), (13)

where u,, u, are small displacements which vanish with x. For
small strains and small strain derivatives, the first and second
partial derivatives of u,, u, with respect to x and z are required
to be 0(c) and O(e)/h at most, respectively. Guided by the
classical infinitesimal solution, we assume that

vex v

= 4 B'x2
u;(x,2) a—» + 2(1_1,)6 X
_L{ 1+» 3 h2x? 21 h3x}
D L24(1-») 41 -2  3(1-»)? ’
Uy (x,2) = ——6~(—lﬁl_l—y)—{ (v—2)x* + 6h2x},

where D=2Eh3/3(1 —»?) is the flexural rigidity of the strip
and E, » are Young’s modulus and Poisson’s ratio. We can
calculate the Green strains for the deformation using equa-
tions (1), (2), and from the stress-strain law for an isotropic
material we obtain the components of the Kirchhoff stress ten-
sor to 0(e),

_{1(x)3 3x+1}
Ta= TP\ 4 hn 2

— "2 __ B2

Oxz = 2(1 _Vz)ﬂ (x h ))

- g0+ {;(_x_y
Gu=Tp (TIPS,

32-v) x Y I
41-») h  20-»)’
provided that to 0(e)

" p ’

B o e’ =0, (14)
These assumptions will be verified later. The traction bound-
ary conditions (12) on the upper and lower surfaces are now
seen to be satisfied to 0(¢), and the equilibrium equations
o« =0 are also satisfied to 0(e) (8" and e” are assumed to be
zero to 0(e), in agreement with equation (14)).

The resultant of the traction on the surface which was in-
itially the cross section z =constant is statically equivalent to
transverse and longitudinal forces S(z) and T(z) per unit
length acting at the deformed position of the middle plane
together with a moment M(z) per unit length (Fig. 1). We
then have

ScosB + TsinB = SA Ty dA, — Ssinf + Tcosf = SA T33dA,

M= (03- 2Ty -0,- 0T )4,

Journal of Applied Mechanics

where A denotes the cross-sectional area. Using the relation
between ¢, and T in equation (8) together with the expres-
sions for oy, we find that to O(e)

2Eeh v
S=-DB", T=————————-ph,
B 1—»? l—vp
8—3»
M=Dg’' +———Hh?p. 15
/i3 100=7) D 15)

The geometry of the strip and loading are symmetric with
respect to the x axis, and consideration of overall balance of
force and moment between z=0 and z=/{leads to

Scosf + Tsinf + py,(— h,z) =0,
Tcosf — SsinB—~ T, +ply,(— h,0) -y (—£1,2)} =0,
M—M,+p(ys(—=1,2))?/2+pX, (= h,0) -y (—hz2)}

(16)

—%[{yl(*'h,o)}z = (1(=h,2)}*1 + (Teos

—SsinB)(X, — X) + (TsinB + ScosB)Z =0,

where the subscript o indicates values at z=0. Differentiating
these equations and manipulating the resulting equations with
neglect of higher order terms, consistent with the present order
of accuracy, we obtain

S’ +B'T+p=0, T'—B8'S=0, M’'+S=0. (17

A term —p du,;(—h, 2)/8z neglected in the second equation
represents the effect of the difference in the orientations of the
middle surface and the upper surface, and can be shown to
produce only negligible corrections within the accuracy of the
present theory. Thus it is sufficient to assume that the pressure
p acts on the middle surface in formulating the overall
equilibrium equations.

We first assume that both edges are supported so that the
displacements of the middle plane at z= ¢ are constrained to
be zero but there is no constraint on the rotation of the edges.
(The case of clamped edges is treated later.) The deformation
is then symmetric about z=0 and we have the conditions

Bl):B(O):O’ So=S(0)=0’ M(Ozoi

Z(H=4L Z0)=0, XH=0. (18)
The bending moment is largest at z=0, and we take
ep=h1B8.1, €,=lel . €e=€p+en, (19)

where ¢, ¢, represent measures for the bending strain and the
membrane strain, respectively. For a fixed value of ¢, as 4/f
decreases the rotation 8 increases and the flexural strain e,
eventually becomes small compared with the membrane strain
€,,- For very thin strips, the membrane solution ultimately ap-
plies with the strip deformed into a circular arc. The curvature
8’ then has the constant value —p/7 and the extension e is
constant so that

B(B=(+e)sing(h, X,/t=—(1+e){l—cosB(H}/B(Y,
PU/Eh=4eX, /01— v?).

From these relations, it follows that for the membrane
solution

18(0)1~~Be=0"), X,/t~ -8

=0(e"?), pt/Eh=0(?). 20)
The first relation above implies that the rotation is 0(¢'/?) at
most for the present problem. This may be compared with the
basic assumption involved in the von Karman equations (see
Stoker, 1968, p. 45) that the derivatives of the horizontal
displacements are of the same order of magnitude as the
squares of the derivatives of the normal displacements.
The orders of magnitude of the derivatives of 3 and e can be
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Table 1 Comparison of results for long strips under pressure with supported edges and
with the maximum strain approximately 0.50 x 10~

Central Deflection X,/2h

n/& p/E K

1/10 6.950 x 1070 4,887 x 1072 1
1/20 1.740 % 1076 1.958 x 1071 4.
1430 7.730 x 1077 4,402 x 1071 8.
1/45 3,560 x 1077 © 1,026 1.
1/60 2.248 x 1077 2,048 3.
1/80 1.640 x 1077 4,723 5.

Present Classical von Karmdn
Theory Theory Equations
L041 x 1072 1,042 x 1072 1.018 x 1072
081 x 10-2 4,102 % 1072 4.058 x 1072 .
976 x 1072 9,195 x 10~2 8.954 x 1072
924 x 107} 2,141 x 107} 1.923 x 107!
238 x 107! 4,270 x 1071 3,236 x 107!
297 x 107} 9.844 x 107} 5.296 x 10~}

Table 2 Comparison of resuits for long strips under pressure with clamped edgus and
with the maximum strain approximately 0.50 x 10~

Central Deflection X /2h

h/& p/E n

1/10 1,066 x 1072 7.495 x 1072 3
1/20 2.660 x 1076 2,993 x 107! 1.
1/30 1.180 x 1076 6.720 x 10~1 2,
1/45 5,240 x 1077 1.511 6.
1/60 2,932 x 1077 2,672 1.
1/80 1.653 x 1077 4,761 1.
/160 4.613 x 1078 2,126 x 10 6.

estimated using the overall equilibrium equations. Taking z=/
in equations (16) and using the last two equations of (15), for
deformations in which the bending strain dominates the mem-
brane strain we can show that

pth?
2D

In order to estimate the order of magnitude of S, it is suffi-
cient to examine the case for thick strips, in which the mem-
brane strain is negligible compared with the bending strain,
because S decreases as #/f becomes smaller for a fixed value of
strain measure e. Manipulation of the first two equations of
(16) in conjunction with equation (21) leads to

@n

=——’;;-0(e).

S=%Eh0(e) < EhO(e).

Combining the last two equations of (15) with (17), and using
the above result, we find that at most

B =%°<e) S0()/h2, T = EROE)/1S BO(e),

e’ =0(e2)/0S 0(e2)/h.

Differentiating equations (17), we can show that 8” =p/D to
0(e)/h3, and B and e” are second order as assumed earlier.

The overall equilibrium equations (17) provide equations
for 8 and T given by

B” —T8'/D—p/D=0, T'+DB"B'=0. 22)
The first five of equation (18) provide the associated end con-
ditions, and from the first three we have

8§-3
BO)=0, B'(B= —TO(—I:”T)M%, B (©)=0.

With the aid of the second equations of (13) and (15), we find
that the conditions Z(0) =0 and Z({) ={ require

L pd T y Lo,
2L Y g lag=o.
So{3D(h+l—vp) 23}2
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23)

Q4

Present Classical von KArmédn
Theory Theory Equations
.123 x 1073 3.123 x 1073 3,123 x 1073
247 x 1072 1.247 x 1072 1.247 x 1072
799 x 1072 2,800 x 1072 2,799 x 1072
277 x 1072 6.295 x 1072 6,277 x 1072
103 x 107} 1113 x 107! 1.103 x 107!
931 x 107! 1.984 x 1071 1.931 x 1071
682 x 107! 8.857 x 10~! 6.682 x 107!

For thick strips for which 4/fis not too small, the infinitesimal
solution applies. In this case 7 is compressive, but the term
TB’/D is negligible in the first of equations (22) and the term
involving e can be neglected in the second relation of (15). For
decreasing 4/f, e increases and T becomes tensile until for very
thin strips, the 8” and 8”7 terms in equations (22) become
negligible. The moment M then becomes second order and the
third relation in equation (15) does not apply.

When the geometry and loading are such that the bending
and membrane strain measures ¢, and ¢, are both 0(c), 8
varies from zero at the center to O(!/?) at the ends and
B’ =0(e'/?)/¢. Because 3’ =0(e,)/h, we see that h/¢ must be
0(¢!/?). From equations (22), T is constant to 0(c) and p/D is
second order so that for 4/¢ of 0(¢!?) or less we can take

" —18'/D~p/D=0, T’'=0, (25)
and
_ v o Th2_1 4 )
B(0)=0, B'(®=0, B"(0)=0, TE—Z—ZLM. 26)

The von Karméan equations also lead to equations (25) and the
solution can be easily obtained (see Love, 1927, pp. 559-562).

Equations (22) under conditions (23) and (24) were solved
by numerical integration to compare the results with the solu-
tion for the von Karman equations. The central deflection
X,/2h for various values of /¢ from 1/10 to 1/80 is tabulated
for comparison in Table 1. The pressure was chosen so that
the maximum strain is approximately 0.5 x 103 in each case,
and Poisson’s ratio » was taken to be 0.25. As shown in the
table, the classical linear theory breaks down as h/f decreases;
on the other hand there is a slight discrepancy between the
present theory and the solution from the von Karman equa-
tions when A/0is not too small. When k/¢=1/45, h*/# is close
to the value for ¢ used in Table 1, and the table shows that the
von Karman solution is very accurate for A/f=1/45 or
smaller. This is in agreement with the previous paragraph
which showed that the von Karman equations will apply for
this problem when A/fis 0(¢'/2) or smaller.
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Fig. 2 Deformation of the middle plane of a circular plate under
pressure

When both edges are clamped so that the displacements and
rotation of the middle plane at z= +¢ are constrained to be
zero, the end conditions on § become

B(O)=0, B(H=0, B"(0)=0,

while the conditions Z(0)=Z (=0 again require condition
(24). Together with the last condition of (26), conditions (27)
constitute the end conditions for the von Kdrman equations
also. The solution for the von Karman equations in this case is
also given in Love (1927, pp. 563-564). For comparison, Table
2 shows the central deflection X,/2h for various values of h/¢
from 1/10 to 1/160 as predicted by the present theory, the von
Karman equations and the classical theory. The pressure was
chosen so that the maximum strain, which occurs at the edges,
is approximately 0.5 x 103 in each case. The table shows that
the von Karman equations and the present theory give the
same results for the values used for A/¢, in contrast with the
simply supported case (Table 1) in which there was a slight in-
accuracy in the von Kdrman solution for values of A#/¢ which
are not too small. For the present case of clamped edges, the
end conditions on 8 are given by equation (27) for both of the
approaches, and the bending strain is much larger than the
membrane strain (in fact the ratio of ¢, to ¢, tends to a finite
limit 3V2 as h/f goes to zero, (see Love, 1927, pp. 563-564).
Thus the differences between the two theories, occurring in the
second equation of (22) and the condition (24), are insignifi-
cant, and the two approaches predict the same results. We
note that the classical theory gives better approximations for
smaller values of h/f compared with the previous case because
the bending strain is more dominant for the clamped-end
conditions.

@7

4 Bending of a Circular Plate by Uniform Pressure

In this section we consider the axisymmetric bending of a
circular plate. The plate is initially horizontal and supported
on its edge so that the edge displacements of the middle plane
are constrained to be zero but there is no constraint on rota-
tion of the edge. The upper surface is subject to uniform
pressure p, while the lower surface is free from traction. A
plate with a clampled edge can be treated in a similar manner.

The classical theory gives the small deflection solution for a
thick plate (see Love, 1927, p. 481). For a thin plate, the
deflection can be comparable to the thickness of the plate and
the von Karman equations have been used for this case (see
Stoker, 1968). As in the preceding section, we obtain solutions
for all values of the radius-to-thickness ratio.

A cylindrical coordinate system is taken with the origin at
the center of the middle plane, and with z axis vertically up-
ward. The radius of the plate is denoted by b and the thickness
by 2A. The coordinates of points on the deformed middle
plane are denoted by R(r) and Z(r), and the radial and cir-
cumferential extensions e, and e, are then given by

R2+Z'2=(1+¢,)%, R=(1+e)r. (28)

We use y(z) for the inclination to the horizontal of the
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tangent to the deformed middle plane along the radial direc-
tion, Fig. 2, and we have (c.f. equation (13))
R’ =(1+e,)cosy, Z' =(1 +e,)siny. 29)

We denote by «, and «, the curvatures along the radial and cir-
cumferential directions, respectively, and in terms of y they
are given by

k,=v'/(1+e,), xk=siny/R=siny/r(1+e,).

Because e, and e, will be 0(¢) at most, for our purposes we take

kp=7y', Kg=sIDYy/r. 30)
For strain measures we can take
ep =max(lx hl,lkohl), €, =max(le,1,lel),
e=¢€,+€,, (3D

where €, ¢, represent measures for the bending strain and the
membrane strain, respectively. Combining the second of equa-
tion (28) with the first of equation (29), we have

1
1+e,,+re,,’=(1+e,)cosv=1+e,—--—2—'yz+ ceey (32)
and assuming that re; is 0(e) it follows that at most

1
v=0("?), Cos'y=1——7 % + 0(e?). 33)

The curvatures «, and x, are not independent but they satisfy
the Codazzi relation k, = xy + Rdk,/dR, so that to 0(e) we
have

K, =Kg+TKg. 34)

Let (r, 8, z) and (7, §, 2) denote the coordinates of a particle
before and after the deformation. For this axisymmetric
problem we take

F=R+u,cosy— (z+u,)siny,
(35)

where u,, u, are small displacements which vanish with z. Ex-
pressions (35) may be compared to the corresponding expres-
sions in the previous section. The square of the length of a
material line element in the deformed state is related to the
physical components of the Green strain tensor for the cylin-
drical coordinates through

dr? + P2de* + dz? = (1 + 2e,, ) dr? + (1 + 2eg ) r2d6?
+(1+2e,,)dz? +deyrdrdd + dey rdfdz + de,,drdz.

Z=2Z+u,siny+ (z+u,)cosy,

(36)

Guided by the classical infinitesimal solution, we take

2- 1
u,=(x,’+/<0’){ 4 z - = h2z}

6(1—v)
v ’ 7\ 2
+—————2(1_V) (e, +e5)z%,

bt 4
u,=——(e.+e)z+

= (k, + K5) 2>

v
2(1-»)

r {(1+u)z4 h*z2 (1—2v)h3z}
D241 —y) 41-v) " 31-»)2

@37

Substituting equations (37) into (35), and the resulting expres-
sions into the left-hand side of (36), we can obtain the strain
components to 0(¢). Using the stress-strain law for linear
isotropic materials, the Kirchhoff stress components o,,, g,
04> O, which are true stresses associated with directions in
the deformed state of line elements which were initially in the
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P

0,251

Fig. 3 Force and moment resultants for a circular plate

radial, circumferential and axial directions, are then found to
be 0(¢)

E

a,,:-i_—yz fe,—xz+v(e;—x2)}
+[ v+2<z>3+ 3 z v }
P\ =) h 2A-n)
E

o0 =157 {eg—rpz+v(e,—x,2})

“’[_ y;rz(%)a * 4(13_,,) %_ 2(1"—V)}’

() - E-+]
T2 =P\ i n 28

=gy () (=), (38)
provided that

k" =3kg" =x./r=3xj/r=—3p/8D to 0(e)/ h?,

e +ef =0(c2)/h2, (e; +e}) /r=0(eX)/ h?. (39)

(In equation (38) we have neglected contributions from second
order terms involving u,e,/r and u,x,z/r, which are bounded
around r = 0 because u,(0,z) = 0 by symmetry.) The trac-
tion boundary conditions (12) on the upper and lower surfaces
are now seen to be satisfied to 0(e), and the local equilibrium
equations are also satisfied to 0(e) provided that

el+vej+ (e, —ey) (1—v)/r=0()/h. (40)

which will be verified using overall equilibrium equations. To
0(e), the local equilibrium equations in terms of a,,, 0y, 04,
d,,, and the independent variables r and z have the same form

as those in the infinitesimal theory for a cylindrical coordinate

system.
Stress and moment resultants associated with surfaces

878/ Vol. 53, DECEMBER 1986

which were initally the surfaces r = constant, # = constant
will be denoted by S(r), T,(r), M,(r), measured per unit
length along the circumferential direction, and 7,(r) and
M, (r), measured per unit length along the radial direction.
These resultants act through the deformed position of the mid-
dle plane, Fig. 3. With an approach similar to that leading to
equations (15) of the preceding section, we obtain the follow-
ing expressions, which are correct to 0(e),

T,=2Eh(e,+vey)/(1—v¥)—wph/(1-v),
T,=2Eh(e, +ve,)/ (1—v?)—vph/(1~v),
S=—D(x/+x5), M, =D(«, +vkg)
— (¥® + v+ 8)ph2/20(1 —»),
My =D(xy+vk,) — (v + v+ 8)ph?/20(1 — v).

As in the previous section, when considering overall balance
of force and moment in terms of these resultants, it is suffi-
cient to assume that the pressure p acts on the central surface
of the deformed plate. From equilibrium of a sector of the
plate, we obtain

@n

r(T,siny + Scosy) —pR?/2=0,

r r
r(T,cos'y—Ssin'y)—g T,,dr+p§ R(1+e,)sinydr=0,
o ]

,
™M, —~ S M,dr+ Rr(Scosy + T,siny)
o
+r(Z—2Z,) (Ssiny— T,cosy) —pR3/3

—pS (Z—ZO)R(1+e,)sin'ydr+S T(Z—2Z,)dr=0, (42)

where the subscript o indicates values at r = 0. Differentiation
of (42) and manipulation of the resulting equations gives

(T, —~4'rS—Tyeosy=0, (#S) +v'rT,+ Tysiny—pR =0,
(M,ry —My+rS=0, (43)

where higher order terms have been discarded for consistency.
Since the edge displacements of the middle plane are con-
strained to be zero while there is no constraint on rotations of
the ridge, we have

Z(b)=0,R(b)=b,M,(b)=0. (44)

At r = 0, we have
R(0)=0, v(0)=0, 45)
and we expect that x; and e; are bounded at r = 0 because

there is no concentrated load at the center. Equations (32),
(34), (43) can then be used to show that

€,(0) = ¢5(0), x4(0) = «,(0), My = M, (0),
T,.(0) = T(0), S(0)=0.

For a fixed value of ¢, as A/b decreases the flexural strain ¢,
eventually becomes small compared with ¢,,, and the pressure
loading p and the shear force S also will be correspondingly
smaller. Therefore, for conservative estimates of the order of
magnitude of p and S, it is sufficient to examine the case for

.thick plates. Using equations (42), we find that

p=E(—Z—) * 0tey) =E(—Z—) " 0(e) S B0 (o)
and (46)

S=Eh (%) 0(e,) =Eh—Z— 0(e) S ERO(e).
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Table 3 Maximum numerical values for the strains and derivatives of the strains and cur-
vatures for a circular plate under pressure; ¢, is the maximum extensional strain of the
middle surface and ¢ is the maximum bending strain

h/b 1/20 1/50 1/100 1/200
p/E 1.1 % 1073 2,06 x 1076 1.36 x 1076 1.15 x 1076
Max|eqy| 9.855 x 10747 9.934 x 1074 9.923 x 1074 9,925 x 1074
€ 3,700 x 1075 1,791 x 1074 4,427 x 1074 7,001 x 1074
h 9.485 x 1074 8,143 x 1074 50524 x 1070 3.827 x 1074
\ e’h 6,334 x 1077 1.188 x 1076 1,235 x 1076 5,541 x 1077
F‘o(g )
n egh 2,555 x 1078 5,017 x 1076 6,877 x 1076 6.795 x 1076
, KZh 1,119 x 1074 4,473 x 1075 3.317 x 1075 2,751 x 1072
T 0e,)
kgh 3,714 x 1075 1,334 x 107 5,681 x 1076 2.008 x 1076
hzo(eb)/hz x;‘h3 5.684 x 1076 1.289 x 1076 1.249 x 1076 1.303 x 107°
(x*7 + %g— o3 | 2.7 x 1077 4.6 x 1077 7.0 x 1077 7.0 x 1077
(e - 3.<é‘)h3 4.5 x 1078 2.1 % 1077 4.5 x 1077 9.5 x 1077
PP 3 -8 ~7 -7 ~6
oe?) (xr Kr/r)h 9.0 x 10 3.9 x 10 7.2 x 10 1.2 x 10
ot less (<" - »cg)/r)h3 2.2 x 1078 9.4 x 1078 1.6 x 1077 1.1 x 1077
x;“h4 1.1 x 1078 1.8 x 1078 3.3 x 1078 5.2 x 10~8
PO 4.0 x 1078 2.1 x 1077 5.9 x 1077 9.5 x 10°7

Combining the last two equations in (43) and using the last
two relations of (41) and equation (34), we reach the equation

)

where v and r have been used for siny and R for consistency.
In the classical theory the three terms containing «;”, T,, T, in
the above equation do not appear and & has the constant
value —p/8D. From equation (47) and its derivatives in con-
juction with the first equation of (46) and equation (34), for
thick plates in which the bending strain dominates the mem-
brane strain we can expect

D35+ 5rky+rkg"y=~"rT.+ Tyy —pr,

1
s 1/ = 000, 35=303/r=k/= /1

= —3p/8D 10 0(e) /h®, ri” = O0(e?)/ 13, (48)

The third derivative of «, will be of second order to be consis-
tent with the second of (48). The terms containing ;" , T,, T,
in equation (47), which can be neglected for thick plates,
become significant as ¢, increases, and for the complete
verification of the orders of magnitude of «/, x/ and their
derivatives for smaller values of 4/b, numerical results, given
in Table 3, are used. The assumption (40) can be confirmed by
using the first equation of (43) and the relation between the
stress resultants and the extensions to give

(e,—eg) (1—v)/r+e/+vej=(1—p2)y'S/2ERS 0(e2)/h, (49)

in which the inequality follows because S = Eh 0(e) is a con-
servative estimate for all values of 4/b. Combination of equa-
tion (49) with (32) provides

el+ej=(v—1)y2/2rto 0(e) /A,
and manipulating this equation we can verify that

(e/+e;)/r=0)/H?, e/'+ ef=0(e2)/ h2.

Thus the assumptions on the orders of magnitude have been
verified.

The equations governing the deformd shape of the middle
plane are given by the twelve equations in (29), (30), (43), the
second equation of (28), and the first two and the last two in
equations (41). To simplify these equations, we use the expan-
sionscosy =1 — v2/2 + ... ,siny = y(1 — v%/6 + ... .)
in conjunction with the first of (33) and retain only leading
order terms in the resulting equations, consistent with the
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Table 4 Comparison of results for a circular plate under pressure gvith
a supported edge and with the maximum strain approximately 10 ~* for
various thickness to radius ratios

Central Deflection -Z,/2h

h/b p/E Present Classical von Karmin
Theory Theory Equations

1/10 4oh % 1073 1.981 x 1072 1.982 x 1072 1.912 x 1072

1/20 1.1 x 1073 7.636 x 1072 7,772 % 1072 7,570 x 1072

1/50 2.06x 1076 4,190 x 107t 5.606 x 1071 4.186 x 107!

1/100 1.36 x 107° 1.299 5.915 1.299

1/200 1.15 x 1076 3,192 8.000 x 10 3,192

present order of accuracy. Then the governing equations are
reduced to two equations in vy, 7, as

m” +y —y/r—rT,/D+pr?/2D =0,
2

2
r(3T!+rT" +Eh[ 2y
GBTr+rT7) L YT

(@+9)ry'y" +vy"2

-—V'y"y/r+r2'y”2—'y'y”+r2'y’*y’”}:|=0. (50)
We note that the terms containing v”, v” in the second equa-
tion can be eliminated by using the first equation so that equa-
tions (50) involve a fourth order system. Using the second rela-
tion of (28), the first and last equations of (43) together with
the force-extension and moment-curvature relations, we find
that the last two conditions of (44) require

(A=)T,+rT+vph+Dry’'(y" +v'/r—~/r?)=0,
+y+8
20(1 —v)D

With the aid of the governing equation (50), the regularity of v
and R at r = 0 requires

v vy /r— ph?=0at r=>b. (51)

T/(0)=0. (52)

Thus the boundary conditions for the nonlinear equations (50)
are given by equations (51), (52) and the second condition of
(45). Introducing the radial displacement U = R — r, we can
formulate the boundary value problem in terms of U and vy
(see Im, 1985).

For thick plates under small pressure loading, 7, is com-
pressive but the term ry7,/D in the first of the govening equa-
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tions (50) is negligible and the second governing equation can
be neglected. We then reach the following equation for the
classical theory,

"’ +y' —vy/r+pr?/2D=0,

and the boundary conditions are given by the second of (51)
and the second of (45). The solution for the infinitesimal case
is obtained as (c.f. Love, 1927, pp. 481)

pr 3+v 4+r+8. 2}

P2 2
4D { rAT A=y Yt saos

For thin plates for which A/b is very small, the load is
primarily sustained by the membrane stresses, and ¢, is
negligible compared with ¢, over the entire plate. Although a
boundary layer is developed in this case near the edge where
~v” and its higher derivatives change abruptly [12], their
numerical values remain very small and the present theory is
not affected by the existence of this boundary layer. When ¢,
is negligible compared with ¢,,, so is S compared with T, Ty,
and the first three terms in the first equation of (50), which are
related to ¢,, can be neglected compared with the other terms.
The terms multiplied by 242/3(1 — »?) in the second equation
of (50), which are h20(y?)/b?, are also negligible compared
with 4? in this case. Hence we reach the governing equations
for the membrane solution (see Stoker, 1968, pp. 22-27)

Y=

1
VT, == pr=0,3rT/+ T/ +Ehyt=0. (53)
The boundary conditions are obtained from equation (52),
and the first condition of (51) by neglecting higher order
terms,

T/=0atr=0,(1—»)T,+rT;=0atr=>.

The membrane theory leads to the first order interior solution
in a perturbation approach by Bromberg (1956) and the solu-
tion can be given in terms of a power series in r/b (see Stoker,
1968). In conjunction with the first of (33), the first equation
of (53) suggests that for the membrane solution

p/E=h0{e?)/b,

which agrees with the result for the strip (20) as expected (and
justifies the neglect of the term wp# in the first condition of
equation (51) for the membrane theory).

We have discussed the two extremes, the classical theory
and the membrane theory. They cover the geometries and
loadings for which one of ¢, and ¢, dominates the other.
When ¢,, €, are comparble to each other, both 0(¢), y varies
from zero at the center to 0(c!’?) at the edge and then v’ =
0(e/2)/b. Combining this with Ay’ = 0(e;) = 0(¢), we expect
h%/b? to be 0(e) when ¢, ¢, are comparable in magnitude. It
then follows that the terms multiplied by 2A2/3(1 — »?) in the
second equation of (50), which are A20(y?)/b?, become 0(e?)
and negligible compared with y? and the terms containing the
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pressure p and the term Dry’(y” + ~'/r — 4/r?) in the
boundary conditions (51) become second order compared with
the other terms. For the loading and geometry such that 4/b is
0(e'/2) or less, we therefore obtain the governing equations

ry" +y' —y/r=myT./D+prt/2D =0,

r(3T.+rT,")+ Ehy* =0, (54)
and the boundary conditions
A-v)T,+rT/=0,v" +vy/r=0atr=5,
vy=0,T/=0atr=0. (55)

These agree with the von Karméan equations for large deflec-
tions of a circular plate. The solution for these equations can
be given in terms of a power series in r/b (see Timoshenko and
Woinowsky-Krieger, 1959, pp. 408-409). For comparison of
the von Karman equations with the present theory, however,
we use numerical integration together with a shooting method,
and the results are shown in Table 4. Here the equations in
terms of U and y were used for the present theory with
Poisson’s ratio = 0.3, and the pressure was chosen so that the
maximum strain is approximately 10~3 for each case. As ex-
pected, the table shows that for values of A/b which are not
very small, the classical theory agrees well with the present
theory, but breaks down as #/b becomes smaller; for very
small values of A/b, on the other hand, the results from the
von Karmén equations are in an excellent agreement with
those from the present theory. We note that the von Karman
equations give good approximations even for values of A/b
which are not very small.
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A General Theory of Shells and
the Complementary Potentials

This theory incorporates the attributes which are essential to the approximation of
shells by finite elements. It is limited only by one assumption: Displacement is a
linear function of distance along the normal to a reference surface. Deformation is
decomposed into rotation and strain; the rotation carries elements of the reference
surface to the same surface in any subsequent state. Transverse-shear deformations
accommodate simple elements. The theory is couched in the potential P, and in the
complementary pofential P, these have the property, P, + P. = 0 for all admis-
sible (equilibrated) states. The theory is also cast in the complementary functional
P, of stress and displacement, and the functional P, of displacement, strain and
stress; P, and P, are akin to the functionals of Hellinger-Reissner and Hu-Washizu.
These alternate functionals provide the means to develop various hybrid elements.

G. Wempner

Georgia Institute of Technology,
Atlanta, GA 30332

Introduction

The role of thin shells in modern structures is evident. In-
creasingly, we turn to numerical methods, often based on
finite elements, to predict the response of shells. When the
strains are small, then the analysis of an element entails only
small relative rotations; large rotations in the assembly are ac-
commodated by the decomposition of rigid rotation and
strain, To avoid complicated elemental approximations, the
theory of the shell must admit transverse shear strains; then
kinks are admissible along the continguous edges of elements.
The foregoing observations and a theory for “‘finite elements,
finite rotations and small strains’’ were presented previously
(Wempner, 1969).

Before and after the earlier work (Wempner, 1969) many
contributions have been made to the subject of shells. Intrin-
sically, most theories admit finite rotations. These include the
important works of Koiter (1960, 1966, 1973), Sanders (1963),
Leonard (1961), Naghdi (1972), and Reissner (1974). Sim-
monds and Danielson (1970) and Pietraszkiewicz (1980) have
explicitly addressed the decomposition and alternative
representations of the finite rotation. The works of Reissner
(1974), Pietraszkiewicz (1980), Libai and Simmonds (1983)
also accommodate transverse shear deformations. The
literature is vast; the works cited include many additional
references, beginning with the early work of Aron (1874) and
Love (1927).

The foundations of structural mechanics were recently for-
tified by Fraeijs de Veubeke’s formulation (1972) of the com-
plementary potential. Independently, Koiter (1973) arrived at
similar results: These demonstrate the roles of the rotation and
the use of the tensors of stretch, engineering strain and the
associated stress in the formulation of general complementary
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potentials. The author has given interpretations (1980) which
reveal the complementary character of those potentials and
also the physical significance of the associated stress.

Here we present a general theory which is drawn from the
three-dimensional theory with one underlying assumption:
The displacement varies linearly through the thickness. Our
decomposition of rotation and strain differs from the usual
decomposition of three-dimensions: Our rotation is more
natural for shells because it carries elements of the reference
surface to the same surface in any subsequent state, With no
restrictions upon the magnitudes of rotations or strains, the
theory is expressed by the complementary functionals which
are analogous to the functionals of three dimensions. Some
basic equations (kinematics and dynamics) apply to any con-
tinuous shell; all results apply to any continuous elastic shell.

Since our theory is given by any of four functionals, accom-
modates finite deformations and transverse shear strain, it
provides a vehicle for a variety of approximations and,
specifically, hybrid elements.

Three-Dimensional Theory

In a previous paper (Wempner, 1980) we began with a
primitive functional P of a stress vector T/ and the position
vector R of a deformed state

P= Sv [TisR,; —f<R]dv 1)

—j t-R da—§ t«(R—R)da

Here f is body force (per unit of initial volume v), tis the trac-
tion (per unit of the initial bounding surface @) and R is the
prescribed position on a portion a, of the boundary surface.
The variation of R in v and on surface a, (where tractions are
prescribed) provides the equilibrium conditions for the stress
T/ in v and on q,. The variations of T/ in v and t on & are sub-
ject to the conditions of equilibrium; then the variation of the
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functional vanishes for kinematically admissible dis-
placements. In short, the functional includes the potential
P,(R) and the complementary functional P.(T’). To ap-
preciate this fully we introduce the strain, stress and com-
plementary energy densities:

As before (Wempner, 1980), let #/; denote components of
rigid rotation which carries the initial tangent vectors, g; =¥ ;
to an intermediate system

g/=r {igj )]
A stretch with components C/ carries the intermediate triad g/
to the current system:

R, =g;=Clg/ 3)

Here the component of stretch, C; = Cy;, is related to the
component of engineering strain:

hy=h;=Cy—g;, 4

where
85 =8i°8 =8/
The internal power is
W=TR ;=T (Clg))’ (5a)
W=Ti.(Clg/+Ci x g) (5b)
Here Q is the spin of the triad g/ and ¢} = A/, In another form,
W= (T‘-g’!)h +(T*Cl) (gg x ;)0 (5¢0)

The final sum of (5¢) is the power expended in the rigid spin; it
must vanish. The first term is the work expended in strain:

W=Th, (5d)
where T¢¥ signifies the symmetric part of the stress
component

Tij=g'j.’1‘i 6)
If W, (hy) and W, (T¢#) denote the complementary densities,
then

T"-R,,~=T"f(h,-j +gi) (7a)
=W, +W . +Tig, (7b)

Upon substituting (7b) into (1), we obtain
P=P,+P, ®)

where
_——:S [W,—f-Rldv— S t-R da (%a)
a
ES (W.+Tig,ldv— S teR da (9b)
ay

- Sa te(R—R)da

v

P, (R) is the potential when f and t are dead loads. P (T') is
sub]ect to variations T/ which fulfill equilibrium and f = 0 on
a,; therefore, in (9b)

S t-R da= S t-R da= S TR ;dv

av a v

In view of the foregoing, functional P, can be rewritten:
=| -1 G- | teR-R)da

It is important to note that the variation 17 requires the varia-
tion of the components 7%, and the vector g”, i.e., the rota-
tion Q, which leads to the conditions for equilibrium of
moment:

(T*C) (eppg’ =0 (10)
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Reduction to Two-Dimensions

Our theory of the shell is founded upon the assumption:
R=R°’+6°A, (11

Here we follow the conventions: 6% denotes an arbitrary coor-
dinate of the reference surface (¢« = 1, 2) and 6* denotes
distance along the initial normal n. Also,

A,=R?,

Top and bottom surfaces lie at ° = h,, —A_; s denotes the
reference surface; ¢ denotes the bounding edge. If # and &k
denote the mean and Gaussian curvatures of the initial
reference surface, then

dv=p(63)ds
p=1-2h0%+k(6°)?
With these notations and the assumption (11), the functional
(1) is integrated with respect to the coordinate 6°, to obtain

= S [N®eR%, —F+R+M*+A; ,+T+A, —C-Ajlds  (12)

- S NoR"dc—S M-A,dc

- S N«(R° —R)dc— S Me(A; — A;)dc

Instead of the one vector R (8!, 62, 8°) of three dimensions, we
have two vectors, R° (8!, 62) and A;(9', %), which fully define
the configuration. F and C are net external force and ‘“‘cou-
ple”’, which include body force and surface tractions. The
“‘stresses’’ are

iy

N"‘ES § Teudd? (13a)
hy

M“ES_" T0? udo? (13b)
by

TEX i T3ud§? (13¢0)

N and M are the edge tractions (force and “‘couple’’); N and
M are prescribed on part ¢, of the edge.

The variation of vectors R® and A, provides a variation of
P (the virtual work) and the stationary conditions are the
equilibrium equations in s and on c¢,. With the customary
notation, ds = Va d@' d6?, and the usual integration-by-parts,
we obtain

1

—(VaN*) _+F=0 ins 14a
Va ’ (140)
1

—(VaM®) ,—~T+C=0 ins (14b)
Va ’

Nen, =N, Men, =M on ¢, (15a,b)

Again, the variation of stresses N*, M® and T produces
meaningful results only when their components are referred to
a suitable basis.

Natural Basis for the Shell

With the presence of transverse shear strain the usual rota-
tion (which carries g; to g/) would rotate the (initial) tangent
vector (a, = r%,) out of the (deformed) surface. Therefore, it
is more natural to employ a rotation which carries the initial
triad (a,, a,, 2, = m) to a triad (b, b,, b; = N) such that b,
are tangent and N is normal to the deformed reference sur-

. face. With this new meaning, we have

bi=r{,-aj (16)
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Rotation: a,—b;; b, =r} a;

Strain: b,—A;; A;=Chi+s})b;

Fig. 1

Decompositon of motion

The orientation of b, is such that the stretch of the surface is
given by a symmetrical tensor:

Colﬂ Eba.AB =bﬁ ’Aa
A, =R°

o »ot

(17a)

The deformation also carries the vector N to the vector A, via
transverse extension and shear:

Cyi=bh;+A,

Note that b; « A, = 0.
All components of stress are referred to the natural basis:

N"‘i—=—bi°N°‘, MaiEbi.Ma (lga,b)
Ti =bisT

To illustrate the basis, the initial triad (a;), the reference triad
(b;) and the current (deformed) triad (A;) are depicted in Fig.
1.

(17b)

Internal Power

The internal power of the stresses (per unit area) is

W=NeR?, +M*<A; , +T:A, (19a)
After much algebra, we obtain
W=N#BCp+M*BD g (19b)

+T2Cy +T3Cyy + M3D,,
+ [(N* —K;M’ﬁ)cg ~TrCyy + T3CH =MD 3]0,
+ [(NeY —K;;Mﬁ‘f YCh+ TV Yo,
Here a component of spin @ is expressed by
Q' Eb’ o =""2— G’kj(.\)jk

Spin components about the normal b* = N, tangents b! and
b? are, respectively, a,,/Va, @3,/Va, and &,3/Va. The flexure
K3 is defined as follows:

K§=—A%A,, (20a)
=C}Bg— (Cic) |4 (20b)
Here B§ and B, are components of curvature:
Bi=A%<N, B,s=A, ¢*N
Also, in (195),
Dyg=bgeA; o =—KLC,, (21a,b)
D,=N-A, ,=C3 ,+C5c4B,, (22a,b)

The expression (19b) serves to identify the strains associated
with each of the stresses, N°®, M*, T> and T3, respectively:
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R =Cos~aup (23a)

kaﬁ EDaﬁ+baﬁ’ le3 =Da3 (23b,C)
hyy=Cs h33 =Cy3—1 (23d.e)

Since the stretch (C,4) and strain (4,4) of the surface are sym-
metric, only the symmetrical part of the membrane stress
(IN*8) plays a role in the power, in a potential or dissipation.
Also, the shear stresses N®3 are merely reactive.

In addition, the power (19b) serves to identify three condi-
tions of equilibrium: Since no power is expended in the spin,
each bracketed term vanishes. These three equations serve to
determine, or eliminate,the skew-symmetric part of the stress
N8 and the reactive stresses N3,

Complementary Potentials of the Shell

With the identification of strains and the associated stresses,
we can formulate the two-dimensional counterparts of the
potentials (9a) and (96). The potential is analogous to (9¢) and
follows from (12).

Pv = Ss [Wv(hntﬁ’ kaﬁ’ h3i’ kct3) (24)

—F«R°—CeA,]ds

- g [NeR?+M-A,]ldc
¢t
Here the strains are implicit functions of the displacements
(R, and A,), so that the potential (24) is implicitly a functional
of displacement.
The complementary ‘‘potential’’ is analogous to (9b) and
follows from equations (12) and (24); P, = P — P,:

P,.= S [W (N6, M8, Ti., M*®) + N*fa,
5

—M$b 5+ T31ds 25

- S [NR® +M-A,]dc
€y

- g [N-(R°—R°) + M+(A, — A,)ldc

v

The complementary density is defined, as in equation (75), by
the Legendre transformation:

W,=NbBp o+ MBE o+ M3k g+ Thy — W, (26)
The sum of equations (24) and (25) is the functional (12):
P=pP +P, (0¥)]

Verification requires the definition of the complementary den-
sity (26), the stresses (18) and strains (23).

The stationary conditions for P, (R°, A;) provide six
equilibrium equations (l4a,b) and edge conditions (15a,b),
consistent with the potential W, (dependent upon the
elasticity).

The functional P, of equation (25) depends on the stresses
(N®, M®, T') and rotation of the triad (b;) just as it’s three-
dimensional counterpart (95). Admissible variations of stress
must satisfy the equilibrium equations; in particular, varia-
tions vanish on ¢,. Therefore, enforcing (14a,b) in P, of equa-
tion (25), we obtain
S [N-R”+M-A3]dc=S [ ]dc—g [ ldc (28a)
L‘U B c Ct

= S [N“/b;R%, + Mb;+ A, , +TA, (28b)

—F-R"~C-A3]ds—g [ ldc
¢
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Then, by employing equation (28b) in (25), we obtain the two-
dimensional counterpart of (9¢): .

p.= S [W,—NE(bgeR% —a,5) —N°N:R?, (29)

— M8 (bgeA; , +b,5) —M"3N-A3,a
—T%b,+A; = T3Ne(A; ~N)+ FR° + Cs A;lds

- S [Ne(R°—R°) +M-(A; — A,)]ldc

v
+ S [N-R® +M-A;ldc
€t

The latter form of P, is akin to the Hellinger-Reissner func-
tional (Hellinger, 1914; Reissner, 1950). The functional is sta-
tionary under varations of stress provided that the
displacement-stress conditions are satisfied, e.g.,
o 0w,
bﬁ‘(R,a —b,) _W

In addition, the functional (29) can be regarded as a functional
of displacements (R,, A;). The functional is stationary under
variations of displacements provided that the equilibrium
equations (14a,b) are satisfied in s and equations (154,b) are
satisfied on c,. Finally, the functional (29), like (25) is depen-
dent on the rotation of the triad (b;). Both are stationary
under variations of rotation provided that the three conditions
of equilibrium (of moments) are satisfied; these are the condi-
tions that the bracketed terms of (1956) vanish.

If we employ the transformation (26) to eliminate W, in
equation (29), we obtain

PU(:‘_PC):

Py={ (W, No#lhgy ~bye®2,~b,)] (30)

~M*[k,s—bg+(A; , +DEb,)]
+ N3 [NOR"’Q] — M [kos — N-A3,u] = T%[A3, — b, A4l
—T[hy;— Ne(A; —~N)] —F+R® —C+A, } ds

+ SC [INo(R° —R?) + M+(A, — A,)ldc

- S [N+R° +M-Aldc
t

The functional P, is dependent on all variables, displacements
(R,, Aj), strains (hy, k), stresses (N, T', M*') and rota-
tions (of b;). The latter is a two-dimensional counterpart of
the Hu-Washizu functional (Hu, 1955; Washizu, 1955) cast in
terms of the rotated system (b;) and the engineering strains
(hy, ko). The stationary conditions are all equilibrium condi-
tions, stress-strain relations, and the strain-displacement
relations.

Correlation with Classical Theory

Alternative choices of strains and stresses are always pos-
sible. From equation (20a), we could adopt the flexural strain
k§=A%A; s +bj=—K5+bj

Then, from equation (215)
Duﬁ = kﬁcﬂﬂ —K4Cpp
The first terms of (195) assume the form:

W= (N# — KM ) C g+ M Cp, k¥

This suggest that we adopt, as membrane and flexural stresses, k

respectively,

884/ Vol. 53, DECEMBER 1986

nef =N“”—K;}M“B

miy =M*Cp,
The latter are the usual choices (c.f. Koiter, 1966, 1973;
Sanders, 1963; Leonard, 1961; Naghdi, 1972). Under the

Kirchhoff-Love hypothesis, K§ = Bj. If products of strains
and stresses are also dismissed, then .

nef = Ne& — papfeh

mg =M
Under these circumstances the latter choices pose no dif-
ficulties; however in the general nonlinear theory, we need the
separation of stresses and strains, and the unambiguous
transformation (26). Though unconventional, our strains (4,;,
k,;) and stresses (N*#, M, T') provide a precise theory
under the one hypothesis (11).

If transverse strains are neglected, and surface strains are
small, then (19b) assumes the usual form:

W=n"hys+mbk,g
+ (Na} b Tu)(:\)aa + n"‘ﬂd.)ﬁa
From equation (31) we can draw the anticipated conclusions:
Since k,3 = kp,, only the symmetrical part of m*® plays a
role. Equilibrium requires that the stress 7® = N3, the

transverse shear force. Also, we note the equilibrium require-
ment n*f = pbe,

(E2Y)

On Application of the Nonlinear Theory

In general, “‘solutions’’ (actually approximations) of the
nonlinear equations (differential equations of the continuous
shell or algebraic equations of a discrete model) must be ob-
tained by successive solutions of linear systems which govern
increments (Wempner, 1971). In particular, we record the
linear relations between incremental rotations (&; = b; = b;),
strains (C,,) and displacements (R?, A;):

@ =8 (bjeA, —Cyy)
C; =b;eA;—a;CF

i

Recall that C,; = C¥ = 0 and
L
T
Note that the rotation (w,,) is determined entirely by the

displacement (R?) of the reference surface. Also, increments
of the rotation tensor are given by

Hi=o%r
The displacement of the ‘‘normal’’ (A,) enters only in the
determination of transverse shear (C5,).

Conclusion

A theory of shells is founded on the one assumption: The
normal remains straight or, equivalently, the displacement is a
linear function of the normal coordinate. The theory is other-
wise general: Finite rotations, finite strains and transverse
shear strains are admitted without additional approximations.
The theory is expressed by the potential and the complemen-
tary potential, in the manner of Fraeijs de Veubeke (1972).
These functionals are expressed in terms of a rotated system
and engineering components of strain. The theory is also ex-
pressed by a functional of displacement and stress in the man-
ner of Reissner (1950) and by a functional of displacement,
strain and stress in the manner of Washizu (1955). All are
precisely consistent with the one underlying assumption. The
theory encompasses the more restrictive versions based upon
the hypothesis of Kirchhoff-Love; all incorporating the
decomposition of rotation and strain. This provides a general
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basis for the approximations, via finite elements, without the
limitations of earlier work (Wempner, 1969). As noted then,
approximations of small rotations within discrete elements in-
volve only small rotations relative to the rotated basis (b;);
such elemental models are nonetheless applicable to finite
rotations in the assembly.
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APPENDIX

Some Differential Geometry and Notations

Where possible, minuscules signify variables of the initial
state and majuscules signify variables of the current (de-
formed state). Unless specifically noted, components are
associated via the metric of the initial state.

The basis of the initial state is the triad (a;) and reciprocal
triad (a’):

1 . i — &
a,=r1%, a3=n, a'ea; =0

The rigidly rotated triad (b;) and reciprocal triad (b’) also
form the components of the initial metric:

Ag=ay,°a3=Db by
a® =a%.af =h2-bhs

The triad (A;) and the reciprocal triad (A’) are defined by
the equations:

A,=R%, A; =R (0", 62, 0), A;-A/ =]

The stretch is defined by (174); the inverse (or contraction)
is denoted by the minuscule c§ and defined by

cyCh =62,
Relations between the triads, (b;, b/) and (A;, A/) follow:
A, =C8by=C,bf

A% =cgbP
b, =cfA;=C, A"
b =CgA®

The shear is defined by (175); the mixed components follow:
Cé = bi'A3 = aijC3j
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Introduction

Presented in this paper is a comparison between numerical
and experimental results for the large, inextensional, deflec-
tions of cantilevered plates. To the authors’ knowledge, this is
the first numerical solution to a nonlinear plate theory first
put forth by Simmonds and Libai (1979), and later modified
by Darmon and Benson (1985). To briefly review, the
Simmonds-Libai (S-L) plate theory represents an extension of
Euler’s elastica to noncylindrical bending, with the principal
kinematic feature that a line of zero curvature, called a
‘‘generator,”’ exists at any point in the deformed plate. See
Fig. 1. A curve B passes perpendicularly through all of the
generators. Knowledge of the normal curvature, k(£), and the
geodesic curvature, g(£), of this curve, permits one to con-
struct the deformed geometry of the plate (¢ is the curvilinear
coordinate along ®, as measured from the ‘‘loaded edge’’).
Reduction to cylindrical bending brings great simplification as
g(£) becomes identically zero and the parallel orientation of
the generators is known a priori. The modifications of Dar-
mon and Benson were to include orthotropic, elastic proper-
ties and to admit distributed loading in the Simmonds-Libai
equilibrium equations. This was motivated by the desire to
better model such flexible, fibrous materials as paper and
cloth. Readers desiring additional information on this inexten-
sional plate theory are referred to Libai and Simmonds (1983),
Darmon (1985), and the two previously cited works.

In the Numerical Solution Section we describe the tech-
niques used to integrate the differential equations of the
theory, and take note of alternative techniques which proved
less useful. We also examine some numerical problems that
arise when the normal curvature of the plate vanishes. At such
inflection points in the plate the local generators are am-
biguously defined and the basic kinematic tool of the S-L
theory is lost. Techniques to bridge these points of vanishing
curvature will be presented. To test the utility of the S-L

lPresently at IBM Corporation, Thomas J. Watson Research Center,
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Numerical Solution to an
Inextensible Plate Theory With
Experimental Results

A numerical and experimental study of the Simmonds-Libai (1979) plate theory is
presented in this paper. This concerns the large, inextensional, noncylindrical
bending of cantilevered plates.

Edge of regression
Generators

Clamped edge

Loaded edge

Fig. 1 Geometry of the plate

theory, and the validity of the present solution, experiments
were performed on steel plates. ‘‘Short plate’’ results, little in-
fluenced by gravity, and ““long plate’’ results, much influenc-
ed by gravity, are reported in the Experiments Section. The
closeness of the match between the numerical results and the
experimental measurements is considered in the Discussion
Section. We find the match to be quite good.

Notation follows Simmonds and Libai (1979). References
on the numerical study may be found in Carnahan et al.
(1969).

Numerical Solution

The S-L equations of equilibrium, as modified by Darmon
and Benson (1985) for orthotropism and distributed loading,
comprise a set of sixteen differential equations, three integral
equations, and various algebraic constraints. The integral
equations are of the form:
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£
Q) =| awar, 1)

where q(¢) is the resultant of the distributed load acting along
a single generator at ¢, and Q(¢) is the resultant of all
distributed loading between the loaded edge at =0 and an in-

termediate generator at f=¢. For the present purpose of

numerical solution, we find it preferable to differentiate vec-
tor equation (1) so that the integro-differential system
becomes a purely differential system. The three scalar com-
ponents of Q are then incorporated as additional unknowns so
that the eventual formulation appears as:

dy

7 f(¢&,y) y(0)=y,, 2)
where y is a vector unknown, y, is a vector boundary condi-
tion, and f is a vector function, all of dimension nineteen. See
the Appendix for a complete list of these equations.

Of the various numerical techniques that might be used for
the integration of (2), two main categories can be identified: a
simultaneous, finite-difference, matrix method; and a
‘‘shooting’’ method. The matrix method consists of replacing
the differential equations with a system of 19 X N algebraic
equations where N is the number of points at which the solu-
tion is desired. The problem is then reduced to the inversion of
a 19 X Nby 19 x N matrix. Although experience has proven
that this method can be more stable than some shooting
techniques, it requires far more computation time and is fairly
complicated to implement. For that reason, it has been
discarded after some trials.

Shooting methods are of two kinds: explicit or implicit (also
known as open and closed formulas, respectively). Implicit
schemes, although a bit slower, are numerically more stable
than explicit schemes (Carnahan et al., 1969). An explicit
fourth-order Runge-Kutta scheme was first tried with no suc-
cess, due to a lack of stability. A fourth-order and then a six-
order Milne predictor-corrector method, both implicit
schemes, gave unacceptable results as well. Finally, the Ham-
ming predictor-corrector method was tried, and was retained
for it gave satisfactory and stable answers to our problem. It is
based on the Milne method, but its stabilty is improved at the
expense of an increased truncation error. The subroutine
DHPCG (Double precision Hamming Predictor Corrector for
General differential equations), from the Scientific Subroutine
Package by IBM, has been used.

The Simmonds-Libai equations require iteration on the
unknown initial geodesic curvature g(0) so that the final
generator aligns properly with the clamp. There are two other
unknown quantities which require iteration: the direction of
the distributed load in the frame attached to the plate, and the
final value of the independent variable ¢. The iteration on the
maximum value of £ is necessary as the curve ® is not a
material line and therefore its length is not known a priori.
The present results were obtained by the Newton-Raphson
method.

Singularities and Implementation

When the normal curvature k(£) of the plate vanishes, a
numerical singularity arises. In the neighborhood of such in-
flection points of the curve ®, the plate is practically
undeformed and it follows that the bending strains are.so
small as to become of the same order of magnitude as the
stretching strains. This contradicts the basic assumption of the
inextensible plate theory, which stipulates that the stretching
strains are negligible in comparison to the bending strains. In
the limit, a zero normal curvature causes a numerical
singularity as the derivative of the geodesic curvature, g’ (£),
becomes infinite. The singularity has been treated by the
present authors in two separate cases depending whether it oc-
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Fig. 2 Experimental apparatus

curs at the loaded edge of the plate (as occurs when no bending
moment applied), or at an interior generator (plate deformed
into an *‘S”’ shape). In the case of vanishing curvature at the
loaded edge, experiment has shown that if a small bending
moment is applied, the numerical solution still behaves nicely,
but the determination of the unknown initial geodesic cur-
vature remains delicate (Darmon, 1985). If the guess for g(0) is
poor, the numerical singularity that ensues (negative argument
of a logarithm) can be physically interpreted as follows:
1/1gl, which represents the distance between the curve ® and
the edge of regression of the developable surface, becomes
smaller than or equal to the actual dimension of the plate
along the generator. Hence the edge of regression falls into the
plate. Theoretically, this means that the plate should be
represented with the two branches of a developable surface
which connect on the edge of regression. Physically, this is not
possible without folding or in some cases tearing the plate.

Applying a small, fictitious bending moment to the edge of
the plate provides a simplistic means for avoiding the
singularity, however it is not computationally efficient and an
alternative solution has been sought. It consists of assuming
that a small area close to the tip of the plate behaves like a
wide elastica (no twist). This removes the singularity as g is
identically zero for an elastica. After a short distance, k will be
small but nonzero, and normal integration with the S-L equa-
tions may be resumed. We found the elastica-patch to be very
simple and very accurate.

A configuration in which the normal curvature vanishes at
an interior generator of the plates requires the integration of
the geodesic curvature g on an interval where it is infinite.
Although such a configuration can sometimes be unstable (see
Love’s 1944 statements with regards to the elastica), it is
nevertheless worth studying. Since, physically, the plate
deforms in a continuous manner, the mathematical analog
ought to have a solution, i.e., the singularity should be in-
tegrable. Thus, in that interval, g’ should be of the approx-
imate form:
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As all the cases we studied had monotonically increasing
normal curvature (see next section), we never had cause to im-
plement equations (3) and (4).

Experiments

Noncylindrical bending tests were conducted on a thin, rec-
tangular, stainless steel plate, which we felt provided a
reasonable faithfulness to the assumptions of perfectly
homogeneous, isotropic, elastic behavior in the Simmonds-
Libai plate theory. The plate measured 635 mm (25 in.) long,
152 mm (6 in.) wide, and 0.305 mm (0.012 in.) thick, and had
a mass of 235 g (0.0161 slug). Through a simple cylindrical
(i.e., elastica) deflection test, the bending rigidity was
measured to be 0.477 Nm (4.23 Ib-in.). To minimize the ex-
perimental error from the original curl of the plate, all tests
were performed twice, and averages were taken of the “‘curl-
up”’ and the ‘““curl-down’’ values. The plate was sufficiently
stiff so that extraneous effects such as the weight of strings, air
currents, etc., could be safely neglected.

The clamping fixture was composed of an aluminum base
plate on which two vertical beams were mounted. See Fig. 2.
These beams supported, along a horizontal straight line, a
slope-adjustable clamp. The adjustability of the clamp allow-
ed for the rotation of the test plate in the gravity field so that
its effect could be enhanced or diminished. It was also possible
to skew the plate within the plane of the clamp in order to
enhance or diminish the noncylindrical nature of the deforma-
tion. Figure 3 depicts these angles more precisely. The plate
shown in Fig. 2 has a clamp angle of 50 deg and a skew angle
of 45 deg.

A follower load at the edge of the plate is provided by ac-
curately calibrated weights hung on a light string passed over a
pulley. The pulley is fixed on a bar supported by a chemistry
stand. Small pointers, centered on the loaded edge of the
plate, help to adjust the position of the pulley so that the ap-
plied load is perpendicular to the tangent plane of the plate.

The deflection of the plate was measured along the two

parallel, unloaded sides. (Recall that the clamped edge and

loaded edge are part of the set of straight line generators.)
Small, evenly spaced marks were scribed on the sides of the
plate where measurements were to be taken. The spacing was
set at one tenth of the plate width (15.2 mm), and the marks
were made very short and shallow so that there would be no
measurable effect on the bending rigidity of the plate. A three-

dimensional digitizer with a cone-shaped probe was used to’

measure the deflection. The probe is visible in Fig. 2. The
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Clamp Angle = 30°
Skew Angle = 21.8°
Applied Load = 2.45 N
Length/Width = 1.3

Top view (XY)

WITHOUT GRAVITY: ..
Average Gap = 0.034w
Maximum Gap = 0.055w

WITH GRAVITY: —
Average Gap = 0.030w
Maximum Gap = 0.048w

Front view (X 2) Side view (Y 2)
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Fig. 4 Short plate results

Clamp Angle = 73°
Skew Angle = 45.0°
Applied Load = 1.96 N
Length/Width = 2.0

Top view (XY)

WITHOUT GRAVITY: ...
Average Gap = 0.081w
Maximum Gap = 0.159w

WITH GRAVITY: ——
Average Gap = 0.027w
Maximum Gap = 0.045w

Front view (X Z) Side view (Y Z)

0.10w

GAP

Fig. 5 Long plate resuits

digitizer had a capability of recording Cartesian XYZ coor-
dinates to within 0.001 mm (0.0004 in.). We defined the coor-
dinate axes such that X lay in the line of the clamp, and Z
aligned with gravity. See Fig. 3.
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Two test configurations will be described:

1. A “‘short plate’’ with a centerline length of 198 mm (7.8
in.), clamp angle of 30 deg, skew angle of 22 deg, and a
normal follower force of 2.45 N (0.55 1b).

2. A “long plate’’ with a centerline length of 304 mm (12.0
in.), clamp angle of 73 deg, skew angle of 45 deg, and a
normal follower force of 1,96 N (0.44 1b).

The short plate configuration was chosen to deemphasize
the influence of gravity, thereby to provide a fairer test of the
original Simmonds-Libai (1979) plate theory which discounted
distributed loading in the overall equilibrium equations. The
long plate configuration was chosen to emphasize the con-
tribution of gravity, thus to serve as a check on the modifica-
tions made to the S-L theory by Darmon and Benson (1985).

Experimental results for the short plate and long plate are
compared with numerical results in Figs. 4 and S, respectively.
Three orthogonal views are shown. In the figures, a solid
curve denotes a numerically predicted plate perimeter, taking
into account gravity. A dashed line shows the same plate
perimeter when gravity is neglected. Small crosses mark the
experimentally obtained perimeter points from the three-
dimensional digitizer.

The plot of the ““gap’” at the bottom of Figs. 4 and Sis a
measure of the discrepancy between the numerical and ex-
perimental results. The gap is defined to be the distance
separating the experimentally measured and numerically
predicted locations of the same material point on the
perimeter of the plate. This value is then nondimensionalized
by dividing by the width of the plate (152 mm in both test
cases). The gap is plotted as a function of the perimeter
distance around the three nonclamped sides of the plate. As
before, a solid line takes into account gravity, and a dashed
line does not.

Discussion

The short plate and long plate results that are presented here
are the /east favorable comparisons that the authors obtained
in 10 experiments. Nevertheless the ‘‘gap” between the ex-
perimental measurements and the corresponding theo-
retical/numerical prediction is at no point greater than 5 per-
cent of the width of the plate. The authors believe that most of
this error is due to experimental inaccuracy, particularly in the
measurement of the clamp angle. Indeed a rigid-body rotation
of 1 deg or 2 deg of the plate around the clamp line can reduce
the maximum gap down to about 1 percent. Further statistical
analysis of the experimental results leads to the same conclu-
sion (Darmon, 1985).

It ought to be noted that incorporation of gravity in the
model does not significantly reduce the gap for the short plate.
This was expected as the effect of gravity was deliberately
minimized. For the long plate however, the inclusion of gravi-
ty is a substantial improvement over the original S-L theory.

In the opinion of the authors, the Simmonds-Libai theory,
with the addition of distributed loading, has met its potential
as a model for lightweight structures such as webs, film,
paper, and thin metal plates. Comparison with experimental
measurements has shown that the model is very accurate when
applied to nearly inextensible plates. A worthwhile activity for
future study would be a similar numerical/experimental com-
parison of orthotropic, inextensible plates.
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APPENDIX

Following is a list of equations needed for the extended S-L
theory. Notation follows Darmon and Benson (1985).
Angle of the generators:
a’'=g, a0)=0. &)

Cartesian coordinates of a point on the curve & in the
undeformed plate:

u’ =cos a, u(0)=0, (6)
v’ =sin «, v(0)=0. )]
Components of the torque T:
T/=gT,+kT,—1,, T,(0)= Ta-i, 8)
T,=—gT;+Pc,~Qp, T,(0)=Ta.j, )
T, =—kT,~Pc,+Q,+1, T,0)=Ta<k. (10)
Geodesic curvature g:
1 ntan @ |* T, )
= - D.A
8 =44, A2 [( T-ng |-  Dk/ 70
— +
_ (w+tan r l )DgAx]»
g0=". (11)
Angles needed to locate the direction of the force P:
¢’ =k cos v, #(0) = ¢y, (12)
v =—g—kcot¢siny, y(0)=v,. (13)
Euler parameters:
1
Bi= N (kBy+gBy),  B:1(0)=0, 14)
1
B1= 5 (kp+8B1), 8,(0)=0, 15)
1
B;= - (gn—kB,), B:(0)=0, (16)
1
p'= > (kB, —&B3), w0)=1. a7
Integrals of the distributed load:
d
0= 4.  o0=0 as)
. d¢
d
o= % =q,, 0,0=0, 19
dt
d
Q;= d% =4, Q.(0)=0. (20
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Curve &:
X’ =t, x(0)=0. @1n
Angles 6, and 6 _:
0,=a—B,, (22)
tan B, = CZ;* . (23)
Relation for the u,’s in terms of the e;’s: ‘
u;=e;+2pf8Xe; +2(B¢)8—2(BBe;. (24)

Distances along a generator from the curve ® to the free
edges, n, andy_:

pocosat+v=f, (u—n_,sin o). (25)
Normal curvature & in terms of the bending moment T, :
k= Ty 26)
="
Direction cosines of the force P:
¢, =sin ¢ sin v, 27)
¢, =cos ¢. (28)
Integrals along a generator:
1+ Dywdy
A (8) = S — 29
SO =) 29)
1+ D Wdy
B.(£) = S _ egdn 30
j0) =) (30)
4
&)= | a1 -ngywar, G1)
7+
a® =" a-nepan. (32)
-Rigidities:
D;=c*D, +2c%5%(D,, +2G,, ) +5*D,, (33)
Dy, = (c*+5)D,, +c*s*(D, +D,—4G,,). 34)
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Derivatives of the rigidities:
Dy, = —4csg[c?D, — (¢ = s*)(Dy, +2G,, ) —s*D,]

+( ) [c“ <cos 9D, +sin an>
- — o
8 o ox ay

) (D, +2G a(D,,+2G
+2¢2s? (cosa~—(———"1—--—£+sin a—’——(—L————Q)—)

ox ay
oD aD
+54 (cos o —ZL+sin o y)], (33)
ax ay
aD aD
Dg,n=c4[—sina—a}i+cos o ayx]
a(D 2G Ja(D,., +2G
+2c2s2[—sina (Do ¥ xy)+cosoz Dy Xy)]
ox ay
aD aD
+s4[—sina—}i+cos a y], (36)
ax ay

1
DEﬂ,E = —4CSg[(02 _sz)ny__i" (c? _Sz)(Dx+Dy ‘4ny)]

oD aD
+(c* +5%) [cos a —2X +5in o ————’1]
ax ay

(D, +D,~4G,,)
ax

a(DX+Dy—4ny)]
dy ’

+c2s? [cos o

37N

+sin o

oD aD
Dy, =(c*+s%) [— sin o a;}' +€08 —E:vﬂ]

d(D,+D,—4G,,)
ax

+ 252 [— sin o

6(Dx+Dy—4ny)]

5y (38)

+COos o
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Intricately interrelated external loads, internal forces and equilibrium shapes of
axisymmetric nets are studied. After developing the basic equations in a generic
Sform, the most important particular types of nets are investigated—geodesic,
Chebyshev, and orthogonal nets. Closed-form statical-geometric relations are ob-
tained for each type of net and, as a by-product, for a wrinkling axisymmetric mem-

brane. These allow a comprehensive investigation into the equilibrium configura-
tions of the above systems and their evolution in the course of loading. Load com-
binations studied involved edge loads and normal surface loads such as net-solid
contact pressure, pneumatic pressure or pressure induced by an axial gas flow.

Introduction

A net is an underconstrained, multidegree-of-freedom
structural system with intricately interrelated statics and
geometry: the equilibrium shape of a net is uniquely deter-
mined by the applied load whereas, for a given geometry,
equilibrium is possible under a whole class of loads
(equilibrium loads). A systematic study of nets within the
general framework of structural mechanics began about three
decades ago [1, 7-9] although a few works on the analysis of
simple shallow nets appeared long before. In a comprehensive
work by Rivlin [9], an inextensible Chebyshev net is subjected
to a large axisymmetric deformation followed by a small cyclic
deformation. Read [8] found in numerical form the feasible
shapes of axisymmetric geodesic nets under uniform pressure.
The problem statement in Pipkin and Rivlin [7] was much
more general and, in fact, reversed: sought was a layout with
uniformly stressed fibers (an isotensoid design) for a given
convex surface of revolution. For the case of geodesic isoten-
soid, the problem was reduced to an integral equation in the
unknown distribution of the wound fiber inclinations to a
reference parallel. Closed-form solutions were obtained for a
sphere, cone, and ellipsoid of revolution. Interestingly, Pipkin
and Rivlin [7], apparently unaware that their geodesic isoten-
soid design is the exhaustive solution to the problem, mention-
ed a nongeodesic isotensoid system. The latter, however, is im-
possible by virtue of the following proposition [3].

If, under a normal surface load and an edge load, the cable
net meets one of the three conditions: 1) the net is geodesic; 2)
cable intersections do not transfer tangential forces; 3) cable
forces do not vary along the length; then a// of the three condi-
tions are met.

Thus, any isotensoid net under the above type of load is
geodesic. For example, a vyielding ideally plastic net is
geodesic; in particular, if it is flat (edge loads only) all the
cables are straight regardless of the initial geometry of the net.
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Skew axisymmetric net

Fig. 1

The object of this paper is an axisymmetric net generally
lacking reflection symmetry relative to a meridian plane, i.e.,
a skew axisymmetric net (Fig. 1). The homogeneous problem
for such a net (edge loads only) has been solved in [4] where
the feasible equilibrium shapes of prestressed nets were
established. The present study deals primarily with statical-
geometric interrelations for nets supporting normal surface
loads. Such relations are necessary for determining the
equilibrium shape for a given load, or, conversely, for finding
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Fig. 2 Net angles and forces

the equilibrium loads for a given shape. The latter alternative
underlies the concept of statically controlled geometry
whereby a desired configuration of an underconstrained
system is obtained by statical means and is subsequently fixed
(by imposing additional constraints) or actively controlled (us-
ing some kind of feedback).

Material properties are usually brought into the analysis
after establishing the equilibrium shape attained kinematical-
ly. However, prestressed nets represent an exception: they lack
kinematic mobility, hence, in their analysis constitutive rela-
tions cannot be decoupled.

Generic Statical-Geometric Relations

For a continuous model of an axisymmetric net with a me-
ridian r=r(z), the equilibrium condition in the normal direc-
tion is the same as the one for a membrane shell of revolution

T]U] +T20'2=P (1)

Here T} and T, are the meridional and hoop forces (per unit
lengths ds, =1 and ds; =1, respectively), o, and o, are the
principal curvatures, and P is the normal surface load.

When introducing the net forces, T, and Ty, it is convenient
to refer them to a unit polar angle, d¢ = 1, since it contains a
certain constant number of cables from each array. Let « and
8 be the respective cable inclinations to the meridian with the
positive direction shown in Fig. 2. Then the three membrane
forces are related to the cable forces as follows:

rT, = T,coso + Tgcosp )]
1Ty, =T,sina + Tysinf 3)
and, by virtue of
do/ds, |, =tana/r, d¢/ds, | g =tanf/r ()]
the hoop force
1T, =T,sina tana + Tgsing tang 3)

After introducing the axial force resultant,
ment, M,,

T,, and torque mo-

T, =2#rT,sind, M, =2xrT,, 6

the cable forces are evaluated from equations (2) and (3) as
follows

2xr sinw T, =rT,sinf/sinf — M, cosf @)
27r sinw T =M, cosa—rT,sinc/sind (8)

Here 6 and w are, respectxvely, the slope of the meridian and
the net angle:

ctn=dr/dz, w=8—o ©®
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Note that torque M, is constant throughout the net while the
axial force T, in the presence of a surface pressure, varies
along the z axis.

The three membrane forces produced by a net are mutually
dependent which allows the hoop force to be expressed in
terms of the meridional and shearing forces

T,=T),(tanx +tanfB) — T tana tanf 10)

Upon the substitution of equations (6) and (10), equation (1)
becomes

T, (0, — o tana tanB)/sind + M, o, (tanc + tanB) /r = 27rP
an
Presenting the principal curvatures as
=dsinf/dr, o, =sind/r (12)
and employing the condition of axial equilibrium
2arP=dT,/dr (13)

enables equation (11) to be transformed into a first-order dif-
ferential equation

i .Tz N thanfx tang _ M (tano +tang) ~0 (14
dr sinf rsinf r?

The above equations interrelate the statical and geometric
variables describing an axisymmetric net in equilibrium. In the
absence of torque, M, = T}, = 0, it follows from equations
(11) and (12) that

0,/0y=27r?P/T, +tana tanf 15)
where, as is seen from equation (3),
tane tanf <0 (16)

provided that both of the cable arrays are in tension. Accord-
ingly, in the state of prestress and under an external pressure
(P<0) the meridian is always concave. Under an internal
pressure, o; reduces in absolute value, and a point where it
first reaches zero becomes an inflection point with

27r?P = — T tanca tanf a7
The axial force is given by
zq Ty
Tz=Tz0+27rS P(z) cinb dz=Tzo+27rS P(r)dr (18)
Zo To

where T, is the axial force at the parallel z = z,,. If pressure P
is known as a function of r, the second alternative of equation
(18) leads to an explicit expression for T, (7). Such is the case,
for example, of an incompressible gas flow (the normal
pressure is proportional to #~4). For a uniform pressure,

=T, [L+p(r2/ri =1 (19)
where p is the normalized pressure
p=mriP/T,, (20)

There exist three invariant parameters associated with a seg-
ment of an axisymmetric net contained between the edge
parallels, z, and z;. The first two invariants are the natural
(unstretched) cable lengths:

z ¥4
La=Sl dz Lﬂ‘_‘Sl . dz

. b 21
7, Sinf cosa z, sinf cosf @b

The third invariant is the angular distance, ®, (Fig. 3) at the
terminal parallel, z;, between an « line and a 3 line originating
at one and the same point A4 at the initial parallel, z,. @ is
evaluated via the respective cable wmdmg angles, ¢, and ¢g.
Although both ¢, and ¢, change in the net deformations,
their difference preserves:

=5~ ¢,=|

L, L; and & are the only geometric invariants of a net; all

z1 tanf —tano

2
2 r sinf @2)
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Fig. 3 Cable winding angles and angular invariant

other parameters, including the axial length L, =z, —z, and
the radii of the edge parallels can, and generally do, change in
the net deformations.

Further investigation requires knowledge of the intrinsic
geometric properties of the net obtainable only upon specify-
ing the net type. In what follows, the three most important
particular types of nets are studied—geodesic, Chebyshev, and
orthogonal nets.

Geodesic Nets

A geodesic net with the member intersections not fixed re-
mains geodesic in both kinematic (inextensible) and elastic
deformations under any normal surface load and edge load.
This is in spite of the fact that the form of an elementary cell
as well as the overall shape of the net surface change in both
deformations. An axisymmetric geodesic net on a given sur-
face of revolution r=r(z) is uniquely defined by specifying
the constants ¢ and b in the Clairaut formula [2]

rsina=a, rsinf=»5 23)
After these formulas and their differential versions
da ctna=d ctnf3= —dr/r (24)

are introduced into equation (14) the latter admits an in-
tegrating factor leading to the solution

T,/sinf —M, (cosa +cosB)/(a+b) = Cr sinw 25)

where C is an arbitrary constant. By subtracting equation (8)
from (7) and comparing the result with solution (25) it is found
that

C=2n(T,—T3)/(a+b) (26)

Furthermore, expressing the cable forces in terms of the con-
stants C and M, confirms that the forces do not vary along the
cable lengths:

20T, =M,/(a+b)+Ch, 2xTy=M,/(a+b)—Ca  (27)

The obtained equations allow some observations to be made
on the evolution of the meridian shape for a geodesic net
under a uniform pressure. As with any axisymmetric net, in
the state of prestress or under an external pressure, the me-
ridian is concave. In accordance with equations (17) and (23),
under a uniform internal pressure, inflection first sets in at the
larger of the edge rings and gradually propagates toward the
smaller ring. At this stage the meridian is S shaped and stays
this way until the inflection reaches the smaller ring,
whereupon the meridian becomes convex. A conical shape is
not feasible, but a cylindrical one is possible if r, = r; and oc-
curs when ’

p=— (tanx tanf)/2 (28)
Curiously, a geodesic net is one of the few objects in struc-
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Fig. 4 Geometric parameters and loads on net

tural mechanics where the applicability of conventional
analytical means, including the finite element method, is not
obvious. One of the reasons is the necessity to satisfy the three
preservation requirements (21)-(22).

The following example is an analysis of a skew geodesic net
for a 250 m high cooling tower [5] with two rigid edge rings of
radii r, =75 m and r; =100 m (Fig. 4). The net is torque free,
i.e., no external torque is applied and the edge rings are not
constrained against mutual rotation about the z axis. With M,
= 0, solution (25) yields :

ctnf=dr/dz=~ (Cr sinw/T,)* -1 (29)

whereupon the equilibrium configuration of a net is obtained
explicitly by forward integration employing equations (9),
(13), and (23).

The analysis [6] starts with determining the prestressed
state. In this case, P=0, 7, = T* and only three initial
parameters are needed for forward integration: @, b, and
C/T*. These are selected and then adjusted by trial-and-error
until a satisfactory prestressed state (net shape and forces) is
obtained. At this stage the invariants L,, Ls; and & are
evaluated. In particular,

L,=L%—T:/EA,, Ly=L}—T3/EA, (30)

where L} and L} are the pretensioned cable lengths obtained
by integration, E4, and EA, are the cable stiffnesses.

The deformed state of the net under an applied pressure P is
determined by a set of four parameters, say, a, b, T,, and T},
all of them yet unknown. Their values must be such that the
sought state is consistent with the three net invariants and the
preservation of L, which is equivalent to

21
ri=r,+ S ctnd dz

Zp

E2))

and is treated as a fourth invariant. This gives rise to a system
of four simultaneous equations of the form (21), (22), and (31)
in which the left hand side values are already known while the
four unknown parameters figure implicitly under the sign of a
definite integral.

In solving this system of equations for several pressure
levels, a shooting technique has been employed in conjunction
with a fourth-order Runge-Kutta integration scheme. Using
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Fig. 5 Rotation of edge ring under uniform surface pressure

trial values of the unknown parameters, approximations for
the four invariants are obtained. The errors in the invariants
are then used to refine the unknowns iteratively. With pressure
increments sufficiently small, the net forces and geometry
change gradually so that the unknown parameters for each
pressure level are fairly accurately predicted by extrapolation
thus reducing the required number of iterations. To further
the investigation, unlimited elasticity was assumed and the
analysis was carried out beyond the realistic load levels using
two different ratios of the elastic stiffnesses of the cables.

The edge rings of a skew net mutually rotate under axisym-
metric loads including a uniform pressure. The effect is
strongly nonlinear (Fig. 5) and in the absence of prestress the
graph would have a vertical tangent at the onset of pressure
loading. On the other hand, because of the polar symmetry of
the net, there must be no edge ring rotation under any polar-
cyclic load.

Under a uniform external pressure, the net equator shrinks,
shifts downward and, for both ratios of cable stiffnesses,
asymptotically approaches almost the same location at about
0.4L, from the upper ring. Under an internal pressure, the
equator expands, shifts toward the smaller ring, reaches it and
leaves the net.

Quite unexpected was the evolution of the cable forces in
loading. In conventional prestressed cable systems under a
transverse load, the elastic deformation always causes tension
to increase in one array of cables and to decrease in the other.
The only way of preventing the unloading cables from
disengagement is to increase the prestress, but this is counter-
productive for the load-carrying cables. Surprisingly, the
geodesic net in consideration does not behave this way; under
a uniform pressure, either internal or external, tension in-
creases in both cable arrays (Fig. 6). The explanation lies in the
mutual rotation of the edge rings required by torsional
equilibrium. Although very small, this kinematic displacement
has a strong force-leveling effect offsetting the above un-
favorable outcome of the elastic deformation. As a result,
both arrays share in supporting the applied load and the
prestress requirement is appreciably reduced.

Chebyshev Nets

A Chebyshev net is one with rhombic cells. To preserve this
characteristic property, all the intersections must be fixed
which reduces the kinematic mobility of the net as compared
with a geodesic net. It was proved by Chebyshev that due to
the variability of the net angle the net is applicable to any
smooth surface. The net is widely used as an analytical model
of woven fabrics although fabrics usually allow some fiber
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Fig. 6 Axial force and cable forces in geodesic net

slippage and ultimately, with unrestrained slippage, would
become geodesic.
A skew axisymmetric Chebyshev net is characterized by

r cosf/sinw=a, r cosa/sinw==>= (32)
so that
do ctnB=dp ctna= —dr/r (33)
and
r=b sinf~a sina (34)

It is assumed that parameters @ and b are such that b > a > 0.
Taking advantage of these formulas in treating equation
(14) results in the following closed-form solution:

T,/siné — M, (a*tanf — b*tana) /r (b2 —a?) = Cr/sinw 35)

From here, the equilibrium shape of a Chebyshev net under a
given load can be determined explicitly by forward integra-
tion. Eliminating T, and M, from equation (35) with the aid
of equations (7) and (8) shows that

277 (T,sinB + Tgsina) /(b2 —a?)=C (36)

Finally, the net forces can be expressed in terms of constants C
and M, :

r . M, sina

27T, =G (C sinf _——_bzz—— 7 ) (37
r M _sinf .

27TT3 ="m— —b—z—zj -C smoz) (38)

wherefrom it is seen that these forces, unlike forces in a
geodesic net, vary along the cable lengths.

The evolution of the shape of a Chebyshev net in loading is
also different from that of a geodesic net. According to equa-
tions (17) and (32), in a Chebyshev net subjected to a uniform
internal pressure, meridian inflection first sets in at the smaller
edge ring and then propagates toward the larger ring. Once
again, a conical shape is infeasible while a cylindrical shape
occurs under condition (28). In the latter case the net is
simultaneously geodesic and Chebyshev which is possible only
on developable surfaces.

In contrast to geodesic nets, Chebyshev nets can be analyzed
by conventional means, including an appropriately modified
finite element method. As to the foregoing statical-kinematic
equations, they are valid only in inextensional deformations,
in which the net cells remain rhombic with unchanged side
lengths. The following example is typical of the kind of a

~ problem where these equations are useful. A long segment of a

Chebyshev net suspended from a ring of radius r; (Fig. 7) is
under tension 77, and supports an axisymmetric solid being
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Fig. 7 Axisymmetric solid pushed through prestressed net

pushed through. The net is reflection-symmetric (@ = —8 =
—w/2, a=Db) so that, according to equations (34) and (35),

r=2b sin, 2b=ry/sinf, (39)
and
40)

Treating the net as infinitely long implies that initially the
net has the form of a parabolic pseudosphere {4] whereby

(41)
with 8, = #/2and 8, = 0 at z — o, Moreover, these are also

the properties of the bottom segment (0-1) of the deformed
net. As a result,

T, cosB/sinf = const.

sinf = cosf

T,=T,, sinfd/cos@ 42)

for the entire net, regardless of its deformed shape and load
pattern. Thus, in a contact problem with a solid of a known
shape, the axial force is obtained explicitly from equations
(42) and (39). For example, for a spherical solid,

r=R sinf 43)
and the force F, required for equilibrium is
F,=T,~-T,=T,(ctanB, 1) (44)
where
c=tand, =ctnf3; =2b/R “5)

The resultant £, of the normal contact pressure P at the net-
solid interface does not account for friction. Since the contact
zone geometry is known and fixed, the friction force, Fy, is
not difficult to evaluate using formulas (13), (39), and (42).
With f denoting the coefficient of friction,

cosf,
cosf3,

n c :
Ff=27l'fgr1 P tanf rdr=_sza —02———_—"1—'4'(1 ) (46)
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Fig. 8 Resistance forces due to contact pressure and friction

Finally, the axial distance, z,, between the support ring and
the center of the sphere is evaluated as a function of net
geometry

r

3
Zy = —Rcosf, + S dr tanf = — R cost,

P!
3 sin%6dd
+ 2kaS — 47
82 ~1—k2sin?6 “n
where
k? = (tanB, /tanB,)? = 1 + ctn?0, — ctn?0, (48)

Unlike F,, and F, found in a closed form, the distance z; is ob-
tainable only numerically. The normalized axial forces due,
respectively, to the contact pressure and to the corresponding
friction are plotted versus z, in Fig. 8.

Orthogonal Nets

The generic equation (14) is specified for an orthogonal net
by letting 8 — o = «/2 as follows
d T, T,

dr sinf

In contrast to geodesic and Chebyshev nets, further specifica-
tion of the intrinsic geometric properties of an orthgonal net is
required in order to advance the investigation. An important
subclass is a semigeodesic net, where one of the arrays (say, 8)
is geodesic. After substituting r sin = b, equation (49) yields

2
+— M, ctn 23=0

49
rsinf r “9)

bT,/sinf— M, cosf=C/sin8 (50)
and, according to equations (7) and (8),
27bT,=C, 2nbTy=C ctn+ M, 1

Thus, in a semigeodesic net under a normal surface load the
nongeodesic array is isotensoid. It can be shown that the con-
verse is also true: an orthogonal net with an isotensoid array is
semigeodesic.

Orthogonality generally does not preserve in either
kinematic or elastic deformations of the net. The significance
of this class of nets lies in the obvious analogy between a
material orthogonal net and a net of the principal stress trajec-
tories of a membrane. For a given membrane shape and sur-
face pressure, the axial force T is readily obtainable, allowing
the angle 8 to be evaluated from equation (49), and the prin-
cipal forces in the membrane—from equations (7) and (8). The
most interesting situation arises when one of the principal
forces turns out to be compressive while the membrane is in-
capable of supporting any compression (a wrinkling mem-
brane). A condition for biaxial tension is obtained by setting
T, > 0 in equation (7) which leads to
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tan B>M,0,/T, (52)

If this inequality is not satisfied by the value of tan 8 found
from equation (49), the stress state of the membrane is uniax-
ial. Then T,, = 0 = C and, as'is seen from equation (51), the
force in the geodesic array, which is also the nonzero principal
force in a wrinkling membrane, is constant:

Tg=M_,/27h (53)
The statical-geometric relation (50) now acquires the form
sinf cos@=bT,/M, (54)

from which the shape of the wrinkling membrane is obtainable
by forward integration. Note that the foregoing equations are
valid for an arbitrary normal surface load. It is also assumed
that B # 0; a comprehensive treatment of reflection-
symmetric membranes (8=0) under a uniform pressure is
given in [10].

In the absence of surface loads, T, = const and equation
(54) describes a one-sheet hyperboloid of revolution with the
B-array as linear generators. Although this is the generic shape
of a wrinkling axisymmetric membrane under edge loads [11],
parameters of a particular hyperboloid depend on the original
membrane geometry in a complicated way. The fact is that a
linear generator is formed by one of the original membrane
geodesics connecting the two edge rings. For a given
magnitude of the mutual rotation of the edge rings, this

896/ Vol. 53, DECEMBER 1986

geodesic is unique in that its length equals the distance be-
tween its end points after torsion; the lengths of all other
geodesics exceed the respective distances between their ter-
mination points.
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Large Deflection Stability of
Spherical Shells With Ring Loads

Large deflections of shallow and deep spherical shells under ring loads are studied.
The axisymmetric problem is solved through a Newton-Raphson technique on

discretized nonlinear shell equations. Comparison of computed load-deflection
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curves to experimental data from both thick and thin shells generally shows good
agreement in peak loads and the type of instability. For a point load, the load in-
creases monotonically with deflection; as the ring radius increases, transition-type

(snap-through) and then local buckling occurs. In addition, the pre- and post-
buckled mechanical behaviors of the shell are examined.

Introduction

Previous work pertaining to the deformation of spherical
shells under ring loads has been rather limited. Experimental
work was done by Evan-Iwanowski et al. (1963), who in-
vestigated buckling of thin, shallow, spherical shells with this
type of loading. They found that if the ring diameter is less
than some minimum value, the shell does not buckle. Other-
wise, the shell either snap-buckles or, for large rings, buckles
locally (Fig. 1). Snap-through, or transition buckling (Fig. 1a),
implies that past a critical point of a load versus deflection
curve, a smooth, continuous transition takes place from
relatively stiff ring-type to a softer point-load-type behavior,
as a dimple of reversed curvature forms gradually. On the
other hand, with ring deflection specified, local buckling (Fig.
1b) exhibits a discontinuity at a critical point as the load jumps
suddenly to a much smaller value, with the dimple forming
abruptly. Since local buckling curves also include a deflection
snap (for a specified load), we will refer to ‘‘snap-through’’
buckling as ‘‘transition’’ buckling herein.

Taber (1983) presented experimental results for the deflec-
tion of both fluid-filled and empty hemispherical rubber shells
due to solid cylindrical indenters. As the deflection increases,
the load-deflection curves for an empty shell initially resemble
those due to a flat plate but eventually fall back toward the
point-load curve as the indenter becomes immersed within a
dimple of reversed curvature, with the indenter now applying
essentially a ring load. The deformation can occur with or
without a peak in load, depending on the indenter radius. As
found by Evan-Iwanowski et al. (1963), there is a minimum
radius below which no peak occurs; yet this is a different situa-
tion in that the indenter acts as a ring load only after it is im-
mersed within the dimple.

Pieces of the ring load problem have been studied
analytically. Using an energy method, Chien and Hu (1956)

lPresently at the Eastman Kodak Company, Engineering Technology
Laboratory, Rochester, NY 14650.
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Fig. 1 Typical load-deflection curves and corresponding deflection
shapes for ring load on spherical shell: (a) transition buckling; (b) local
buckling

computed the critical load for ‘‘oil canning,”’ or transition
buckling, of a thin spherical cap due to a ring load. With an
implicit numerical technique, which involved a Newton-
Raphson scheme on integral matrices, Parnell (1984) solved
Reissner’s (1950) nonlinear shell equations for moderate rota-
tion. Limited application to shallow spherical caps deformed
by ring loads showed only transition-type buckling. In other
work, Wan (1984) constructed asymptotic solutions to study
the fundamental behavior for polar dimpling of spherical
shells with ring and other similar loadings, while Updike and
Kalnins (1970, 1972) examined the related problem of a
spherical shell compressed between rigid plates.

In this paper, we will apply Parnell’s (1984) method to steep
and shallow, thin and thick, spherical shells. Both local and
transition buckling will be studied, along with the mechanical
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behavior of the shell around the critical points. Comparison
with experimental data from Evan-Iwanowski et al. (1963)
demonstrates the accuracy of the analytical solution. In addi-
tion, computed results are compared to new data from ex-
periments on deep shells deflected by solid indenters.

Solution Technique

In state-vector form, the nonlinear equations of Reissner
(1950) for moderate rotation of a thin shell of revolution are
(Parnell, .1984)

d
2 _Ay+N®) )
ds
where the solution vector is
yT=[rM¢,rH,rV,x,h,v], (2)

the linear terms are given by

In these equations My, H, V, x, h, v are the meridional
bending moment, horizontal and vertical force resultants,
rotation, and horizontal and vertical displacements, respec-
tively (Fig. 2). Also, » is Poisson’s ratio, E is Young’s
modulus, and ¢ is the shell thickness.

Consider now a vertical ring load of radius r, and
magnitude P = 277, V; on a clamped spherical shell of radius
R (Fig. 2). The appropriate regularity and boundary condi-
tions are

rV=x=h=0 at ¢=0, )
x=h=v=0 at ¢=0o,, 6)

where ¢, is the edge angle. The numerical solution to equation
(1) is obtained by splitting the shell into two regions separated
by the ring load and enforcing the continuity conditions

y* =y +[0,0, P/27,0,0,017 at ¢=g¢, )

— . Ef  cos?¢ 0
vcos¢  sing —Cos¢ D p
Et
0 2 cos¢ -z sing 0 — 0
r r r
0 0 0 0 0 0
A= , 3
(rEtc?)! 0 0 ~% cos¢ 0 0 L)
2 ) 1—p2 . . M 0
7 cO8“¢ “E7 sing cos¢ —sing ——r— cos¢
2 2 v
L 0 i sing cos¢ sinZ¢ cosd - sing 0

the nonlinear contribution is

[ x(rHcosd +rVsing) ]
0
0
N(y)= s 1G]
0

—x2cos¢/2

—x2sing/2 ]

and surface load terms are deleted.

Vo

iy

——H,h

lV,v

Fig. 2 Geometry and force system for spherical shell with ring load
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where + and — denote the regions outside and inside the
load, respectively, With the deflection v* = v~ = A specified
at ¢ = ¢,, the corresponding load P is computed.

Each region is divided into N subintervals, and an initial
solution is guessed. With a first-order polynomial employed to
integrate the discretized shell equation (1), a Newton-Raphson
method is used to converge on the correct solution. See Parnell
(1984) or Cagan (1985) for more detail.

Care must be taken to include an adequate number of
subintervals within the boundary layers near the load, the dim-
ple edge, and the shell edge, where bending stresses change
rapidly. Thus, the shell is actually divided into three regions
(Fig. 2); regions I and 11 join at ¢ = ¢, and, since the location
of the dimple edge is not known a priori, regions II and III
meet at some user-defined point ¢ = « to allow for high ac-
curacy within the decaying boundary layers. The decay angle
is approximated as

2c 172
bue=m(-) ®
where
2 tz
— et . 9
C T Ta-») ©)

Load-deflection curves were found by starting at zero load -
with y = 0 and incrementing the deflection a small amount.
After convergence, this solution became the initial guess at the
next deflection, and so on. Based on the energy quantity

ly® (s)ll;= (1rMyex| + |rHshI + 1rVeuly, (10

convergence at each point of the shell is obtained when the
relative difference between the new and old solutions
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Shallow Shell

Evan-Iwanowski et al. (1963) presented experimental data
for ring loads on die-pressed, plastic, shallow spherical shells.
Figure 3 compares their experimental and our analytical
results for a clamped shell of radius R = 254 mm,

As shown in Fig. 3, the load versus deflection curves for the
smallest ring (r, = 6.35 mm) agree in general with no in-
stabilities. Meanwhile, the experimental and theoretical results
for the larger rings show similar trends, but the computed
curves are steeper before the peaks. In addition, the calculated
results peak at somewhat lower values of deflection than do
the experimental results. This discrepancy is because the pres-
ent model does not allow for slippage under the load; thus, the
arc length of the shell inside the ring is assumed to remain con-
stant. In reality there is not enough friction to maintain this
constant contact and slippage does occur. Therefore, our
model is slightly stiffer and buckles before the experimental
shells.

While the second smallest ring (r,, = 12.7 mm)
demonstrates transition buckling, the largest ring (r, = 25.4
mm) illustrates local buckling with a discontinuity in the load.
The analysis shows that these latter curves possess multiple
equilibria over certain regions of deflection similar to the
buckling of circular cylinders with axial load (Timoshenko
and Gere, 1961). In order to obtain the section of the curve
past the peak, the point-load solution at A/¢ = 8.2 was used as
an initial guess for larger diameters at nearby deflections.
Then the deflection was incremented (decremented) as before
to obtain the remainder of the curve.

Figure 4 shows the changing shape of the shell for the
largest ring load (r, = 25.4 mm). At A/t = 2.88, there is an
abrupt change in shape. The dimple of reversed curvature
forms suddenly during local buckling as the shell moves to a
lower strain energy configuration. On the other hand, in tran-
sition buckling, the dimple forms gradually (see Fig. 1a).

Figure 5 shows the nondimensional bending stress (6R/2cE);
o = 6M¢/t2) versus meridional angle for the same shell and
deflections. The bending stresses for the first two deflections
(curves 1 and 2), which occur before buckling, peak under the
load and then decay to zero in both directions. After the dim-
ple forms during buckling, however, relatively constant bend-
ing stress develops inside the ring (curves 3 and 4). This

Journal of Applied Mechanics

Fig.4 Computed deformed configurations for shallow shell under ring
load (rg/R = 0.1; RIt = 666.7) for Alt = 0, 0.967, 2.88, 19.5. Local buck-
ling occurs from configurations 2 to 3 at A/t = 2.88.

BENDING STRESS,0R/2Ec

o 05 o
MERIDIONAL ANGLE, $/¢,

Fig. 5 Bending stress distribuitons along shallow shell with ring load
(ro/R = 0.1; Rit = 666.7). Curve numbers correspond to configurations
of Fig. 4.

behavior agrees with the finding of Ashwell (1960), who
studied the point-load solution to this problem and showed
that a constant bending moment is necessary to hold the dim-
ple in a state of reversed curvature, i.e., as an applicable
surface.

The largest deflection (curve 4) shows peaks in stress under
the load, at the dimple edge, and at the clamped shell edge.
Just after buckling (curve 3) the trends are different; the peak
at the dimple edge occurs, but the stress under the load is quite
small. Here, the unstable shell transfers from a high energy
state to a low energy condition, and so the load sees minimal
restraint. The stress relaxes under the load until the shell
stabilizes after buckling, and then additional load is applied.

Deep Shell

The behavior of deep shells under ring loads is similar to
that of shallow shells. Taber (1983) presented experimental
results for solid, cylindrical indenter loads on clamped,
hemispherical rubber shells (R = 25 mm). Although the pre-
sent analysis is actually for pure ring loads, some conclusions
can be made by comparing the results of the two problems. In
Figs. 6(a)-6(c), new data is presented from those experiments,
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Fig. 6 Comparison of calculated load-deflection curves with ex-
perimental data from hemispherical shells with indenter loads: R = 25 °
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Fig. 7 Computed deformed configurations for hemispherical shel!
under ring load (ry/R = 0.3; Rit = 12.9) for A/t = 0, 0.945, 2.27, 3.91, 5.55

5

BENDING STRESS, oR/2Ec
o

0 05 1.0

MERIDIONAL ANGLE, qS/qSe

Fig. 8 Bending stress distribution along hemispherical shell with ring
load (rg/R = 0.3; Rit = 12.9). Curve numbers correspond to configura-
tions of Fig. 7.

along with calculations from our model. Relatively thick to
thin shells (R/t = 6.0, 9.6, 12.9) deformed by indenters of
various radii are considered. As with the shallow shell, small
indenters show no buckling. The discrepancy in load
magnitude may be due to shear deformation, which was not
included in the analysis. As the indenter size increases, transi-
tion buckling appears; the curves initially follow the relatively
stiff behavior of a flat plate and then approach the limiting
point load case.

Note that the computed solution does not begin at the
origin. When the ring load forms, its point of zero deflection
occurs at A = R (1 — cos¢,) as measured from the apex,

- which was taken as the experimental reference point. Thus,

the load initially is lower analytically than experimentally. But
after the indenter makes full contact with the shell, forming a
ring load, the solution approaches the experimental data.
Figure 7 shows the ring load representation for the indenter.
Physically, a ring allows the shell inside the load (¢ < ¢,) to
penetrate above the point of load application. The solid in-
denter, however, obstructs this penetration and forces the en-
tire area within the indenter radius to form a dimple from the
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start. Thus, the experimental results show transition-buckling
at smaller loads than do the analytic results, and local buck-
ling does not occur under solid indenters.

The theoretical results from the thinner shells show local
buckling for the larger indenters (Figs. 6b, ¢). For the thickest
shell, however, this type of instability does not occur (Fig. 64a);
due to the high bending stiffness, the ring forces the dimple to
form from an early deflection, similar to the solid indenter
case. The sharpness of the peaks during the transition buck-
ling is also lost as the shell becomes thicker, approaching a
three-dimensional solid, which does not buckle. As the deflec-
tion increases to large values, the theoretical and experimental
curves diverge. The calculations are limited to moderate rota-
tions and small strains, but at very large deflections, the
physical shells undergo large rotations and large bending
strains. In addition, the effects of material nonlinearity
(Taber, 1985) may contribute to the difference.

Figure 7 demonstrates the calculated deflected shape of the
thinnest shell (R/t = 12.9) with a 7.5 mm radius indenter.
Since this indenter shows only transition buckling, these
results illustrate a smooth formation of the dimple, unlike the
abrupt change found in local buckling (Fig. 4).

Figure 8 displays the bending stress for the same shell and
deflections. A negative peak forms at the dimple edge and
then the stress decays toward zero before increasing slightly
near the clamped edge (¢, = 7/2). An abrupt change in slope
occurs under the load. Again, as in Fig. 5, a relatively constant
stress forms inside the dimple as the deflection increases.

Conclusions

The results of this study show that, for a given value of R/¢
for a spherical shell with a ring load of radius ry, there exist
characteristic ring load radii r; and r, with r;, < r, < R such
that:

(1) For ro<r;, no buckling occurs and the solution
resembles that for a point load.
(2) For ry<ry<r,, transition buckling takes place in

Journal of Applied Mechanics

which the load rises to a peak and then drops off
toward the point-load curve.

(3) For r,<ry<R, the shell buckles locally, with an
abrupt change in shape and load at a critical deflec-
tion.

In addition, the values of r, and r, increase as the shell
thickness increases. These conclusions apply to both shallow
and deep shells with clamped edges. For a solid, cylindrical in-
denter, the behavior is similar, but local buckling does not
oceur.
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Vibration absorbers are introduced into an asymmetric configuration of thin
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cylinders and tori enclosing an acoustic medium. The absorbers consist of thin axial
strips bonded to the cylinder with a thin viscoelastic layer. The constrained layer
dissipates the energy of relative motions between strip and cylinder. The absorber is
most effective on response modes with two or more circumferential waves. The use

of transfer matrices is extended to the coupled cylinder-absorber system.

Introduction

Constrained viscoelastic layers have been used to dissipate
vibrational energy in beams (Kerwin, 1959, and DiToranto et
al., 1965), thin rings (D. Toranto et al., 1973), and thin
cylinders (Lu, 1977). The idea relies on deforming a thin
viscoelastic layer sandwiched between the structure to be
damped and a secondary oscillator with prescribed dynamic
characteristics. In the case of the cylinder, thin strips of metal
are bonded along generators at equal angular intervals about
the circumference. Relative motions between strip and
cylinder wall are reduced by a dissipation of vibrational
energy. Most of the energy is lost by shear of the constrained
layer.

A viscoelastic material exhibits maximum damping when
subjected to strain rates that fall within the transition regime
between glassy and rubbery states. Its thickness can be op-
timized to produce this state for a given operating frequency
and response amplitude. In some cases, however, the need for
a thicker layer to optimize damping is opposed by the need for
a thinner layer in order to raise the critical frequency of the
single degree-of-freedom oscillator defined by the strip’s mass
and the layer’s stiffness. Above the critical frequency, elastic
waves propagate along the strip amplifying the response in
resonance. The two requirements can be met by judiciously
tuning the inertial properties of the strip.

Previous work by Lu (1977) analyzed simply supported,
thin cylinders where discrete absorbers are distributed along
generators of each cylinder. The work described here extends a
more general analysis to asymmetric configurations composed
of thin cylinders and tori. This method requires the derivation
of new transfer matrices of the damped system with vibration
absorbers formed by strips bonded to a cylinder by a thin
viscoelastic layer. Transfer matrices of the bare shells have
been derived by El-Raheb and Wagner (1985a). Since the layer
is sufficiently thin to be uniaxially stressed, forces at each
point on its boundary are proportional to displacement of the
same point relative to the opposite boundary. Each strip is ap-
proximated as a Euler beam.

Computations proceed more quickly by assuming that each
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strip is free from tractions at the two ends which reduces the
size of the transfer matrix through partial elimination.
Another step which accelerates computations is to treat the
round-off error that arises with very long segments. A
numerical method termed selective abbreviation is faster than
the alternative of using more and shorter segments (El-Raheb
and Wagner, 1985a, 1985b), especially for long systems with
length to radius ratio greater than 50.

Shell walls are coupled to an internal fluid through a low
frequency approximation to the acoustic pressure and added
mass. This approximation is acceptable for frequencies below
cut-off of the first transverse acoustic wave in a cylinder with
rigid walls. Finally, the effects on response of a damped ab-
sorber are studied for a symmetric L-shaped configuration
made of two cylinders joined by a torus and excited
mechanically.

1 Analysis

Figure 1 illustrates the coupled system of cylinder-layer-
strip, and Fig. 2 establishes the convention on displacements
and forces acting on an element. Subscripts s, ¢, and b denote
strip, cylinder, and viscoelastic layer variables, respectively. In

viscoelastic layer

Fig. 1 Cross section of cylinder and absorbers
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order to show how equations for cylinders and strips, which
are topologically very unlike, can be combined into a consis-
tent, general system, a skeleton of the derivation is now out
lined. Details of the operators and variables must await
specific treatments in the section on transfer matrices.

Let D, be the matrix of partial differential operators gov-
erning the cylinder’s motion and g, = {u,, v,, w,, w/}7 the
cylinder’s displacement vector. Also let p, be the jth vector of
surface tractions applied on the cylinder. Then dynamic
equilibrium requires C

D.g. = ) Py 0
i

Furthermore let the reaction from the strip to the cylinder be
concentrated as a line load F; acting midway of the strip’s
width at angular position 8;. The line load is equal to the stress
in the layer

F =k, 2.00) Kyt )
where g; = {u;, 5, Wy, Oy, Oy, 05 }JT is the displacement vec-
tor of the jth strip and k,;, k,, are matrices with coefficients
that depend on bond geometric and material properties. Ex-
panding (2) in Fourier series about 6 gives a correspondence
between the coefficients of F; and p,;

1 ’
Po="—r Z (K18, cOS 10,

n

—ky,8,,7 cos n’0j)E cos nf cos n'f; 3)

where g, and g, are the displacement vectors in harmonic
space. Expanding D, in terms of its harmonics D,
substituting equation (3) in (1) and using orthogonality of cos
nd yields

1
Dcngcn = ';; 2; (kbl 8en’ — kbzgsn ! )E cos n Ioj cos noj' (4)
n J

Note that variable inter-strip spacing d; couples the different
harmonics as indicated by equation (4). If the strips are evenly
spaced about the circumference, i.e., d; and A, are held con-
stant for all j, then

’ Ns
E cos n'@; cos n0j=7(6,,,,' + 80n80n ") ©)
i

where N is the total number of strips and § is the Kronecker
delta function. Noting that N,/(2wa)=1/d,, equation (4)
simplifies and uncouples as

1
Dcngcn = T(Rbl 8en — kb2gsn) (6)
K

Furthermore the equation of the jth strip forced by the reac-
tion from the cylinder is

D.g,=kg,—Kp8.00)) Q)

where D; is the matrix of ordinary differential operators
governing the motion of the strip. D, applies to all §;. Ex-
panding g; and g.(f;) in harmonic components

g= Egsn cos nb;, g.(0,)= Egc,, cos no;
n n
then substituting in equation (7) yields
E Dsgsn €os noj = E (kbzgsn - kblgcn) Cos noj (8)
n n .

Since equation (8) is valid for all §; then
Dsgsn =Kp8n — kbl 8cn ©®

Journal of Applied Mechanics

Fig. 2 Elemental forces and displacements

Equations (6) and (9) constitute a complete set in harmonic
space with components g,, and g, ¥ n=0.

A Transfer Matrix of Damped Cylinder. The different
terms (6) and (9) are now derived for the damped cylinder. In
this section, all equations and variables are in harmonic space
where subscript # has been omitted for shortness.

The strip and layer are modeled by an Euler beam on visco-
elastic foundation. As expressed by equation (9) the stress in
the layer is proportional to the relative displacement between
cylinder and strip. For periodic motions in time, the 12th
order set of equations is

h h
ESASuS” = _psAsw2us_k;S (uc—'us +T w‘{_—z—s— W;)
(10a)
h n h
ESIZSUS”” = psAswz v+ kgs <vt‘ -+ _é_ T et Ts exs)
(108)
EstSWs”” — psAstWs + ki (w,—wy) (10¢)
” 5 * hs h n
Gstaxs = —-pslx,w Om +kbs7 (Uc - Vg +——i——- 7 w,
h « n bg
+7 0ﬂ)+kbe(—7 wc+0xs Ti— (Iod)

where ()’ is the derivative with respect to the axial coor-
dinate x, # is the circumferential wave number of the cylinder;
(E;, G,) are the Young'’s and shear moduli; (1, 1, I,,) are the
cross-section moments of inertia about local orthogonal axes
X,9,Z; psyAg,J; are the mass density, cross-sectional area and
torsional rigidity; and (k},, k};) are the extensional and shear
stiffness of the layer

kie=Egbs/hy, kis=Gibs/hy

where now (E}, G}) are the complex moduli of the viscoelastic
material for periodic motions in time and are functions of fre-
quency and temperature. All other parameters and dependent
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variables are depicted in Figs. 1 and 2. Since the viscoelastic
layer is thin compared to the strip width, i.e., h,/b, < <1, the
approximation of uniaxial strain applies. Therefore the
equivalent extensional modulus of elasticity E} = (2(1 —vp)/
(1-2v,)) G} where »,=0.49 for a typical viscoelastic
material.

Equations (10) can be rewritten as a first-order system

S,=B,S,+B,, (11)

where S, = (T, Q,, Q,, M, M;,, M, u, v, w, 0,,0,,0,}] is the
vector of forces and displacements of the strip. B, is a matrix
of constant coefficients and B, is a vector coupling cylinder
variables to the strip and is a function of g, g, and the layer
properties. Similarly the cylinder equations can be written as a
first-order system

S;=BS.+B (12)

where S, = {N,,, Ny, O, M,, u, v, w, w' }T is the vector of
forces and displacements of the cylinder. B, is the matrix
derived by Cohen (1964), and B is a vector coupling strip
variables to the cylinder. The components of B, are listed
below

s hoo ks
Ben = —g (et - wir 5 w)
ks h h By
Bua = Ts(vc"’ﬁw”wv*‘f"m)* a
ki, n
By = d (wc_ws)+7Bcsﬂ
§
ki, h(h , hy
Bos = = (o Wit g Wit uew)
B = Oforj=5,6,7,8
. b/ nm ki A
By = —2- s(—w—0>+ bs -———(v—v
csf ds 12 a [4 xs ds 2 [4 s

h h
+— AW, +— 0xs) 13)

2a 2
The derivation of the transfer matrix proceeds by the steps
in El-Raheb and Wagner (1985b). The combined
homogeneous set (11) and (12) can be expressed as

S§'=BS 14

where S= {S,, 8,17 is a vector of 20th order in each harmonic
n and B is formed of B, B, B,, and B,. Since equation (14)
has constant coefficients, a solution exists in terms of ex-
ponentials eV where the A’s are determined from the eigen-

value problem:
B-N\DS=0 15)

where I is the unit matrix. Corresponding to each A; there ex-
ists an eigenvector A, satisfying equation (15). The 20 columns
of distinct eigenvectors produce the matrix A. The general
solution of S can now be expressed as

S(x) = Aer*A~18(0) (16)
where A is a diagonal matrix with coefficients (A\;, A;, . . .,
Ay0). Therefore

S(1) =TWS0),T(1) = AeMA~! an

B Condensation.
damped cylinder is 20 X 20 while for the bare cylinder it is on-
ly 8 x 8, its inversion requires computational effort greater by
a factor of (20/8)3 =15.6. This onerous increase motivates
restricting attention to the case where strips are free from trac-
tions at their ends which permits condensing T(I) back to an 8
X 8 size. Fortunately, this case describes best what occurs in

practice. Furthermore the contribution to cylinder stiffness’

from bending rigidity of the strip from its ends is minor

904/ Vol. 53, DECEMBER 1986

Since for each harmonic, T(l) of the

beyond certain length of strip. Specifically, the effect on
resonance and response of freeing the strip at its ends
diminishes with strip length and becomes vanishingly small for
lengths exceeding a characteristic size which depends on a/h;
and axial wave length of the response mode. To demonstrate
this sensitivity, computations were carried out for a steel
cylinder with a/h=11, 1/a=67, damped by 105 steel strips
spanning the full length of the cylinder and distributed evenly
along the circumference with k,/h=b,/h=0.67 bonded to the
cylinder by a layer with 4,/h=0.02 and IG}|/E,=3x1073.
Results at w* =300 Hz with 2, 4, and 8 equal divisions of the
strips showed less than 2 percent difference on response
amplitude between the first two cases and 17 percent dif-
ference between the last two cases. This observation suggests
that for strip lengths having 1/a=15, freeing the ends is
without consequence.

Let {f,, g.} and {f;, g;] be the force and displacement vec-
tor dyads of the cylinder and strip, respectively. From equa-
tions (17)

f. ty tn bty f,
g ty bty ty ty g
= (18)
f ty tn ty ty £,
8.1 ty tp ty ty 8_ o

where t; are submatrices of T. When strips are free at both
ends of the segment f; =f, =0. The third equation in (18) can
now be used to eliminate g, from the first two equations in
(18). A condensed transfer matrix for {f., g.} can now be

written as
f. t— bttt — it ty,] (f,
= (19
g1 ty —bats'ty  ty—tuti'ts, | (8 o
which is 8 x 8 and incorporates the effects of the damped
absorber.

C Selective Abbreviation. A drawback of the transfer
matrix approach when applied to thin cylinders is the require-
ment that segment length be comparable to mean radius. This
requirement is set by the emergence of complex roots A with
large magnitudes when solving the dispersion relation. The ex-
ponential solutions € lead to round-off error in the transfer

matrix when [\l is large.

Approximate expressions of the nondimensional roots
X\ =2a are now derived for both axisymmetric and asymmetric
motions of the bare cylinder. For axisymmetric motions, the
coupled equations in the normalized axial and radial
displacements (i, W) take the form:

a4+ & = vw’ (20a)

Pw"” +(-a&)w = (20b)

where ()’ is the derivative with respect to ¥=x/a, &= w/w,,

w, =[E/p(1—v*)a*]” is the axisymmetric breathing frequen-

¢y, F=h/(~12 a) is the nondimensional radius of gyration of

the cylinder wall. When n =0, the eigenvalue problem in equa-

tion (15) gives

PR+ PR+ (1 - — )R + &2 (1 - @) =0 @1

For I\l =0(1) and &< < 1, the first two terms in equation (21)
can be neglected leading to:

vii’

a(1 —a?)”

(1 —_ Vz _ @2)'/:
where /=« — 1. The roots in equation (22) describe the axial
wave number of extensional waves along the axis of the
cylinder as determined approximately from equation (204)
when »w’ is neglected. For large Nl =0(~") and 6< <1,

No=ad, a= (22)
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four complex conjugates are found when terms of 0(A2) are re-

tained in equation (21).

(1 -2 —ah)*
@n”

The roots in equation (23) describe the axial wave number of
bending waves of a strip of cylinder along the generator, sup-
ported by hoop stress serving as an elastic foundation. An ax-
isymmetric radial ring excitation at one end of the cylinder
segment influences only a short span of cylinder which is 0(7%)
near that end. This region is known as the bending boundary
layer. Far from this region the cylinder’s response decays ex-
ponentially with distance.

For asymmetric motions, a simplified dispersion relation
can be derived for 3< <1:

cr e 1- 92— 327
>\8—4r12>\6+[6n4+———"~2 ° ])«‘
r

X3,4,5,6 = ﬂ:ﬁ(l :Ei), B = (23)

5 (212 +3+20) < 3*nt(n? — 1
_{MLELLF_;QV+PL31g;_q=O(M)

For A=0(l), the first two terms in equation (24) can be
neglected leading to the quadratic whose roots are

n? (Zn“ -

) (6

&2 @2 ni(n?+ 1)a?
= ):f:{n“(?.n“— = )+<—n’3+————f2

{AT,A7, ... JALAS, ... LAMAS, .. L) (30a)
as well as the corresponding A into
.S S N 30 ¥ SR S SN | (30b)

according to the following rules:

) Re(Z\p)<0Oand Re(\p))<Re(\ ¢, )
(i) IRe(\2) | < (n M)/1 ’
@) Re(A})>0and Re(\f) >Re(\{, )

When Re(A{]) is sufficiently large, the usual procedure for
computing T(l) fails for the purely numerical reason of round-
off error. The usual recourse has been to further divide the in-
terval (0,1) into a sequence {0,x;, x,, ..., X;, .. ., 1} so that
for each j, evaluation of a term such as [l—exp
(=2A{ (xj41 —x;))] does not suffer from round-off error
(Kalnins, 1964).

An alternate procedure succeeds in computing T(1) because
it is insensitive to the round-off even for large IAf 11, Its con-
cceptual rationale lies in the fact that contributions to S(x)
from sets of eigenfunctions {A;} and {A}} are small outside
narrow regions near x=0 and x=1, respectively, containing

1—p—a2\ ) %
TR >I

_ (e 0722

When n = 1, further approximation yields
2% 173

V1-?
The roots in equation (26) are proportional to &* and in-
dependent of 7 and can also be derived from the dispersion
relation of a Euler beam having the same cross-section as the
cylinder’s. Below the ring frequency, that is &@<7n?, and for
n=2, (25) reduces to two complex pairs:

XI,Z: + o, 7\3’4= :‘:ia, o= (26)

- ,:-/znz
A= xa(l£D), A= —a)* 27
Also, when n=2 and &> Fn2, (25) reduces to
_ ~2 2002 1 D2
e o) (2102
1—p2—@&? (1 -2 —a?)
)" () ) @)

(28) determines a pair of real roots 7\,’2 and a pair of im-
aginary roots 7\3,4. The imaginary pair represents the axial
wave number of propagating waves and contains a part pro-
portional to 7 which accounts for bending and a part indepen-
dent of 7 which accounts for extension. When A is large and of
order O(F~ "), retaining the first three terms in equation (24)

yields
Ns 57,8 =BV D2 m=0,1,2,3
1-p2 -2\ % 71 -2 —@2 \ %
p= (o) o ymtan ()
29

The complex conjugates in equation (29) are comparable to
those in equation (23) and describe wave numbers in the
bending boundary layer.

Consider the expression for transfer matrix given by equa-
tion (17)

S(l) = Aet A ~1S(0) = T(1)S(0) a7

Then for some large number M, it is convenient to classify and
sort the column vectors A, into
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boundary layers. The procedure simply approximates these
contributions as zero outside the boundary layers. The validity
of this approximation is backed by the requirement that S(x)
remain bounded within 0 <x=<1. To be specific, first define the
transformed vector

o(x)=A"18(x) (31a)
in which set the redefined transfer matrix 7(x) is now diagonal
o(x) = 1(x)a(0), 7(x) = e* (31b)

The vector ¢ has components {o], 05, ..., 0,03, ...

of,af,...}. Tomark the selective boundary depths defme
the set of x—coordmates {xrsxy, ..., L1, , X, x3,
. } such that
Re(—Nxp)=Re(M(I—x))y=ln M (32a)
These values are selected because based on (315)
log() 1< log(0) | /M for x>xi;
o0 | < lof() I/M for x<xjf (32b)

The approximation then consists of setting o;(x)=0 when
x>x; and setting of(x)=0 when x<xj. The procedure
therefore yields a different transfer matrix for o(x)

(33)

where A, is the diagonal matrix with components (\{ xi,
Arxy, oo, AL ML L AMxf, M xs, L. .) and hence a
different transfer matrix as well for S

T, (1) = Aetsa A~ (34)

which is now insensitive to round-off. The shortening of the
lengths factoring some of the A\,’s suggests the name *‘selective
abbreviation’’ for this procedure.

The choice of M will be motivated by two contrary con-
siderations. First, M must be small enough to ensure accuracy
against round-off error. In other words, for calculations with
L digits of precision, M< 10~ In fact, M= 10*/? proved quite
successful. Second, M must be large enough so that the actual
boundary layers are contained in [0, x; JU [x{, 1.

This approximation may also be applied to the case of the
damped cylinder where IA;| becomes significantly larger. An

Tsa(x) =ehsa
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estimate of this root is made by solving the characteristic equa-
tion after neglecting w, in (10c). Where 7, is the radius of gyra-
tion of the strip’s cross-section normalized by a, and &, is the
critical frequency of the layer .
@ d ( E ) t o
be hs hb Es

then ,

X =4 (63%(.‘_—2)/4

y @7)" .

As an example, let a/h=10, a/h;=20, a/h,=600, and

E,/E,=3x10"%. This yields }.=36. Comparing I\l in (23)
with INl in (35) reveals that IN]=2.5 [\l

)] 35)

D Acoustic Fluid. An acoustic fluid within an oscillating
cylinder responds by exerting pressure against the walls. The
same effect may be accomplished by adding a suitable mass to
the cylinder. The method of added mass is quite accurate when
the cylinder is driven mechanically while its terminations are
free from acoustic excitation. The acoustic pressure p(r,9,x) is
governed by the Helmholtz equation which in cylindrical coor-
dinates gives

(6,, + —i—— a,+ 712— g+ 0, + k})p(r,(),x) =0 (36)
where (r,0,x) are the radial, circumferential, and axial coor-
dinates, k,=w/cy and ¢ is the speed of sound in the fluid. The
boundary conditions at the terminations and continuity of
acoustic and elastic accelerations at the cylinder-fluid interface
are

p,9,0) = p(r,0,)=0 (37a)
arp(airayx) = _pjwzwc(eax) (37b)

where o, is the mass density of the fluid and a; is the inner
radius of the cylinder. Decomposing p and w, into cir-
cumferential harmonics and solving for p in equation (36) with
use made of equation (37b) yields

Pu(rx) = A,J,(yr/a)e™’”
Ayt = — a0 We, )/ (V) (38)
where ()’ is the derivative with respect to the argument and
Yi=wd+92, ky=kpa

J, () if 12 >0
Ju(n=
I,(y) if y*<0

J, and I, are Bessel functions and 72 = Iy21. If 4, is a con-
stant, p, and w,, must have the same dependence in x. For
propagating waves and n = 1, ¢ assumes the largest imaginary
root A; in equations (26) and (28). Consequently

Ju(v)
$2/1$7]

it

pn(ai 7x)

v = i3— INI (39

The expression for p, in equation (39) is approximate because

it fails to satisfy the pressure conditions (37a) when w,, is

finite. This approximation is acceptable when the configura-

tion is much longer than the radius beause end-effects lose im-

portance. When p,, in equation (39) forces the cylinder, it adds
to radial inertia 9,, in the form of a mass factor u,(y)

gn = Mn(‘Y)Pcthch(x)
.0 e
v pch
The second term in p,(y) is the ratio of mass added by the
fluid to the mass of the cylinder.

An approximation to u,(y) can be made for y< <1. From
the Bessel equality

2
- pfaiw Wey

ft

wa(Y) = 1+ (40
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in the limit as y—0 and n=1, J,(y) « 4" and vJ,(y)=nJ,(y).
Using this, equations (40) become

Psa;

c

i
M,z(7)=1+—’1— = pons NZ1 a1)

The error committed by the approximation in equation (41) is
defined by

e, = :un('Y)/l"On -1
To compute the exact u, (), in equation (24) modify radial in-
ertia using mass added by the fluid as given by equation (40).

_The root N, is determined by iteration on the transcendental

equation.

Figures 3a, b, c trace X, v%, and e, with «, for a cylinder
with a/h=20, p./p,=8.14 and c./c,=4 where c, =(E./p)".
For n=1, Ay is finite for x>0 which is consistent with
propagation of bending waves for all frequencies. As
predicted by equation (26), A, varies as k% for small ks then

" becomes proportional to , for k,> 1. However, for =2, \; is

finite only when &> k7, where kg, = w,,, a/c; and w,, is the ring
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Fig. 4 L-shaped configuration

frequency. When n=1, ¥* is vanishingly small up to «,=2
then drops sharply to negative values. When n=2, v varies
linearly with «, for x>k, then drops to zero and takes on im-
aginary values for x;> ;. Negative ¥? for K> Ky, implies that
transverse acoustic resonances for n=>1 disappear when the
acoustic fluid is excited only by the cylinder walls. This is
because J, (y) in the denominator of equation (39) has no
purely imaginary roots. As the cylinder thickens, «j rises.
Transverse resonances reappear ONCe Kk, increases above
cutoff of the transverse acoustic waves in the rigid cylinder.
For n=1, e, remains near zero for x,<1.5 then drops sharply
at the stage when A, changes its dependence on ;. For n=2,
e, falls smoothly with «, for k> k. Since e, is negative for all
K¢> kg, oy SETVES as an upper bound on mass factor. Its use
overestimates the mass added by the fluid for frequencies
higher than the ring frequency.

II Results

The effect of vibration absorbers is studied using the L-
shaped configuration shown in Fig. 4. The material properties
were carefully selected in order to be as close to practice as
possible. The configuration consists of two steel cylinders each
80 cm long connected by a 90 deg elbow with center line radius
of 30 cm. The average radius of the cross section is 10 cm and
the wall thickness is 0.5 cm. The vibration absorbers consist of
120 steel strips each 80 cm long, evenly distributed about the
circumference of the cylinders. Strips are rectangular in cross
section with b,=0.5 cm and A;=0.4 cm. They are bonded to
the cylinders by a visco-elastic layer 0.01 cm thick. This
thickness was selected without regard to optimization. The
matter of optimization with regard to this quantity in the case
of beams has been treated by Plunkett and Lee (1970). The
properties of this layer are taken from Roscoe et al. (1966).
Another source of properties as well as further information is
Jones (1980). The configuration is clamped at one end and
connected to a free ring at the other end. It is excited by a con-
centrated force F, with periodic time dependence acting
radially on the cylinder wall at point A. The two terminations
are free from acoustic excitation while the interior is filled
with water. Radial response is computed at points 4,B,C as
shown in Fig. 4. For frequencies up to 2000 Hz an expression
for G} that fits experimental data is

G} =1.6x10%(w*)%64[1 +1i 2(w*)~*'2]dyn/cm?

Relative to a local cylindrical coordinate system let F, act at
some point (xz, 85) on the wall of a segment. Then F, can be
decomposed into its harmonic components such that
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F,= So p,(0)adb

where the equivalent harmonic line load p,(0)=p,, 6(6 — 0p),
and 6(0 —08y) is the Dirac delta function. Expanding p,(f) in
Fourier series and truncating at N terms results in

{1 +2ni::l cds n(0~0p)}

This expansion decomposes F, into a set of harmonic line
loads about the circumference at x =xp.

Mobility at A, B, C and acoustic pressure at B, C were
calculated for both the undamped and damped configura-
tions. The definitions of mobility M; and pressure P; are

M= I(wyw)/F,|, P;= |p;/F,|

F
g)=—0"
()] Y

where w,; and p; are radial displacement and acoustic pressure
at sensor j caused by F, at A. Figures 5a, b, ¢ plot M; as a
logarithm relative to 1 cm/s/dyn versus w* in the range
10 = w* <2000 Hz at 10 Hz intervals. Comparison between the
undamped M; (dashed lines) and the damped M; (solid lines)
reveals that the amplitude of the fundamental resonance with
n=1 at 20 Hz remains unaffected by damping. Vibration ab-
sorbers reduce only those motions dominated by modes with
n=2, In this case, these modes appear starting at 300 Hz for
n=2, 1000 Hz for n=3, and 2000 Hz for n=4. Graphic
evidence for these modes can be found in the cross sections in
Fig. 6. The drop in M; due to damping is larger within the
cylinder (Fig. 5b) than at junctions (Figs. 5a,c). Although
resonant peaks have shrunk, antiresonances remain sharp.
This might be caused by the absence of damping in the elbow.

Figures 7a,b plot P; as a logarithm relative to 1
dyn/cm?/dyn versus w*. The effect on P; of damping is small
for motions dominated by #=1 modes. This agrees with the
proportionality between p; and w,. However, the harmonic
component of p; is inversely proportional to n. This means
that #=1 modes dominate p; up to frequencies even higher
than they dominate w,;. Therefore damping begins to affect p;
only when modes with n=2 already dominate the response,
and for this configuration that means «w* > 1000 Hz.

A simple explanation exists for why the vibration absorbers
damp with relatively greater efficacy when: (1) n>1, or more
generally, (2) at higher frequencies. In this model damping
arises solely by deforming the visco-elastic layer. One class of
deformations, d,w,, is proportional to n which explains obser-
vation (1). Another class, d,w,, is proportional to axial wave
number m and only higher frequencies bring about higher n
and m which can explain observation (2). Damping then seems
to rely mainly on these two rotations, an exclusivity which is
itself a subject for investigation.

Conclusion

The effect of vibration absorbers on damping response is
studied on a general configuration of shells composed of
cylinders and tori containing an acoustic fluid. Absorbers are
applied to cylindrical segments only. Transfer matrices were
derived that include coupling of cylinder and strip bonded to a
visco-elastic layer. The method of selective abbreviation ex-
tends segment length beyond I/a= 1. The diminution in stiff-
ness from segmenting the strips has little effect on resonant
frequency and response amplitude. Analysis proceeds to an L-
shaped configuration excited mechanically over a frequency
range that includes modes with n=<4. Damping affects only
those motions with modes having n =2 dominant, while beam-
type motions remain unaltered. Independent of whether vibra-
tion dampers have been added, some further findings apply to
any acoustic fluid contained within an elastic shell in re-
sponding to an excitation of the shell. Under these conditions
the fluid is indirectly excited and does not display any of the
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Clamped Plates on Pasternak-Type
Elastic Foundation by the
Boundary Element Method

A boundary element solution is developed for the analysis of thin elastic clamped
plates of any shape resting on a Pasternak-type elastic foundation. The plate may
have holes and it is subjected to concentrated loads, line loads, and distributed
loads. The analysis is complete, i.e., deflections, stress resultants, subgrade reac-
tions, and reactions on the boundary are evaluated. Several numerical examples are
worked out and the results are compared with those available from analytical solu-

tions. The efficiency of the BEM is demonstrated and discussed.

1 Introduction

Biparametric elastic foundation models have been
developed to overcome the inadequacy of Winkler’s model in
describing the real soil response and the mathematical com-
plexity of the three-dimensional continuum. They are
characterized by two independent elastic constants and they
are derived either as an extension of the Winkler model by
assuming interaction between the spring elements (Filonenko-
Borodich, 1940; Hetenyi, 1946; Pasternak, 1954; Kerr, 1964)
or by simplifying the three-dimensional continuum (Reissner,
1958; Vlasov and Leontiev, 1966). Among them, the
Pasternak-type foundation model is the most natural exten-
sion of the Winkler model for homogeneous soil deposit and
the next higher approximation to the foundation response
(Kerr, 1964). Although this foundation model can adequately
approximate the soil-structure interaction, the analysis of
plates resting on it must overcome practically insurmountable
mathematical difficulties when a general analytical solution to
the governing boundary value problem is sought. Thus, only
plates with simple geometry and loading have been treated
analytically, such as circular plates with axisymmetric loading
or rectangular plates with uniform loading. On the other hand
approximate methods (Galerkin’s, Ritz’s) and numerical
methods (finite difference, finite element) have also been used.
However, the application of these methods has been restricted
to simple geometries. An extensive and lucid literature on the
subject at hand is found in Vlasov and Leontiev (1966) and
Selvadurai (1979). Recently (Balas et al., 1984), a boundary in-
tegral equation formulation of the problem has been presented
with application to a circular plate under a concentrated force
at the center.

In this investigation a boundary element solution to the
problem of thin elastic clamped plates resting on a Pasternak-
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type elastic foundation is developed. The shape of the plate is
arbitrary and it may have holes while its boundary may have
corners. The plate may be subjected to any kind of loading
(concentrated loads, line loads, distributed loads). The
analysis is complete in the sense that deflections, stress
resultants, and subgrade reactions at interior points as well as
reaction forces and moments on the boundary are fully
evaluated. The numerical technique presented herein for the
solution of the coupled boundary singular integral equations
and for the computation of all the field quantities is very effi-
cient. In case of linearly varying loading, the efficiency of the
method is improved by converting the domain integrals into
line integrals, thus reducing drastically the required computer
time. Numerical results are obtained for circular plates, rec-
tangular plates, and plates with a composite shape. They are
compared with those obtained from existing analytical solu-
tions. The accuracy of the results is very good, notwithstand-
ing the complexity of the kernel functions, which, in this case,
are real and imaginary parts of Hankel functions with com-
plex argument. Finally, the solution to plates resting on a
Winkler foundation as well as to plates not resting on a
subgrade are obtained as special cases for appropriate values
of the elastic constants.

2 Formulation of the Boundary Value Problem

Consider a thin elastic plate of thickness #, occupying the
two-dimensional multiply-connected region R of the plane,
bounded by the M+1 curves Cy, C;, C,, ..., Cy and
resting on a Pasternak-type elastic foundation with subgrade
reaction modulus & and shear modulus G. The curves C;
(i=0,1, 2, ... M)may be piecewise smooth, i.e., the bound-
ary of the plate may have a finite number of corners (Fig. 1).

Assuming that the plate maintains contact with the
subgrade and that there are no friction forces at the interface,
its deflection w (P) at any point PeR satisfies the following dif-
ferential equation (Kerr, 1964)

Lw=f(P)/D (nH

where f(P) is the transverse loading, D is the flexural rigidity
[D=EHh*/12(1 — »*)] of the plate and L is an operator defined
as
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In this case the interaction pressure p between plate and
subgrade is given as

p=kw~GV?w 3
the deflection of the plate must satisfy the

L=v* vé=(v?2 @

Moreover,

M
following conditions on the boundary C= UC,» of the plate
i=0

aw
w=0, n 0
where dw/0n denotes the directional derivative along the out-
ward normal to the boundary.

The bending moments M, and M,, the twisting moment
M,,, and the effective shear force ¥, acting on the boundary
of the plate are related to the deflection w by the following
relations (Katsikadelis and Armenakas, 1984a).

M,=-Dv?w M,=—vDViw

(4a,b)

(5a,b)

a
M, =0 V,= ~DHV2w (5c,d)

3 Integral Representation of the Solution

The integral representation of the solution can be obtained
by using the Green identity for the operator L and the fun-
damental solution to equation (1).

The Green identity for the self-adjoint operator L is:

a ov
SS (va—va)da=S [v——V w——noVV2w
R on an

(©6)

9 o2 2 " el

Yon Y Ut VT D e T D Y on
where 9/9n denotes the outward normal derivative.

Relation (6) is readily obtained by combining the Rayleigh-
Green identity (Katsikadelis, 1982) for the biharmonic
operator with the classical Green identity for the harmonic
operator (equation (A7) in the Appendix). Relation (6) is valid
for any two functions w and v, which are four times con-
tinuously differentiable inside the region R and three times
continuously differentiable on its boundary C.

The fundamental solution to equation (1) is a singular par-
ticular solution of the following differential equation

Lv=6(Q—P)/D 0]

in which 8 (Q— P) is the Dirac é-function, Q is the field point,
and P is the source point. The nature of the solution to equa-
tion (7) depends on the quantity u = G?/4kD. In this investiga-
tion only the case p<1 is considered which seems to be valid
for usual foundation materials (Kerr, 1964). For these values
of u the solution to equation (7) is given as (Vlasov and Leon-
tiev, 1966):

G 0 G d
ow w v]ds

v=v(P,Q)=v(Q,P)= ADSino0 Re[H‘”(ﬁp)] ®
where

0="D7k, p=r/t (9a,b)

B=cosf +ising, 20=arctan(—~1/p— 1) 9c,d)

r=1P+« Q| is the distance between the points P, Q and

Re[H{(Bp)] denotes the real part of the zero order Hankel
function of the first kind. Notice that when G approaches 0, it
can be shown that v(P,Q) reduces to — (2/2xD)kei(p) which
is the fundamental solution to the equation governing the
plate resting on a Winkler-type elastic foundation (Kat-
sikadelis and Armenakas, 1984a, 1984b).

From equation (8) it can be shown that
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Fig. 1 Two dimensional region R occupied by the plate

v ¢

—_— (10a)
an 4Dsin20

V' (po)cose

V2= U(p) (106)
4Ds

Dsin26

1
9 V2y=——"—U’(p)cosep (10¢)

on 4¢Dsin20

in which ( )’ denotes differentiation with respect to the argu-
ment p, ¢ is the angle between r and n (see Fig. 1), and

V(o) =Re[HP(Bp)] (11a)
V'(p) =Re[~BH (Bp)]
= —cosORe[H{V(Bp)] + sinBIm[H (Bp)] (1156)
U(p) =Re[-B2HP(Bp)]
= —cos20Re[HP (Bp)] + sin20Im{HP(Bp)] (11c)
U’ (p) = Re[B*HP(Bp)]
= cos30Re[H{"(Bp)] — sin30Im[H{D (Bp)] (11d)
The real valued functions Re[H!P(Bp)], Im[H(Bp)l,

Re[H{V(Bp)], Im[H{Y(Bp)] involved in the aforegoing relations
(11) are evaluated, for both small and large arguments, from
their series expressions which are given in Zinke (1959).

It can be shown that for p—0 it is

dmV (p)=1-20/m, AmV'(p)=0 (12a,b)
p—0 p—0
1
AmU (p) ~ fnp, timU’ (p) ~— (12¢,d)
p—0 p—0 Iy
(12e,/)

limlpV’'(p)] =0, lmlpU’ (p)] =2sin28/ 7
p—0 p—0

Applying equation (6) for the deflection of the plate w and
the fundamental solution v, which satisfy equations (1) and
(7), respectively, using relations (8, 10a, 114) and the boun-
dary conditions (4a, b) the integral representation for the

- deflection w(P) is obtained as

wp = [ v @)o,-D| _1w(Pa¥@

v (P,q) 2
on, 4sin26
where the following notation has been introduced for
conciseness

8(q) |ds, = (F(P)=J,(P) + 1y ()] (13)
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B()=VW(a), ¥(@)=—Viw(g)  (14ab)
an,

rey=—1 ([ v d 1

~—{. Voro)r(@sg (15)
1@ =| Vv @ads,

BPY= | _os V' 0s)® (@), (16,5)

=|P-ql/t, w=%r

Notice that in equation (16b) the relation coseds=rdw has
been used (Katsikadelis, 1982). In the aforegoing relations,
points inside the region R are denoted by uppercase letters,
while points on the boundary C are denoted by lowercase let-
ters. Moreover, the subscript of the elements do, and ds in-
dicates the point that varies during integration. Furthermore,
d/0n, denotes that the normal derivative is taken with respect
to point g.

From relations (5) it is seen that the boundary quantities
V2w and 8/0n V2w appearing in the line integral of equation
(13) have a direct physical meaning.

4 Derivation of the Boundary Integral Equations

In equation (13) the loading function f(Q) is given at every
point in R. Moreover, the function v(P,Q) and its derivatives
are obtained from equations (8) and (10). However, the func-
tions ¥(g) and ®(q) are not known at the points of the
boundary C. These two unknown boundary quantities are
established from the solution of two coupled boundary in-
tegral equations which are derived using the procedure
presented in Katsikadelis and Armenakas (1984a). Thus, the
first boundary integral equation is established from equation
(13) by letting point P approach a point p on the boundary C.
The existence of the line integrals in equation (13) for P=peC
and their continuity as P—peC can be easily concluded from
relations (12a,b). Consequently, taking into account that
w(p)=0 the first boundary integral equation is obtained as

~| ¥ G2 @du,+ | V¥, =F@)  an

The second boundary integral equation is obtained by ap-
plying the operator V2 on both sides of equation (13) and by
letting point P approach a point p on the boundary. Thus

v = || v2m.01(Qde

—Dbim Sc v2u(P,q)¥ (q)ds,

P—p

18)

By virtue of equations (10b,¢) and (12¢,d) it is seen that, the
first line integral on the right-hand side of equation (18)
represents a single layer potential due to a mass distribution
¥ (g), while the second line integral represents a double layer
potential due to a mass distribution ® (g). Hence, both line in-
tegrals exist for P=peC. Moreover, the first line integral is
continuous, while the second line integral exhibits a discon-
tinuity jump as P—peC (Courant and Hilbert, 1953) which is
equal to

a
+D€im§ —V2u(P,q)®(q)ds,
P-p dC an

d
; 2
fim Sc I Vv (P,)®(q)ds,

P=p

a ) _ 2r—a ’
~| sovwat@ds, =S e (9)

2xD
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Fig. 2 Discretization of the boundary

where « is the angle between the tangents at point p (see Fig.
1). It is & = 7 when the boundary is smooth at point p. Taking
into account equation (19), the second boundary integral
equation is obtained from equation (18) as

2asin26
200+ | U2 (@)as,
~{ 2wV ) @y =G ) 20)
in which
1
6 =—-| |, Uo,0)(Qdog e

For any given geometry of the clamped boundary of the
plate, the functions ®(s) and ¥ (s) may be obtained from the
solution of the coupled boundary integral equations (17) and
(20). Once the functions ®(s) and ¥ (s) are known, the solu-
tion to the boundary value problem (equations (1) and (4))
may be obtained from equation (13).

5 Numerical Analysis

The numerical solution of the coupled boundary singular in-
tegral equations (17) and (20) is accomplished using the
boundary element approach. In this approach the boundary is
divided into N intervals, not necessarily equal, referred to as
boundary elements. The end points of each element are refer-
red to as extreme points. Each boundary element is approx-
imated by a given curve (straight line, parabolic arc, etc.) and
the unknown boundary functions ®, ¥ are approximated by a
polynomial (constant, linearly varying, parabolically varying,
etc.). The points on which the unknown functions are
evaluated are referred to as nodal points.

In this investigation each boundary C; is divided into N;
elements (i=0, 1, . . . ,M) not necessarily equal. The center of
the elements or other points near them are taken as their
nodes. The elements on the external boundary are numbered
consecutively counterclockwise while on the internal bound-
aries clockwise (Fig. 2). The values of & and ¥ are assumed
constant on each element (step function assumption) and
equal to their values at the nodal point of each element.
Moreover, the curved elements are approximated by parabolic
arcs (Katsikadelis and Sapountzakis, 1985). This approxima-
tion reduces appreciably the error due to the approximation of
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curved boundaries by straight line elements. Denoting by &,
and ¥; the values of & and ¥ at the jth nodal point (i.e., the
nodal point of the j element), the integral equations (17) and
(20) are transformed into the following system of 2V

M
= E N,-) simultaneous algebraic equations
i=0

MZ’z\

N
Ebkj\llszk (k=12,...,N) (22a)
/=l j=
N
) (c,q Zsin26o,,) @, + 2 ¥, =G,
=
(=12, .. N (22b)
in which é,; is the Kronecker delta and
Opj= — Sj Pkq V'(qu)dwq, bkj = Sj V(qu)dsq (23a,b)
cy= = Sj oigU" r)derg, dy= Sj U(peg)ds, (23¢,d)
1
Fe=—-| Vo) (0day,
1
Ge=—-{| . Utoiprr(01deq (@3e)

~ql/t, prg=lp,—Ql/,
gej-element
In relations (234, b, ¢, d), the symbol

Pkg = lpk QERapkECy

_ denotes integration
J

on the j-element; point p, is a nodal point.

Evaluation of Line Integrals «,;, by;, c;;, and d,;. When
k+#j (p#0), these integrals can be evaluated using any of the
known numerical techniques for the evaluation of line in-
tegrals. In this investigation the curved boundary element is
approximated by a parabolic arc passing through its nodal and
extreme points and its value is computed using eight-point
Gaussian quadrature. When k =, the argument p vanishes for
q =py. From relations (124), (12¢), and (12f) it is seen that the
line integrals oy, by, and ¢y, are not singular and conse-
quently they are evaluated as in the case k#j. However, as it is
seen from relation (12c¢), the line integral d, has a logarithmic
singularity and it is evaluated using the technique presented in
Katsikadelis and Armenakas (1985).

Evaluation of Double Integrals F, and G,. We may
distinguish the following four cases:

a) The plate is subjected to a concentrated load P at a
point Q,. In this case, the loading function f(Q) can be

represented as

f(Q)=P5(Q—-Q,) 24

Using relation (24) the values of the integrals (23e,f) are

P
—V(kao), G= (25a,b)

D
where pio = D= Q, I/L
b) The plate is subjected to a line load p(s) distributed

along a curve L*, In this case the double integrals (23e,f) are

P
Fp= 7U(ka0)

evaluated using relations (254, b) from the following line in-.

tegrals along the curve L*

1 |
Fe=—-{ . p(@V(oi0)ds,,

1 |
Ge=—-| . (@ UG)as, (26a,b)

where pyp = D —Q1/f, QeL*.
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¢) The plate is subjected to a uniform or a linearly varying
load distributed over an area R* S R of the plate bounded by a
curve C*. In this case, it is v2f=0 and by virtue of relations
(A6), (A7), (48), and (A49) in the Appendix the double in-
tegrals (23e, f) can be converted into the following line in-
tegrals on the curve C*.

F\ = —c0s20G, - £sin26 [e f(p0)
| ol G @, 1 <pkq>3§,(1—?dsq] (27a)
Go=i | . oV i) (@),

S V(pkq) af(q) q] Q7b)

where oy, = lp, —q 1/f, geC*; I(p) =Im[HP (Bp)]; € is given in
the Appendix.

The substitution of the domain integrals by line integrals
reduces drastically the required computer time. The line in-
tegrals (27a, b) as well as (26a, b) are evaluated numerically
employing the technique presented in Katsikadelis and
Armenakas (1985). Thus, the curve C*, L*, respectively, is ap-
proximated by a finite number of parabolic elements. On each
element the line integral is computed and the resulting partial
values are summed.

d) In the general case where f(Q) is an arbitrary function,
the domain integrals (23e, f) are evaluated using the method
presented in Katsikadelis and Armenakas (1983).

6 Evaluation of the Deflections, Stress Resultants and
Subgrade Reactions

When the integrals oy, by, ¢y, di» Fy, and G, are
established, the system of simultaneous algebraic equations
(22a, b) is solved and the values ®; and ¥; of the functions
& (s5) and ¥ (s) at the nodal points are obtained. These values
can be used to obtain the deflection w(P) and the stress
resultants at any point P in the interior of the plate.

The deflections w{P) is obtained from its integral represen-
tation (13). The line integrals J; (P) and J,(P) are computed
from the relations ‘

N
BP)= N Vior)ds,,
j=1

N
L(P)= Y%, S,» ppgV' (0pg)de, (284,b)
j=1

For the computation of the double integral F(P) in relation
(15) we distinguish again four cases as for the integral F}, in the
previous section.

Referring to relations (5) and (14) it is apparent that the
bending moments M,,, M, and the reaction force V, on the
boundary of the plate are readily computed from the values of
® and V.

The bending moments M,, M, the twisting moment M,,
and the shear forces Q, and Q, at any point of the plate are
equal to

Pw 2w d
M ="‘D< a2 +VW>, QX: —DEVZW (29a,b)
M——D(azw+ azw) -l v oca
r- e o ) = dy Y ©
Pw
M= =M, =D =)o (29¢)

The second and third order derivatives of the deflections in
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equation (29) may be evaluated from the computed values of
the deflections with sufficient accuracy using numerical dif-
ferentiation. However, the accuracy is increased and the com-
puter time is considerably reduced when they are evaluated by
direct differentiation of relation (13) using the following com-
binations of derivatives.

ty=er | 5[, Kitorsao

- SC K,-(p)\I/ds+%SC A,(p)ciadQ]

(i=1,2,3,4,5) (30)
where
iFw  Fw Fw  Pw
4= PO oy’ &= oy’
*w
=2 , 31a,b,
V= 2y (31a,b,c)
d ——i’—a—vzw ds = t’a V2w (31d,e)
4 ax s 5= ay 3
K (0)=U(p), K;(p)=C(p)cos2w,
K;(p) =C(p)sin2w (32a,b,0)
Kip) =U’"(p)cosw, Ks(p)=U’(p)sinw (32d,e)
A (p)=U" (p)cose,
2
A; (p) = U’ (p)cospcos2w — ——C(p)cos(2w — @) (32f,8)
P
. 2 .
A5 (p)=U’(p)cosgsin2w ——C(p)sin(2w — ¢) (32h)
o
1
Ay (p)=— [—p—U’ (p)cos(w— @)+ V(p)coswcose
+2U(p) c0520c05wcos<p] (32))
1 .. .
As(p)= — [———U’ (o)sin(w — ¢) + V{(p)sinwcose
p
+2U (p)cosZ(isinwcos(p] (32)
2 ’
C(p)=U(p)~—p—V (0) (32k)

For an arbitrary loading function f(Q) the double integrals in
equation (30) may be evaluated using the technique presented
in Katsikadelis and Armenakas (1983).

When the loading is due to a concentrated force P at some
point Q the double integrals in relation (30) can be directly
evaluated from relations analogous to (25). Moreover, when
the loading is due to a line load along a curve L*, the double
integrals in relation (30) are reduced to line integrals on the
curve L* and they are computed from relations analogous to
(26). Finally, when the plate is loaded by a uniform or a linear-
ly varying load distributed over a region R* € R bounded by a
curve C* the double integrals in relation (30) can be converted
into line integrals. Thus, using integration by parts and
employing relations (46) and (A48) in Appendix, we obtain

[/ 22) v
= -%—SC* SV (p)cos(2w + ¢)ds

Journal of Applied Mechanics

Table 1 Percent error in the deflection w, bending moment
M,, and reaction force V, in a clamped circular plate with
radius a, resting on an elastic foundation (A =10, s=13), and
subjected to a uniform load ¢

Number Error Error Error
of BE inw in M, in V,
r=.5a .r=.5a r=a

10 .051 1.056 .836
20 .006 137 117
30 .002 .041 .036
40 .001 .017 015
50 .000 .009 .008
60 .000 .005 .005
70 .000 .003 .003
80 .000 .002 .002

G| d
- Sc* [—a{;—cos(w+<p)— aﬁ sin(w+¢)] V(p)ds (33a)
H fiV(p)da=—l—~S SV’ (p)sinwcos(w
R*” 3xdy £ Jc*
+p)ds— Sc* —g—g—V(p)sin(w+go)ds (33b)
H fiVZV( Ydo = ~LS JU(p)cos(w+ p)ds
R* ox ° £ Jct P ks
1 d
+7SC* %V' (p)coseds (33¢0)
SS f—a—VZV(p)da= ———1—-5 JU(p)sin(w+ o)ds
R” 8y 2 Jct ¢
1 aof |
+_£'_Sc* a_nV (0)coseds (33d)

where x, yeR and £, neC*,

7 Numerical Results

A computer program has been written for the numerical
evaluation of the response of clamped plates resting on a
Pasternak-type elastic foundation by integrating the boundary
integral equations (17) and (20) using the numerical technique
described in Section 5. Numerical results have been obtained
for circular plates with or without holes, rectangular plates
and a plate of composite shape subjected to concentrated
loads, uniform, and linearly varying loads. The obtained
results are in excellent agreement with those obtained from
analytical solutions or other numerical solutions. When G—0
the solution for the plate resting on a Winkler-type elastic
foundation is obtained, while when both constants, G and &,
are small, the solution for the plate not resting on an elastic
subgrade is obtained.

For the presentation of the numerical results the following
dimensionless parameters are introduced which are established
by writing equation (1) in a dimensionless form

s=a/ND/G, N=a/4D/k

where g is a characteristic length of the plate (e.g., the radius
of 'a circular plate, the length of one side of a rectangular
plate, etc.). The shear modulus G may vary between O to
40MN/m, while the subgrade reaction modulus & may vary
from 0 to 200MN/m3. Thus, for usual engineering applica-
tions it is 0 <s<30 and 0 <X =<20. In computations, it may be
set s=0. However, the value A =0 must be excluded because it
raises computational difficulties. A small value of A\ (say
A=0.1to 0.5) and s=0 give accurate results for the plate not
resting on subgrade.

In Table 1, the percent error in the numerical results obtain-
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Table 2 Deflections w=w/(Pa%/D) in a ciamped circular plate with radius a subjected to a concentrated
force P at its center

A=.134, 5=0 A=12,5=0 A=12,5=15
r/a analytic - BEM analytic BEM analytic BEM
0 .19894E — 01 .19894E — 01 .86806E — 03 .86806E — 03 .59681E —~ 03 .59681E — 03
0.2 .16537E-01 .16537E-01 .13953E - 03 . .13953E~-03 .11590E - 03 .11590E - 03
0.4 .10878E—01 .10877E — 01 ~.12264E — 04 —.12264E — 04 .10507E — 04 .10507E—-04
0.6 54154E-02 .54150E - 02 —.22695E — 05 —.22695E — 05 S51292E - 06 S1292E - 06
0.8 .14797E ~ 02 .14795E — 02 35712E-06 35711E - 06 —.12968E — 07 — . 12965E — 07

Table 3 Deflections, bending moments and shearing forces in a clamped circular ring-shaped plate with
an inner radius b and an outer radius a = 3b subjected to a uniform load ¢

A=.134,5=0 A=12,5=0 A=12,s5=15
r/b analytic BEM analytic BEM analytic BEM
Deflections w=w/{ga*/D)
1.4 .21740E - 01 .21741E - 01 .54455E—04 .54455E — 04 .51193E-04 .51188E—04
1.8 .44073E - 01 .44073E —01 S52551E—04 52551E—04 .52615E—-04 .52615E — 04
2.1 .40622E - 01 .40622E ~ 01 52518E—-04 52518E—-04 ,52617E—04 .52617E—04
2.6 .16895E - 01 .16894E — 01 .54912E— 04 .54912E - 04 .50906E — 04 .50906E — 04
Bending moment M, =M, /qa’
1.0 —.44861E+00 ~ .44861E+00 —.73420E—02  ~.73420E—02  —.74249E-02  —.74715E-02
1.4 .80839E — 02 .80860E — 02 .14935E - 03 .14935E - 03 .19618E — 03 .19677E—03
1.8 L15789E 4+ 00 J15789E 400  — .24074E-05 —.24073E- 05 55076E 06 .55478E — 06
2.2 .13134E+ 00 JA3134E4+00 —.35616E - 05 —.35623E—-05 .81261E — 06 .81279E - 06
2.6 —~.24062E-01 —.24065E — 01 .17698E - 03 17701E—-03 22293E-03 .22296E — 03
3.0 —.286I2E+00 —.28612E+00 —.68067TE—02  —.68074E—02  —.67599E—-02  —.67623E-02
Shearing force O, = Q,/qa

1.0 .14684E + 01 .14685E + 01 .12489E + 00 .12489E + 00 .16905E + 00 .16960E + 00
1.4 .70599E + 00 .70598E + 00 —.34146E—02 —.34146E - 02 —.19353E-02 —.19402E - 02
1.8 .19355E + 00 .19354E + 00 .95462E — 04 95463E—04  —.14228E-04  —.14296E—04
2.2 —.20528E+00 —.20528E+00  —.13524E-03 —.13525E-03 .20057E — 04 .20061E — 04
2.6 —.54293E+00 —.54293E+00 40313E~02 .40316E — 02 .22448E - 02 .22451E—02
3.0 —.84387E+00 —.84387E+00 ~.11555E+ 00 —.11556E + 00 —.15316E + 00 - .15318E+ 00

Table 4 Deflection w =w/(ga*/D) and bending moments M, =M,/qa* M, =M,/qa* in a clamped rec-
tangular (a X b) plate subjected to a hydrostatic load f=gx/a, 0<x=a, 0<y=<b, for various side ratios
b/a ([A=0.134, s=0, v=0.3). The analytical results are obtained from Timoshenko and Woinowsky-

Krieger (1959)
b/a=0.5 b/a=1.0 b/a=1.5
analytic BEM analytic BEM analytic BEM

w(a/2,b/2) .080E — 03 .079E—-03 .630E — 03 .630E — 03 .110E—-02 .109E — 02
M, (a/2,b/2) .198E — 02 .198E — 02 115E-01 .114E-01 .184E - 01 .183E-01
M, (a/2,b/2) SISE—-02 SI13E-02 115E-01 .114E - 01 .102E-01 .101E—-01

. (a,b/2) —.115E - 01 —.115SE-01 ~.334E-01 —.336E - 01 ~.462E — 01 —.463E — 01
M .(0,0/2) —.028E—-02 —.028E-01 —.179E-01 -.179E-01 —.295E-01 —.295E-01
M, (a/2,b) —.104E - 01 —.104E—-01 —.257E-01 —.257E-01 —.285E 01 —.286E—-01

Table 5 Influence coefficients for a clamped rectangular (24 X 2b) plate with side ratio b/a=1.2 resting
on an elastic foundation with A=5,5=7

L
pos??ign Influence coefficients for w=w/(Pa2/D) at x=0, y=0
x/a
y/b 0 0.2 0.4 0.6 0.8
0.8 .5162E — 04 .4602E — 04 .3248E-04 A727E-04 .5126E - 05
0.6 2121E-03 .1858E—-03 1261E—-03 .6504E — 04 .1970E — 04
0.4 .6331E~-03 .5314E—-03 .3287E—-03 .1558E - 03 4547E — 04
0.2 .1664E — 02 1261E—-02 .6620E — 03 .2796E ~ 03 7735E - 04
0 3197E - 02 1920E - 02 . .8765E-03 .3465E — 03 .9330E-04
Influence coefficients for M, =M,/P at x=0, y=0 (»=0.3)
x/a .
y/b 0 0.2 0.4 0.6 0.8
0.8 — 2970E—-04 —.6935E—04 —.1236E 03 —.1099E—03 —.4193E-04
0.6 1802E—03 —~.1224E-03 —.5151E-03 —.4878E — 03 —.1915E-03
0.4 2578E~02 .3950E — 03 —.1750E—-02 —.1565E—02 —.5783E - 03
0.2 .2081E - 01 .2087E—02 © —.5684E — 02 ~.3793E—-02 —.1241E-02
0 .1000E + 31 —.4089E — 02 —.1025E-01 ~.5392E - 02 —.1641E—-02
914/ Vol. 53, DECEMBER 1986 Transactions of the ASME
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ed using the BEM as compared with those. obtained from
analytical solutions (Selvadurai, 1979) is presented versus the
number of boundary elements for a clamped circular plate
resting on an elastic foundation (A= 10 and s = 13), subjected
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to a uniform load. It is apparent that only a few boundary
elements (20 to 30) are sufficient to obtain accurate results.

To demonstrate the accuracy of the BEM three more ex-
amples are worked out for which results from analytical solu-
tions are available. Thus, in Table 2 the deflections along the
radius of a clamped circular plate subjected to a concentrated
load P at its center are tabulated. They are obtained on the
basis of analytical solutions and also using the BEM with 32
elements. Three characteristic cases are considered: (a) plate
not resting on an elastic foundation (A =0.134, s=0); (b) plate
resting on a Winkler-type foundation (A= 12, s=0); (c) plate
resting on a Pasternak-type foundation (A=12, s=15). The
analytical solutions are obtained from Timoshenko and
Woinowsky-Krieger (1959), Schleicher (1926), and Selvadurai
(1979), respectively.

Moreover, in Table 3 the deflection, the bending moment
and the shearing force along the radius of a clamped circular
ring-shaped plate with an inner radius b and an outer radius
a=23b are presented when it is subjected to a uniform load q.
The numerical results are obtained using the BEM with 32
boundary elements on each boundary and they are compared
with those obtained from the analytical solutions (as in Table
2). Furthermore, in Table 4 the deflection and bending
moments in a clamped rectangular plate (@ X b) not resting on
an elastic foundation (A=0.134, s=0) and subjected to a
hydrostatic load are presented. The results are obtained using
44 boundary elements and they are compared with existing
results from the analytical solution (Timoshenko and
Woinowsky-Krieger, 1959).

a4 a/ | a/2
Y -4.05E-3 qa?

a/2 \

\
—

My

a/2

Mn

\
-6.06 E-3 qatt
—
-689E-3qa? |
.

3a/8 a8 a/d

X
qa

-1.66 E-1qa T
| ¢

a/d /8 3a/8

a/2

-L13 E-1 ga

Fig. 3 Uniformly loaded clamped piate of composite geometry resting
on a Pasternak-type elastic foundation (A = 15, s = 18): (a) Perspective of
the deflection surface of the plate; (b) deflections w=w/qga"/D),
subgrade reactions p=p/q and directions of principal bending
moments; (c) boundary reactions and stress resultants
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In Table 5, the influence coefficients for the deflection
w=w/(Pa%/D) and for the bending moment M, =M,/P at
point x=y=0 of a clamped rectangular plate (2a X 2b) with
side ratio b/a= 1.2 for various positions of the concentrated
load P are presented (A=5, s=7). The obtained values differ
considerably from the corresponding values for a Winkler-
type foundation (see Katsikadelis and Armenakas, 1984a).

Finally, in Fig. 3 results obtained on the basis of BEM using
74 boundary elements for a clamped plate of composite shape
resting on elastic foundation (A\=15, s=18) and subjected to a
uniform load g are shown. These results are considered ac-
curate because they differ negligibly from those obtained us-
ing twice as many boundary elements.

Conclusions

The following conclusions can be deduced from this
investigation:

(@) The BEM solution to the problem of bending of thin
plates on a biparametric elastic foundation developed herein is
well suited for computer-aided analysis.

(b) Plates having a composite shape including holes and
subjected to any kind of loading are efficiently and completely
analyzed; i.e., their deflections, bending, and twisting
moments, shearing forces, boundary reactions and subgrade
reactions can be established with good accuracy.

(¢) The conversion of the domain integrals into line in-
tegrals reduces drastically the computer time and renders BEM
a powerful tool for analyzing difficult plate problems.

(d) For plates with relatively smooth boundary the con-
stant element yields good results. The results are considerably
improved if curved boundaries are approximated by parabolic
arcs.

(¢) The evaluation of the kernel functions, which are real
and imaginary parts of Hankel functions with complex argu-
ment, are accurately computed from real valued series
expressions.
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APPENDIX

In this Appendix certain formulae are derived which are
used to convert the double integrals (23e, f) and (334, b, c, d)
into line integrals when the loading function f(Q) varies
linearly over a region R* € R bounded by a curve C*.

Consider the differential equation

d’w N 1 dw w0

dz? z dz
When z=p8p, with p=IP—QI/¢ and f=¢? a complex-
constant, equation (41) reduces to

d*w 1 dw

(A1)

+— ——+pB2w=0 A2

o2 P B (A2)

Equation (A2) is satisfied by the Hankel function
(Abramowitz and Stegun, 1972)

HP(Bp)=V(p)+il(p) (A3)

where V(p) and I(p) are, respectively, the real and imaginary
part of HY (8p).

Substituting equation (A3) into equation (A42) and
separating real and imaginary parts, the following two
simultaneous differential equations are obtained

V2V {(p)=sin20l(p) —cos20V (p) A4

V2I(p) = —cos20I(p) —sin268V (p) (A5)
d? 1 d
h 224, - 2
where v dp2 + o dp

Elimination of I(p) from equations (44) and (A45) yields
V(p) = —cos20V2V(p) —sin20V2I(p) A6)

For any two functions w and v which are two times con-
tinuously differentiable in the region R* and one time con-
tinuously differentiable on its boundary C* it is valid

aw v
25 2 = -
”R* (vViw—wVvv)do SC* <v—6n w o >a’s A7

Applying the Green identity (47) for the pair of functions
v=f, w=V(p) and noting that V2f=0 we obtain

[] . v2rorr@an

(48)

a0 [0V (@)
=ef . [—&;—f(m—wp) . as,

Similarly, applying the same identity for the pair of functions

- v=fand w=1(p) we obtain

.. v @

~efo)+| . [ 104 D,

where in double integrals it is p = |P— Q |/f, QeR* while in line
integrals, it is p= IP—q |/L, geC*.

(A9)
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The additional term ¢f(P) in equation (49) is due to the fact
that the line integral behaves like a double layer potential. The
value of the constant is established by a limiting process.
Thus, isolating point P by a small circle centered at point P,
when P is inside R*, or by a small circular sector when point P
is on C*, applying Green’s identity (47), letting the radius of
the small circle or of the circular sector, respectively, shrink to
a point and taking into account that for small values of the
argument p it is

81(p)
an

=T (p)c0sp = - {sindRe{HP(80)]

Journal of Applied Mechanics

+ cos0Im[H{V(Bp)]} cosp = ~ 1 icos<,o

! 7w
we obtain
e=—4 when P is inside R* (A10a)
e=—22—a/m) when Pison C* (A10b)
Note that
e=0 when P is outside R* (A10c)

« is the angle between the tangents at point p of the boundary.
For smooth boundaries it is a=.
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Modal Parameter Analysis of

P. C. Hughes

Gyroelastic Continua

This paper builds on the theory of gyroelastic dynamics presented in a recent paper
by the authors. An elastic continuum with a continuous distribution of stored

G. M. T. D’Eleuterio

angular momentum (called gyricity) is considered. We introduce the modal

parameters (coefficients) thereof, including integrals of the mode shapes, and show

Institute for Aerospace Studies,
University of Toronto,
Downsview, Ontario, Canada M3H 5T6

they must satisfy a number of useful identities. In addition to the coefficients (p,
and h,) associated with momentum and angular momentum which also arise in the
dynamics of a purely elastic body, there is a third coefficient (g,) wholly at-

tributable fo the gyricity distribution. The modal parameter analysis presented here
is an extension of that for purely elastic continua. The analysis concludes with a sim-
Dple demonstration of the theoretical results using a spatially discretized model of a

cantilevered rod.

1 Introduction

In a recent paper {1] the authors developed a theory for the
dynamics of gyroelastic structures—that is, structures
represented by a continuous distribution of mass and elasticity
and that contain, as well, a continuous distribution of stored
angular momentum, or gyricity. The equation of motion for
such a structure (denoted E in Fig. 1) was shown to be

Mii+ Gu+ Ku==£,(r,7) 03]

a form that is suggestive of its better-known discrete counter-
part [2]. Here u(r,?) is the small deformation of E at positionr
and time ¢. The symbol X denotes a stiffness operator (nor-
mally a differential operator); it is Hermitian and positive
definite [1]. The mass operator M is just o(r) I where o is the
mass density at r and 7 is the identity operator; clearly M is
also Hermitian and positive definite. The focus of attention,
however, is the gyric operator G given by

g=___‘1‘_ VxthVx @)
where V is the gradient operator and the gyricity function
h, (r) represents the angular momentum stored within an ele-
ment dV of E at r. The notation ¥ * simply refers to the com-
ponents of the curl operator, and it can therefore be
demonstrated [1] that G is skew-Hermitian. The only remain-
ing symbol in equation (1), f,, represents the external force per
unit volume at r.

The equation of motion (1) can be derived using the prin-
ciples of Newton and d’Alembert or, alternatively, from
Hamilton’s (extended) principle. A third derivation can be ob-
tained from the balance laws of continuum mechanics [3].

Contributed by the Applied Mechanics Division for publication in the Jour-
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This approach uses the concepts developed by Eringen and
others [4, 5, for example].

Elastic structures (large space structures, perhaps) contain-
ing a very large number of small spinning wheels furnish an
excellent example of a system that could profitably be model-
ed using a partial differential equation of the form (1). Thus
systems of the type characterized by equations (1) and (2) are
of practical, as well as theoretical interest.

The free motions of continuous gyroelastic systems lead to
gyroelastic modes, as derived and discussed in [1]. Although
each mode is a sinusoidal vibration (as with nongyric elastic
systems) one must now associate two mode shapes with each
mode (as compared to one mode shape for the nongyric case).
These mode shapes can be shown to satisfy certain orthonor-
mality conditions which are, as expected, generalizations of
the familiar nongyric conditions.

& deformed

Cantilevered at O

Fig. 1 Constrained elastic body
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The object of this paper is to extend the theory of
gyroelastic structures by certain integrals of the mode shapes
(these integrals arise naturally in the dynamics) and to state
and prove a number of modal identities which these modal in-
tegrals must satisfy. In addition to their mathematical interest,
these identities provide useful checks on analysis. They also
provide a rational basis for model order reduction.

2 Gyroelastic Vibration Modes

In some of the following proofs it would be advantageous to
write the motion equation (1) in an equivalent first-order
form:

Ex+8x=v (3)
M 0O X
Tty e
0 X -X 0

éﬁ-éfe 5
x_{u,v_o ®)

and O is the null operator. It can be shown that § is Hermitian
and positive-definite, and 8§ skew-Hermitian. The equivalent
eigenvalue problem,

where

>

&

NeBxy +8x,=0 ©)

has the properties that A, is purely imaginary (we shall set A,
= jw,) and that

X (1) = ¢, (1) +/¥, (1) M

where the six-tuples ¢, and y, are of the form

—w,V, Wl
{ } i Ve = [ ] G
ua voz

with u, (r) and v, (r) being the two mode shapes associated
with the ath gyroelastic mode. In fact, the motion of that
mode is expressed as:

¢ =

u(r,?) =u, (r)cosw,t—v, (r)sinw, )
For nongyric modes, n, and v, are identical.

It will prove indispensable to associate an inner product
with the space of real six-tuples. Thus define

oy=| oTmwmar

The 7-operator may be regarded as a generalization of the
transpose operator. For a detailed explanation of the -
notation as pertaining to both inner and outer products, see
the Appendix.

In [1] it has been shown that the orthonomality conditions
satisfied by the ¢, and ¢, are

6585 =20}8,5 (10)

An additional family of conditions, neither proved nor stated
in [1] but needed below, is this

0,895 =0 (alla,B) (n

The proof may be found in {6]. The equivalent conditions in
terms of the mode shapes u, and v, are

@all a,B) (12)

Written without the inner-product notation, equation (12)
takes the form

K =w,wgv, Mug

SE wlKvpdV =w,wg SE viwgdm (13)
Note that without gyricity, in which case
Uy =V =g, (V) (14)
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both the left and right sides of equation (13) vanish when o #
8. When o = 8, equation (13) reduces to w2 = w}.

3 Modal Momentum Coefficients

We shall now introduce the modal momentum coefficients

- for the gyroelastic continuum E. The momentum and angular

momentum (the latter about O) are given by

pn=| aendm (15)
and
h(t)= SE C(r,t)h (r)dV+ SEl'Xl'l(r,t)dm (16)
where
C(r,t) =1-6* (r,1) an

is the (first-order) rotation matrix from a local reference frame
at r, in which h, is expressed, to an inertial frame. The quanti-
ty 0 is the column of corresponding (first-order) rotational
displacements at r and may be expressed as

0(r)=% v *u(r) (18)
Substituting for ¢ in equation (16) yields
h(t)= hT+-%_SE hX (r)V *u(r,)dV+ SE rXu(r,tydm (19)
where

hTéSE h, (r)dV (20)

is the total angular momentum stored in E. The general
displacement of £ may be expanded as follows:
u) = Y5 Mg (1)n,5(2) + 95 (D)0, (1)] (€2

8

Upon insertion of this expression, equations (15) and (19)
become

p() = § [Pusus + Puptiug) (22)
and
h(1)=hr+ Zﬁ) (g + Mogitg —Bugtus —Bupmg]  (23)
where
Pus éSE ugdm, Py éSE vedm (4)
shall be called the modal momentum coefficients,
hugéSE r*ugdm, huBéSE r*vydm (25)
the modal angular-momentum coefficients and
guﬁé——;—SE bV *ugdV, guﬂ,A__——;—SE hX v XvedV (26)

the modal stored-momentum coefficients.

The body E is constrained at O and thus its motion must be
resisted by a reaction force Fj and a reaction torque (about
O) G on E at O. The reaction force and torque are given by

—Fr(t)= SE f(r,t)dm 27
and

-Gr(t) = SE v i(r,t)dm (28)
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where f(r,7) is the sum of all force fields, inertial, gyric and ex-
ternal, acting on E, that is

£(r,1) = —Mii — Qu +£, (r,7) (29)
The expansion for u analogoﬁs to equation (21) is
00 = Y wglug (Dme () +vg(Mne(D] - (30)

B8

which may be obtained by considering the general expansion
for x(r,?) [1]. Substituting equation (30) into equations (27)
and (28), and integrating by parts (see [1]) where required, we
have

—FR() =F, ()= Y, walPuative+Poaual 31)

8

- GR (1= Ge (1) — E [huaﬁuu +hvaﬁurx —8uaMve ™ gvanua]

B
where 32)

Fe(t)éSEf(r,t)dV, Ge(t)éSEr"f(r,t)dV (33)

are the total external force and torque on E.

Before proceeding onward we note that the modal coeffi-
cients can be expressed using the (inner product) 7-notation,
namely,

Puo=1"Mu,,
h,=— (r)"Mu,,

gua= - (rx)fg“a’
These forms will prove useful.

Py, =17y,
hucx == (rx)rmva
Cva= — (l-X)‘rgva

(34

4 Modal Expansion for §-!

The proof of the identities for the modal momentum coeffi-
cients, to be presented in the next section, rests on the fun-
damental result that & ~! can be written as a modal expansion.
As stated earlier the operator 8§ is positive-definite; hence §~!
exists and, in fact, is given by

m-t .
[ .oox! ]
We assert that & ~! can be expanded in forms of the eigenfunc-
tions as follows:

1
g7l =—- Y 02l6.6L + ¥yl

§ 1= (35)

(36)

(The reader is reminded that the outer-product 7-notation is
explained in the Appendix.) One can be convinced of the
verisimilitude of this identity by noting that, upon substitu-
tion, it satisfies the eigenvalue problem when written in real
terms as

—wo ¥, +8&7180,=0
@u®,+E718¢, =0

For a rigorous proof, however, consult [6]. Combining equa-
tions (35) and (36) with (8) it is clear that

37

1
o -! == Y Tugur +v,vi] (38)
0 = Y wI'ugvy+v,ull (39)

1
K= N e uug +v,v;) (40)

920/ Vol. 53, DECEMBER 1986

In the interest of completeness, we note that § ~! (8 is non-
singular) can also be expanded in forms of the eigenfunctions:

2

1
8§71 = 1 0 [Ba¥l +¥u il 1)
Moreover, it can be shown by induction that
— 1)
(8—18)"8‘1(88“)"=—(2—)(1)" Y w20 2 66+ YVl
“42)
1
(8718)"8-1(881y" = DR R R U 4 B CE)

5 Modal Identities

Having established the results (38-40), we can proceed with
great facility in proving a series of modal identities which are
reminiscent of Parseval. Let us begin with equation (38),

1
M= D] mgug+v,vi]

This is an operator equation and so we can operate on ¢(r)1to
give

1
91'6“‘(01)=—5— Y g fug (oD} +u, (Vi (a))] (44

Recalling the definition of 9T, it follows that
WM-t=¢~!] 45)

Hence, the right-hand side of equation (44) reduces to the
identity matrix 1. Now, taking the inner product of equation
(44) with o(r)1 leads to

1
(01)1=— Y (o) u, ) {ur (o)}

+ {(a1)7v, } [V (a1)]] (46)

But (61)71 is just the matrix m1, where m is the mass of E.
Finally, upon realizing that
(o1)™u, =1"Mu,=p,,, (01)7v,=1"Mv,=p,,
and
ug (o) =(Mu, ) 1=pf, , v, ()= (Mv,) 1=p,

we achieve the desired result,

1
T E [puaplra +puap5a ] =ml (l’a)

(For clarity, new identities will be labeled with Roman
numerals as they are cited.) These then are the essential steps
in the proof of the modal identities.

In the absence of gyricity recall that [1]

U, (D=v,(N=u,(r) (h,=0) @n
and so
Pue =Py =Poa (hs=0) (48)
Hence, Identity (/,q) reduces to
(h,=0) 49)

Y Poupl, =ml
o

which is the familiar result for (nongyric) elastic continua [7].

Additional identities for the modal coefficients may be
derived by replacing o(r)1 with o (r)r* and/or Gr* in the two
appropriate steps, leading to equations (44) and (46) of the

" foregoing proof. Thus, the complete set of identities born of

equation (38) is

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1
E [puapza +pu¢yp5a ]=ml

2
1 .
T E [hmxhl{a +huuhx{a =J
1 T T 1 X h X Tl Xy X -1
_2— E [guo(guzx +gvagvm]=T E (V hs ) (V hs )U dv
1
— L bl 4D, Y 1= —c (La-~/)

1
T E [huaglflx +hvagl{c¥]= —h%(

1
- [8uaPle + 8P 1=0

o

where
m= S dm, c= S rdm, J=— S r'r*dm
E E E

are, respectively, the zeroth, first, and second moments of in-
ertia (about O) of E. The proofs of (I,cef) require integration
by parts as well as observing, for (J,f), that b, vanishes on the
surface of E. In the limit as A, —0, Identities (Z,bd) also reduce
to those established for (nongyric) elastic continua [3].

The identities derived above involve the modal coefficients
exclusively. We now present six more identities which involve
the modal frequencies w, as well. These are derived in the
same fashion as those above but with the null operator O, as
given by equation (39), replacing 9 ~!. Clearly, the value of
the sums will be O, the (3 X 3) zero matrix. The end results are

E wglipuapg:x +pUle{a ] =0
o

Y oz'lhhE, +h,h7, =0
o

Y 07 gualT, + 21l 1=0
(1,a-f)
E wgl [Puahfa +pvah5a ] =0

Y woilh,gl +h,el 1=0

Y 07 ' [8uaPh +8,,07,1=0

All of these identities become trivial when A, =0.

One may well anticipate by now that another family of iden-
tities can be generated by using the modal expansion for X1,
given by equation (40), in the same manner as the 9 ~! and ©
expansions have already been exploited. These identities will
have a more attractive form if we can find an interpretation of
JC~! that is somewhat analogous to the interpretation (45) for
M -1L. To this end, we note that, since & is typically a differen-
tial operator, 3 ! is typically an integral operator which may
be written as

5= ¥EEEIV® 0)

where F(r,£), a (3 X 3) matrix function of r and £, is known as

Journal of Applied Mechanics

the flexibility kernel. Note that because ¥ is symmetric and
positive-definite, F(r,£) is symmetric,

F7(£,1)=F(r,§) (1

and positive-definite

gE fT(OF(r,£)1(¢)dVdy>0 (52)

for £(r) in the domain of X! and not identically zero.
Perhaps the best known of the flexibility kernels is that for a
slender, uniform cantilevered rod:

x*(3¢—-x)/6B,
F(x8)= {
£2(3x—£)/6B,

where B is the rod’s flexural stiffness and £ is its length.
The identities thus wrought from (40) are

O=sx<t=<?
(53)
O<té<sx=<!

1
o L o Buble +poph 1= |, | Fe6dmam

1
o L oa b, +h, 0% 1= = | | oFe e amam

1
_2:_ E wt;z[guagzu +gvag171:x]

1
TSE XE [VEREMITFEHIVE X (HldVaV

(Il,a-1)

1
—2—— E wa_zlpuuhlz‘a +pvahg‘a ] = SE SE F(ryg)rxdmdm

1
T E wn;z[huugz‘a +huag$:x]

1
TSE SE X F@, [V hy (§)ldV(E)dm(r)

1
5 L 2 (80Pl +8uPh]

1

= | tvrnx wirrepam@ave

Taking advantage of these identities is more challenging than
employing the earlier ones since in general they require a sex-
tuple integration (quadruple for two-dimensional structures
and double for one-dimensional structures). On the other
hand, the weighting coefficients for these identities are w2
and therefore convergence would tend to be much more rapid.
There is certainly something to be said for any nontrivial iden-
tity that involves the modal frequencies because they are well
known to be of the greatest importance.

6 Sum of Squares of Modal Periods

For a nongyric elastic structure, the modal frequencies obey
the following identity [7]:

2 wrl= trSE F(r,r)dm

The subscript (), is a reminder that the natural frequency ,,
is for the same structure as is v, but containing no gyricity,
i.e., h,=0. Because the period of Mode « varies inversely with
w, (T, = 27/w,), identities of the form (54) can be regarded

(54
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Slender cantilevered rod

Fig. 2

as expressions for the sum of squares of the modal periods.
The generalization of equation (54) to constrained
gyroelastic systems may be written as

I .
L witma=— o[ | oFg o1

[Fre (£, (E)ldVdV Iv)

where

1
FrTE (Ear)=F£r(ra£)='—2_ Vg( Ff("yf)
. (55)
F,(l',E)=—2— v Ff)

The derivation of (I¥) is, unfortunately, much longer and
more subtle than its nongyric counterpart and thus is not in-
cluded but is available in [6].

Identity (IV) brings to light three new flexibility kernels
related to the kernel F(r,£). The physical interpretations of
these new kernels are noteworthy: (1) F, (r,£) is the kernel re-
quired to express the local angular deformation caused by a
force distribution; (2) FI (r,£) relates the local translational
deformation to its corresponding torque distribution; and (3)
F,, (r,£) is the kernel appropriate for determining the local
angular deformation due to a torque distribution.

7 Numerical Example

As an example of the preceding results we return to the
slender cantilevered rod (Fig. 2) considered in [1]. The sense of
the gyricity is parallel to the rod, everywhere along the rod,
thus reducing the problem to two dimensions. The rod is taken
to have a constant linear mass density p and constant bending
stiffnesses B, and B,. Let us choose the gyricity distribution to
be

B (x) 1h7r.<7r) (56)
X)=—— hy — sin{—
s 2 Ty ;
where A is the total angular momentum stored in the rod.
For this system, Identities () are

1, (pp)=p1
1
Lo(hh)=—§— pf31

h
pl?

!
t,(gg)= S
(57)

1 0 1
2
"o(ph)=’2— of -1 0

0 1
1, (hg)=hr [_1 0}

t,(gp)=0

922/ Vol. 53, DECEMBER 1986

wherein we have introduced the abridged notation,
iy (ab) é E w;"[auublTa + avo:vaa
o

for the left-hand sides of the identities. (The identity matrix 1
and the null matrix O above are, of course, 2 X 2.) Further-
more, noting that the flexibility kernel for the cantilevered rod
is

Bt o xX2(3t—x)/6, 0<x=<§¢=<{
F(x,£)= . (58)
0 B;! £2(3x—£)/6, 0<t=<x=<{
and defining
BA(B,B,)"*; BA(B/B,)\ (59)
and identities involving w§2, (II), are calculated to be
0205 g8 0
‘2(PP)=W 0 —g-!
11p2£75 ﬁ_l 0
hh) = ———
nOW="00 |0 8
N1 Ao
288=gp | 0 g-!
(60)

13p2¢6
360B

,(ph) =

0 B8
o o]

/11 1yphpt | OB
‘Z(hg)_(ﬁ+4_w2+7) B [—3—1 0

oo ]

Finally, the identity involving only frequencies, namely (IV),

becomes
_ _ 3 2\ H3i2
2 oozt~ (=) G

To verify the above identities numerically, the vibration fre-
quencies and the gyroelastic modes of the system were deter-
mined [1] using a finite element method with 10 elements (40
degrees of freedom). The modal coefficients were then
evaluated according to equations (24)-(26). A comparison be-
tween the theoretical and numerical results is charted in Table
1. For brevity we shall consider only the numerical coefficients
appearing on the right-hand sides of the modal identities. The
‘‘/discrepancies’ in Table 1 are due to the finite number of
modes taken in the series and, of course, to numerical error in
the finite element approximation. (Calculation of the
discrepancy in ¢, (gp) should be based on #2/V8, obtained
from the geometric average of +, (pp) and ¢, (gg), and thus is

1 1 \ pht?
L(gp) = — (~1—2—+—27r2) ;

(61)

4.2 percent. As expected, this lies between the discrepancies

for ¢, (pp) and ¢, (gg).) Agreement among the second set of
identities is much better than among the first set owing to the
presence of w3 2.

It is useful to define a completeness index that measures the
degree to which the modal identities are satisfied by a finite
number, N, of modes. An inertial completeness index has been
suggested for nongyric elastic structures [8]. To extend the
concept to gyroelastic structures, consider

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 1 Modal identities: A comparison between theoretical
and numerical results

Identity Coefficient on Right-Hand Side Discrepancy
Theoretical Numerical (%)
I
(a) 1, (pp) 1 0.97060 . 2.9
(b) +, (hh) 0.33333 <0.001
7l'4 ’ ‘
(c) 1,(88) = 11.460 5.9
(d) t,(ph) —;- 0.49966 <0.003
(e) t,(hg) 1 1.0017 -0.17
) w(gp) 0 —0.14509 —
HI
(a) (pp) —2% 0.050000 <0.002
(b) 1,(hh) o 0.026190 <0.004
() 1p(gg) —g— 0.037500 <0.003
11
(d) t,(ph) TN 0.036111 <0.003
@) by Ll L 0.098096 <0.001
16 4p2 g4
1 1
#2] ‘2<gp) "1'74'? 0.13399 <0.008
v
L(eg?-wsd) 55 0.71236 <0.002
T
N Pua | [Pua |7 Pos | [P |7
1
MNé T E huu hua + hua hva
a=1
Luc Suo oo Bou

(62)

and M, A lim M,. The matrix M,, is positive-definite
N—oo
for nonzero gyricity and therefore we can define

1 n
LAV MG MM (6)

i=1

(where 7 is the dimension of M, and p; are eigenvalues) as a
completeness index for gyroelastic structures. As N—oo, pu,
—1 and hence I,(o)=1, which means the system is
‘“‘complete’’. It should be noted that this definition differs
from its nongyric counterpart in that equation (63) is a root
mean square average of u; whereas the inertial completeness
index is just the smallest ;. The eigenvalues u; can be easily
solved using the form (u;M,, — My)x = 0, for which many
computer algorithms exist.

A similar completeness index for the modal identities in-
volving w;? can be defined as follows:

1 n 172
LA [T PHCACNFID) (64)
i=1 :

where
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Fig. 3 Completeness indices for the siender cantilevered rod

N Pue | [Pua |7 Poo | [P |7
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a=1
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and &, A lim E,.
N—o
The indices I, (N) and I, (NN) are plotted in Fig. 3 for the
cantilevered rod example. As would be expected, the identities
involving w;? as monitored by I, (N) converge much faster
than the others.

8 Concluding Remarks

As the preceding development indicates the concept of
modal coefficients is a natural extension of eigenvalue
analyses traditionally performed on vibration structures. The
practical importance of our analysis lies in the potential ef-
ficacy with which gyricity can be used to control very large
flexible space vehicles. A dense distribution of momentum
wheels and control moment gyros over the structure may be
advantageously represented by a continuous gyricity
distribution.

The modal coefficients constitute a dynamical description
of a gyroelastic body and are known to be of great significance
[7]. Apart from their academic appeal, the theoretical results
obtained here are very useful in verifying the accuracy of
spatially discretized models and, more important, in supplying
a rational basis for model-order reduction schemes. It should
also be emphasized that while we have focused on an elastic
continuum containing a gyricity distribution, the results are in
fact applicable with minor modifications to any system which
can be described by equation (1).

The equation of motion (1) can be derived using the prin-
ciples of Newton and d’Alembert or, alternatively, from
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Hamilton’s (extended) principle. A third, and consistent,
derivation can be obtained from the balance laws of con-
tinumum mechanics [3]. This approach uses the concepts
developed by Eringen and others [4, 5, for example}.
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APPENDIX
Inner and Outer Products

‘We begin with two matrices, X(r) and Y(r), whose dimen-
sions are n; X n, and ny X ng4, respectively. The inner prod-
uct (over E) of X and Y, denoted here by XY, is defined to be

XY =X (0)Y(r) éSE XT(H)Y(@)dV (A.1)
This definition of course requires #; = n;. Note that the inner
product X"Y is an n, X n, constant matrix.

The outer product over E of X and Y, denoted here by XY~
= X()Y7(£) is defined such that, for any n; X ng, matrix

X Y )VAX @)Y Y) (4.2)

This definition of course requires n; = ns and n, = n4. Note
that the outer product X Y” is an n; X n; matrix operator;
thus, in (4.2), ¥ (£) is mapped into X(r).

As a final observation, we note that if a fourth matrix, ®(r)
is introduced (n; X ng, say), then the inner product between ®
and (X Y7)¢ is given by

&7 (NXEOY" (HI¥(E) =(2"X) (YY)

(One must have n, = ny, ny; = ns, and n; = n,.) Note that the
result is a ng X ng constant matrix.

“A4.3)
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Beams on Variable Winkler Elastic
Foundation

A stiffness approach is presented for computing the solution of beams on variable
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Winkler foundation. The solution may be achieved using only a small number of

elements along the beam. Accuracy is dependent only on a preset user criterion. A
numerical example demonstrates the efficiency and accuracy of the procedure.

Faculty of Civil Engineering,
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Introduction

The analysis of beams on Winkler foundation is very com-
mon in engineering. Other foundation models are reviewed by
Kerr (1964). The Winkler foundation model consists of an in-
finite number of closely spaced springs uniformly distributed
along the beam. When the spring constant, also called founda-
tion modulus, is constant along the length of the beam, the
differential equation of the beam has constant coefficients,
and the solution can be given as a linear combination of
elementary functions (Hetenyi, 1946). If the foundation stiff-
ness varies along the beam, the differential equation in most
of the cases cannot be solved exactly, and numerical methods
should be applied. This situation occurs in the case of buried
structures, in particular in piles driven into soil.

Exact stiffness matrix for beam member on constant
Winkler elastic foundation has been derived previously
(Eisenberger & Yankelevsky, 1985). Franklin and Scott (1979)
presented a closed-form solution for a linear variation of the
foundation modulus, using contour-integrals. For a higher
order of variation in x (the coordinate along the beam), they
present a partial solution, which is applicable to infinite beams
(or piles). Lentini (1979) presented a finite difference method
to solve the problem when the foundation stiffness varies
along x as a power of x.

In this work we present a solution for finite beams resting
on a Winkler elastic foundation with stiffness variation that
can be presented as a general polynomial of x. A stiffness for-
mulation for the solution of the deflection curve, moments,
and shear is presented and demonstrated in a numerical
example.

The Differential Equation

The differential equation for the deflection curve of a beam
of constant flexural rigidity EI supported on a variable elastic
foundation is:

Contributed by the Applied Mechanics Division for publication in the Jour-
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d'y k(x)  px)
o "B YT E 0

If we represent the foundation modulus and loading as two in-
finite series

k(x) =) k' @
i=0
P =Y px 3)
i=0
and introduce a new variable
x
= 4
we get . L @
d*y 1 dy
= 5
A ®
k(x)= Y, kLt ©)
i=0
p(x)= Y, pLig Q)
i=0

Substitution of these expressions into the differential equa-
tion, equation (1), yields

= (Ek*‘é) f,;p*zf ®

where
=t ©
pr=2 10)
If we choose the general solution of equation (8) as
y= gaisf an
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Fig. 1 Beam on elastic foundation: stiffnesses
then Y0)=aqa, (18a)
Ez(z—l)(z—Z)(z—3)a gi-4 0(0)=_1_ ﬂ:-l_a (18b)
ds“ P L d L
il ) and the first two a; are found. The next two a; are found from
= E (I+DE+NE+2)0+ Va4 (12)  the boundary conditions at x=L (£=1).
i=0 From equations (11) and (17), we can express the deflection
which, on substituting into equation (8), gives ¥, for each £, as a linear combination of the first four ;’s and
” the terms p}, as all the other coefficients are linearly dependent
E G+4)(+3)+2)(+ Da;, 4 on them. In particular, for £ =1, we can write:
a N/ . = . x=L,t=1)=Chay+ Cya; + Cya, +Csas+ ), C_p¥ (19)
+<Ek}'i’)<2a,~£’)=zp}"é’ (13) »( £=1)=Coap+ Cya, + Cray + Cia, i.—.z(:) piDi
i=0 i=0 i=0
The multiplication of the two series in the second t be
written as emcanbe o ;¢ 1)=Cia+Clay + Ciar+ Cias + Y. Clpt (20)

ki £ = 3 3 g, . Ygl
(X% *z)(L;as) g(jg)k,a,_,)s (14)
and equation (13) becomes
Y (0 3+ D+ e o
i=0

5 ()= B 09

i=0 “j=0 i=0
or
f} [(i+4)(i+ G+ 2+ D, 4
i=0
+ Yk —p;*]g"=o (16)
J=0

To satisfy this equation for every value of £, we must have

- 2 kja;_;
Aroa= /= i=0,1,2,....
(+HE+3)E+2)E+ D
so that in equation (11) we have all the a; coefficients, except
for the first four, which should be found using the boundary
conditions.

(amn

Boundary Conditions

All boundary conditions are assumed to be displacement-
type because of the intended application of the result in
developing a displacement based stiffness matrix. At £ =0 we
have

926/ Vol. 53, DECEMBER 1986

i=0

The C coefficients are functions of the k} terms and can be
evaluated using equation (11) and (17). C,, for example, is the
value of the function y (equation (19)) at £=1, when gq;=1
and a, =a, =a; =p}’=0, and therefore it can be calculated us-
ing equations (I11) and (17) with the preceding values.

In general we can write all the C coefficients as follows:

Ci=ypr= Y a=1+ Vg, 1)
j=0 j=4

Ci=y{.1= Y, ja;=1+ ), ja; (22)
Jj=0 Jj=4

both with a; (from equation (17)) based on a;=1, a;,.; =0;
pr=0;i,k=0,1,2,3,n=0,1,2,

Y Cupi= E
i=0 j=0
E fp: yz 1= E.fa = E]a

both with @, (from equation (17)) based on a,=a,=
@, =ay =0, using the values of p} for the particular loading.
Knowing all the terms in equations (21)-(24), the values of &,
and @, {(equations (18)), and the boundary conditions at x=L
(¢=1), we can solve equations (19) and (20), for the two
unknowns, a, and a;. Thus, for any given variable foundation
k(x) and loading p(x) (equations (2), (3)), we can find all the
a; coefficients in the expression for y (x) (equation (11)), from
equations (17)-(20).

2 (23)

@4
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Fig. 2 Example: cantilever beam on variable elastic foundation

Stiffness Matrix and Member End-Actions

The terms in the stiffness matrix are defined as the holding
actions at both ends of the beam, due to unit translations and
rotations as shown in Fig. 1, where there is no load on the
beam (i.e., p; =0). For the solution y;, i=1, 2, 3, 4 of the four
cases shown in the figure, one can use the boundary conditions
and geta; (j=0,1,2, .. .00).

Then, the terms in the stiffness matrix are:

Su=00)=—5 f;":a EL o @5a)
Sy =M(0)= - ff Zﬁ":-z ff a 25b)
Sy=0lt)= 5 ‘Zﬁ" — gju—l)(i—z)aﬁ @5¢)
Su=MD=-15- %=—f§§j(j—l)aﬁ @sd)

As an example, the first column of the matrix is found using
the deflection curve y,, for which the a;, coefficients may be
found using the following boundary conditions:

»(0)=1 (26a)
Y10 =y (L)=y{(L)=0 (26b)

Member end-actions for any loading are found using equa-
tions (25), but the solution y is found using the loading data,
p; for fixed-end boundary conditions, i.e.,

HO)=y'(0)=y(L)=y'(L)=0 -27)
Examples

Considering the case of a constant Winkler foundation,
k(x)=k,, for p(x)=0, then
—k3a

Gt T T DG+ G+ D) (28)

Journal of Applied Mechanics

Table 1 Results for example beam

segments -10Yalm] |10€alrad) Rb[N] -MbINm] | CcPU[s]
1 11735 .25820 51.65 15.596 0.58

2 .22180 .39362 100.47 26.788 0.67

3 .26558 .44105 145,07 25.577 0,75

5 .33354 .52619 176.00 26.507 0.74
10 .40509 63440 219.41 32.789 1.10
20 .43212 .67869 235 .46 35.201 1.50
40 .43970 .69135 239,93 35.882 2.50
80 .44166 .69464 241,08 36.058 4.49
160 .44215 .69546 241.36 36.102 8.41
320 .44228 69567 241 .44 36.114 17.05
1 44232 69574 241 .46 36.117 0.77

and, if i=4*n+m (n=1,2, ... .and foreachn m=0,1, 2,
3) we get
_ (—ky)"m!

- 29)
i

i m
And considering the case of linearly varying Winkler founda-
tion, k(x) =k, x, then, for p(x) =0
—kia;_,
Aipg =73 T . .

(+DE+3)E+2)E+ 1)
and we get the same series as Hetenyi, (1946, p. 109). In this
case, if i=5%+m ({=1,2, ... .andforeach{,m=0,1,2,3)
then

30

(—kr)f[jl'fl (5j—4+m)]m1

a;= X a,,
il

m=0,1,2,3 (31a)

1=1,2,3, . ... (31»)

In both cases, y can be expressed as the sum of four series, that
correspond, for £=1, each one with the C coefficients, in
equation (19).

In these two cases convergence is evident. In the general
case, the series always converge for finite p and & polynomials.
It can be seen easily from the two examples or directly from
equation (17) that the number of terms needed to obtain con-
vergency depends only on the values of k*, for finite p
polynomials.

Using the beam stiffness matrix and member end-actions we
can solve any general continuous-beam using the direct stiff-
ness method (Weaver and Gere, 1980). A continuous beam
program was modified to include the possiblity of variable
elastic foundations, and the results are demonstrated in the
example.

The cantilever beam shown in Fig. 2 was analyzed using the
proposed stiffness formulation. The beam rests on a variable
Winkler elastic foundation and was solved using one section.
For comparison, the same problem was solved using the exact
stiffness matrix for beams on constant Winkler foundation
(Eisenberger and Yankelevsky, 1985). The beam was divided
into equal segments with constant foundation, in such a way
that the total foundation reaction of each segment is equal to
that of the original foundation reaction. The results of these
cases, and of the proposed solution, are given in Table 1, for
the deflections, rotations, and reactions at A and B.

It can be seen that the solution converges to the results ob-
tained using only one section, that obviously required much
shorter computation time. In the last column of the table the
CPU time for each case is shown, and the big saving in com-

as_; =0

DECEMBER 1986, Vol. 5371927

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 2 Stiffness matrices for example beam
K (x))=(4x, ~ 3x3 +x3)10® KN/m

[ 566095.5645341235  216162.5595999291 —6109.791883247904 - 87.20392055978066 ]|
216162.5595999295  137425.1141049063 —413.7380016882916 ~ 574.5602670603874
Sm= —6109.791883136082 —413.7380018381857 - 3534622.215303887 — 597666.9091349428
| —87.20392045799123  — 574.5602668704000 — 597666.9091349448 212550.389193901 1 ]
K(x,)= (12~ 13x, + 6x% — x3)105 KN/m
[ 3534622.215303817  597666.9091349144 —6109.791883247865  413.7380016883045
597666.9091349084  212550.3891938803  87.20392055986304 — 574.5602670603734
Sm= | 6109.791493126612  87.20395761805602  566095.5645341776 —216162.5596000219
413.7379749021453  —574.5602715076991 —216162.6696999461  137425.1141048908 |

Table 3 First column of stiffness matrix

EPS sM(1,1) sM(2,1) sM(3,1) sM(4,1) TERMS
1.£-01 $85529.,234011742 1 214335,3658006047 | -14263100.18482930 3178262 .236744432 37 - 54
1.E-02 567965.76472 65322 215176268 136999 23622 83 ,943837869 614507.232 1755555 43 -~ 61
1.E-03 5658646102 763164 21628417082 42434 283849.7906181943 | -76054.13077739591 47 - 67
1.8-04 566100.1176651456 216153 ,4255440069 -19505.32424408148 4029 267790100886 s1 - 75
1.E-05 566098.672 7565474 216162 9297521721 -7725,984763551770 154,7686111965075 54 ~ 80
1.E-06 566095.4963783332 216162 .5327313837 ~6095.726269172014 -85.21943796552056 s8 - &
1.E-07 566095 ,5663392 797 216162 ,5690002 106 -6100.2 61794332094 ~90.63444116110341 61 - 85
1.e-08 566095,5642920391 216162 .5604174414 ~6108.701393869584 -87,55180526012907 64 - 87
1,09 566095,5645813759 216162 .5597030293‘ -6109.705358534087 ~-87.2381372 8865589 67 - 89
1.e-10 566095.5645343206 216162 .5596051972 -6109.786007892238 ~B7.205944056162 16 70 - 92
1.E-11 566095.5645343714 216162 .5596000147 ~6109.791946368579 -87.20392294721190 73 - 94
1.E-12 566095.5645343474 216162 ,5595999233 -6109.792037063159 ~87.2038900365612 5 7% - 97
1.e-13 566095,5645341199 216162 ,5595999275 -6109.791882 735090 -87.20392041662 683 79 -~ 99
1.E-14 566095,5645341235 216162 ,5595999296 ~6109,791883347669 -87.20392059598476 81 - 101
1.E-15 566095 ,5645341235 216162 .5595999294 -6109,791883525373 -87.20392043077526 83 -~ 104
1.E-16 566095 .5645341235 216162 5595999295 | -6109,791884545353 | -87.20392020609712 85 - 106
1.8-17 566095.5645341235 216162 ,5595999295 ~6109,7918831360%2 ~87.20392045799123 88 - 108
1.E-18 566095.5645341235 216162 ,5595999295 -6109.,79188313608 -87.20392045799123 88 -~ 108

puter time is evident. To check the accuracy, the same
problem was solved by introducing the data referred to the
new axes x, (Fig. 2). The stiffness matrices in both cases are
presented in Table 2.

We used the series as an analytical solution of the differen-
tial equations. Then, the series were truncated checking that
the errors (ratios of @; to La; equations (21) and (23)), ja, to
Lja; (equations (22) and (24)), j(j— 1)a; to Lj(j— Da; (equa-
tion (25d)) and j(j— 1) (j—2)a; to Lj(j— 1)(j ~2)a; (equation
(25¢)) were less than a fixed value ““EPS”’ (in this example,
EPS=1e-17).

In Table 3 the values of the first column of the stiffness
matrix and the number of terms needed to obtain convergency
are presented as a function of the prefixed value EPS. No
significant differences in the CPU time were observed. It can
be seen that better accuracy is achieved in the first two rows in
the stiffness matrix, clearly because these require only coeffi-
cients a; and a, (equations (25a,b)), rather than a series as
given by equations (25¢,d), for the last two rows. The problem
is limited to the terms S;;, S34, and Sy, because of the sym-
metry of the stiffness matrix.

Taking-into account symmetry, the 16 series which are need-
ed to calculate the member stiffness matrix (4 for each C;, C},
S;i, and S,; in equations (21) (22), (25a), and (25b)) can be
reduced to 11 series, thus saving CPU time. The number of
terms which are needed to obtain convergency (the minimum
and maximum in the above mentioned 16 series), as a function
of EPS are also given in Table 3.

In general, then, just the upper part of the stiffness matrix
should be calculated, and eventually, a check program should
be incorporated for calculating the matrix by a change of axis,

928/ Vol. 53, DECEMBER 1986

although for the example shown, with EPS=1.e— 17, there is
no practical need for it.

Conclusions

The paper presents a stiffness formulation for the solution
of beams on variable Winkler foundation. The accuracy of the
solution is dependent only on our computer precision, i.e.,
better than 10 figures accuracy. The solution may be achieved
by using only a small number of elements, thus reducing also
the data preparation time. The procedure can be incorporated
into a standard beam analysis program. Big savings in com-
puter time are achieved, with even better accuracy.
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Circular Rod Constrained Within a
Circular Cylinder

An axially loaded weightless circular rod buckles helically when constrained within a
circular cylinder. The effects of pinned and fixed-end conditions are investigated.
Both end conditions locate the rod end on the cylinder axis, and are found to perturb
the helix in an exponentially decaying manner for a distance of less than one helix
pitch length. Far from the end, the rod behaves as an undisturbed constant-pitch
helix. The distance from the rod end to the point of initial contact with the cylinder
wall is calculated. Closed-form analytical solutions are obtained for the deflected

shapes and internal reactions of the end sections. The solution procedure applies to
rods of either finite or infinite length.

1.0 Introduction

An analysis by Lubinski et al. (1962) established the helical
post-buckled configuration of an axially loaded weightless cir-
cular rod constrained in a right circular cylinder, This analysis
addressed the post-buckled, torque-free, static rod benavior
away from the rod end and assumed frictionless constraint.
The relationship between the pitch of the helix, p, and the ax-
ial compressive force, W, was found to be

872El

|44
where ET is the rod bending stiffness. Analyses by Paslay and
Bogy (1964), Dawson and Paslay (1982), and Paslay and
Dawson (1982) considered the buckling problem using elastic
stability theory, and investigated the effect of rod weight on
buckling initiation and behavior.

With the exception of works by Lubinski (1950), Lubinski
and Woods (1953), and Woods and Lubinski (1955), which
considered planar buckling only, and an investigation by Mit-
chell (1982), previous buckling analyses have concentrated on
rod behavior remote from ends effects. The purpose of this
paper is to describe the effect of end conditions on the helical
post-buckled configuration of an axially loaded circular rod
constrained in a circular cylinder.

This problem has been of interest to the oil industry for
many years and applies to the buckling of drill pipe near the
drill bit and buckling of tubing at a packer. The post-buckling
equilibrium analyses which follow assume that the constant
diameter circular rod is weightless and static, and that
displacements are small. Contact between the rod and the
smooth cylinder wall is frictionless. The effects of torque and

2

(1.1)
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axial variation in the axial force are neglected. Results are
presented for both a pinned-end case and a fixed-end case.

2.0 Analysis of a Pinned-End Helically Buckled Rod

The deflected centerline of a helically buckled rod with a
pinned-end condition is shown schematically in Fig. 1. The
pinned-end condition positions the rod end on the cylinder
axis and allows axial translation and rotation about all three
axes. The effective radius, r, of the circular cylinder on which
the rod centerline lies is equal to the difference between the
radii of the constraining cylinder and the rod. The centerline
of the continuous circular rod is described by three sections:
an end section, a transition section, and a contact section. The
end section is that portion of the rod from the rod end to the
point of initial wall contact at 4. The transition section is an
intermediate portion of the rod which is not on the cylinder
wall and connects the end section at A to the contact section at
B. The contact section is on the right circular cylinder wall
everywhere along its length.

It is found that the force system which acts on the end sec-
tion is incompatible with the internal reactions of a rod
deformed into a simple helix. This suggests that the end sec-
tion connects to a perturbed helix with a variable helix angle.
Analysis of a helically buckled rod with a variable helix angle,
however, results in wall contact forces which act to pull, rather
than push, on the rod near the initial contact point at A. This
behavior further indicates that an intermediate transition sec-
tion, which does not contact the wall, is present as shown in
Fig. 1.

2.1 Analysis of the Contact Section. The governing dif-
ferential equations for a three-dimensionally buckled beam-
column subject to the assumptions specified above reduce to a
set of standard beam-column equations applied in the x—z
and y —z planes:
d*v;
dz*

>y
dzzj —4=0

EI +W 2.1
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where 0; describe the position of the rod centerline with j = 1
for the x direction and j = 2 for the y direction.

The distributed lateral forces ¢, and g, which act on the rod
are the x and y components of the wall contact force and are

G, =—Wwcos ¢ 2.2a)

and )
2.2b)

where W is the wall contact force per unit length acting radially
inward on the rod, and @ is the circumferential position of the
rod centerline measured from the x axis as shown in Fig. 1.

Incorporating equation (2.2), equation (2.1) can be rewrit-
ten in a nondimensional format as

g,=—wsin 6

v +v/+wcos =0 (2.3a)
vy” + v+ wsin 6=0, (2.3b)
where v; = &;/r is the nondimensional position of the rod

centerline in the x (j = 1) and y (j = 2) coordinate directions;
w = W/o?Wr is the nondimensional distributed wall contact
force; ¢ = «z is the nondimensional position along the z axis;
o = [W/ENY?; and a prime designates differentiation with
respect to the new independent variable ¢.

The equation for a curve lying on the surface of a circular
cylinder is written parametrically in the nondimensional for-

mat as
v, = cosf 2.4a)
v, =sinf (2.4b)
¢ =g 2.4c)

Substitution of these relations into equations (2.3) results in
two equations for 6(¢{):

9////+[1_6(0/)2]0”:O (2.5)

and
wH (8 —(0')2—46'0" —3(8")2=0 (2.6)

Equation (2.5) is the governing differential equation for
#(¢) in the contact section. Once 6(¢) is determined by solu-
tion of equation (2.5), equation (2.6) can be solved separately
for the wall contact force w({).

Note that it is not possible to linearize equation (2.5) by
neglecting the 6(6’)? term relative to unity. The solution for a
helically buckled rod away from the end gives values of 0.707
=<6’ =1.0 (Lubinski et al., 1962, and Cheatham and Pattillo,
1984), such that 3 =6(f’)> <6, which is clearly not small
relative to unity.

The internal reactions of the rod in the contact section are
expressed in terms of the rod deflections:

V,=—(v/" +v)), 2.7

and
]\lj = vj”, 2.8)
where V; = I7j/aWr is the nondimensional internal shear

force corresponding to the dimensional shear force V;; M; =
M;/Wr is the nondimensional internal bending moment cor-
responding to the dimensional bending moment M;; and j = 1
for the x-direction component, and j = 2 for the y-direction
component.

2.2 Analysis of the End and Transition Sections. Since
there is no distributed force acting on the end and transition
sections, w = 0 and the governing differential equations
become

2.9)
where u; = ii,;/r is the nondimensional position of the rod

centerline in the end (! = 1) and transition (i = 2) sections,
and j = 1 and 2 for the x and y directions as before.

i " __
ui+u;=0
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A - First contact point
B - Second contact point

4

A
B

Fig. 1 Pinned-end rod geometry and nomenclature

The general solution of equation (2.9) is
u;=a;+by {+cycos {+d;sin ¢

where ay, b, ¢;, and d;; are unknown constants.

(2.10)

2.3 Boundary Conditions. Boundary conditions at the rod
end are those for a pinned connection in the x—z and y—z
planes located on the cylinder axis:

u;(0)=0 2.11)

ui;(0)=0 2.12)

The boundary conditions at the first contact point, { = ¢,
= al, require the rod to contact the cylinder wall tangent to
the wall surface. Continuity of position, slope, curvature, and

tangential shear between the end and transition sections is also
required:

Uy (¢y)=cos 8, (2.13a)
U ($y)=sin 6, (2.13b)
ujy(¢;)= —0isin 6, (2.14a)
Uiy (¢) =0{cos 8, (2.14b)
Uy ;) =cos 6, (2.15a)
Uy (¢))=sin 6, (2.15b)
uy ($)=—0isin 0, (2.16a)
Uy (¢} =06{cos 9, (2.16b)
TACKEIZACH 2.17a)
upy (b)) =usnid) (2.17b)
uff (¢)sin 0, — uj; (¢;)cos 6,

(2.18)

=uzj ($1)sin 0, —uz; (é,)cos 6,
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where 6 and 6{ are constants; §; = 6(¢,),and 8/ = 0’ (¢,). A
discontinuous radial shear force is allowed since a concen-
trated radial contact force can occur.

The boundary conditions at the second contact point, { =
¢, = alL,, require that the rod contact the wall at a position of
6(¢,) = 0 and that there be a continuity of position, slope,
curvature, and tangential shear between the -transition and
contact sections:

Uy () =1 (2.19a)
Uy (92)=0 (2.19b)
uz () =0 (2.20a)
Up(py)="0; (2.20b)
u3 (¢,) = — (6;) (2.21a)
uz(p,) =07 (2.21b)
~(uzy +up)=(0;) ~0;-9; (2.22)

where 0;, 67, 0;"are unknown constants; 0, = 0’ (¢,), 6, =
0" (¢,), and ;" = 6" (¢,). The specification of 8(¢,) = 0 is
arbitrary since the rod is assumed weightless.

An additional boundary condition is necessary in the con-
tact section. The problem being solved is either that of a finite
length rod loaded axially at both ends, or that of a semi-
infinite rod. For the semi-infinite case it is required that the
pitch of the contact section be some constant value far from
the rod end; i.e., §” (e0) = 0. This requirement is also the
midlength condition for the finite length rod. The final bound-
ary condition is, therefore,

0" (¢;)=0 (2.23)

where {=¢, is the half-length of the finite length rod, or is in-
finity for the semi-infinite rod case.

2.4 Solution Method. The solution procedure is comprised
of two major parts: 1) solution of the set of simultaneous
nonlinear algebraic equations resulting from application of
the boundary conditions for the end and transition sections at
¢=0,¢= ¢, and { = ¢,; and 2) solution of the nonlinear
fourth-order differential equation of the contact section such
that 6” (¢,) = 0. The first part is accomplished by assuming a
value for ¢, and using the first 22 boundary conditions, equa-
tions (2.11)-(2.22) to solve for the remaining 22 unknowns.
This calculation generates values for 85, 8, and 8," for a given
value of ¢,. These are then used in the second part of the solu-
tion as initial values, along with 8(¢,) = 0, for the numerical
integration of the nonlinear equation (2.5). Integration is con-
tinued along { to { = ¢,, and the results are checked to deter-
mine if 8” (¢,) = 0. ¢, is adjusted until 8” (¢,) = 0 is
satisfied. The overall approach is, therefore, a shooting
method for the solution of the nonlinear boundary value pro-
blem on # in the contact section. The adjustment of ¢, is per-
formed using an interval halving procedure.

Treating ¢, as known, applications of equations (2.11)
and (2.12) shows that

a;=c;=0 (2.24)
forj = 1, 2.
Equations (2.13) and (2.14) give
by = —Cos 0{cos ¢, —0{sin 6,sin ¢, 2.250)
sin ¢; — ¢,cos ¢,
—sin 6 +8/cos 6;si
by, = sin 1'cos o 1co§ 18in @, 2.25b)
sin ¢, —$cos P,
_ cos 6, +¢,0{sin 8, @ 2611)

17 in ¢, — COS ¢,
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_sin ¢, —¢,6{cos 0,

27 sin ¢, — ¢, cos ¢, (2.260)
Equations (2.16) through (2.23) require that
ay + by +¢yc08 ¢y +dy sin ¢y —cos 8, =0 (2.27a)
Ay + by + 55008 ¢y +dyysin ¢, —sin §, =0 (2.27b)
by — Cyy8in ¢ +dy cos ¢y +0{sin §, =0 (2.27¢)
byy —Cyp8in ¢ +dyycos ¢ —f{cos 0, =0 (2.27d)
(cos 0, — ¢,0;sin 0’)sin ¢,ST¢¢:LOS o
—C5,C08 ¢y —dy8in ¢, =0 (2.27¢)
(sin 6, ~ $,{cos 0,)— qslsfl(::‘cos .
—C5,CO8 ¢ —dypsin ¢ =0 .27
, sin ¢,
'sin ¢y — 005 ¢,

+ byysinf; — byycos 0, =0 (2.27g)
ay; + by gy + €y COS Py +dysin ¢, —1=0 (2.27h)
Ay + by s + 9508 ¢y +dpsin ¢y =0 (2.27i)

by —cyy8in ¢, +d, c0s ¢, =0 (2.27j)
by — Cypsin ¢y +dpycos ¢y — 0, =0 (2.27k)
€51COS ¢y +dy;8in ¢y — (85)2 =0 (2.271)
05+ C5,¢08 ¢y + dyysin ¢, =0 (2.27m)
by +(05)3—05-0=0 (2.27n)

Solution for the unknowns of equation (2.27) requires
simultaneous solution of the set of 14 nonlinear algebraic
equations. This is accomplished numerically using the
Modified Quasilinearization Algorithm (MQA) (Miele and
Iyer, 1971).

Integration of equation (2.5), once the values of 8, 65, and
05 are determined from the solution of equations (2.27), is
performed numerically using a fixed-step fourth-order Runge-
Kutta integration procedure.

3.0 Analysis of a Fixed-End Helically Buckled Rod

The fixed-end analysis is identical to that for the pinned-end
case except that the boundary conditions at the rod end are
modified to require the rod end to be tangent to the cylinder
axis.

Boundary conditions at the rod end are those for a built-in
end in the x—z and y—z planes located on the cylinder axis:

(0)=0 3.1)
u};(0)=0 (3.2)

All other boundary conditions, equations (2.13)-(2.23), re-
main the same as for the pinned-end case.

The problem solution procedure of Section 2.4 is also used
for the fixed-end case.

Equations (3.1), (3.2), (2.13), and (2.14) require that

cos #,(1 —cos ¢,)+0{sin 8,(¢, —sin ¢ )

. 3.3
1 . 2—2cos ¢; —¢;sin ¢, 0
p,, = 0isin 011 —cos ¢,)—sin ¢,cos 6, (3.3b)
2—2 cos ¢; —¢;sin ¢,
Cn=—4an ©-3¢)
dyy=—by (-3
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sin @,(1 —cos ¢,) —6/cos 0,(¢, —sin ¢,)

f2= 22 cos ¢, — ¢ sin ¢, 3.40)
R T e .0)
Clp=—dyy (3.4¢)
dip=—by,. (3.4d)
Equations (2.15)-(2.21a) require

@y + by + 008 ¢y +dysin ¢y —cos 0, =0 (3.5a)
Ay + byyp| +CpCOS ¢y +dp,sin ¢ —sin 6, =0 (3.5b)
by —cyy8in ¢ +d,icos ¢y +0isin §, =0 (3.5¢)
bay — C5p8in ¢ +d,yc08 ¢y —8{cos §; =0 (3.5d)

€508 ¢, +dy sin ¢,
[cos 0,(1~cos ¢,)+8;sin 8,(sin ¢, —¢p,cos d),)] —0
2—2c08 ¢, —,5in ¢, -

(3.5¢e)
€5,C08 ¢ +dp,sin ¢,
_ [sin ¢, (1 —cos ¢)—0{cos §,(sin ¢, —¢p,cos ¢;) _0
2—2cos ¢, —¢;Sin ¢,
3.5H

— (Cyy8in 8 —cypc0s 8y)sin ¢, + (dy;sin 8, — dyycos 6,)cos ¢,
(1 —cos ¢, —¢;sin ¢;)

+oi (2—2cos ¢, —d,sin ¢,) N 3.5¢)

ayy + by gy +Cyy€08 Py +dyysin ¢, —1=0 (3.5h)
Qyy + Dyypy + 5,08 Py +dyysin ¢y =0 (3.50)
by —cy8in ¢, +d,cos ¢, =0 (3.5))
by, — Ccyp8in ¢, +dyyc08 ¢y — 05 =0 (3.5k)
€21COS ¢y +dyysin ¢, — 0, 2=0. (3.50)

Equations (2.21b) and (2.22) are used to solve directly for
6, and 65"

0= —Cy,c08 ¢, —dpsin ¢, (3.6a)
03" = by +(63)° — 03 (3.60)

Solution for the 12 unknowns of equation (3.5) and integra-
tion of equation (2.5) were accomplished with the same tech-
niques as described in Section 2.4,

4.0 Results

Figures 2 through 5 present the key results of both the
pinned-end and fixed-end analyses. The geometry of the
buckled rod is shown in Fig. 2. For the pinned-end case, initial
wall contact occurs at {=¢, = 2.46867, and a second contact
point occurs at {=¢, = 4.38105. The pinned-end rod is in
contact with the cylinder wall everywhere along its length for
¢=4.38105. For the fixed-end case, the initial wall contact oc-
curs at {=¢; = 3.81729, and a second contact point occurs at

{=¢, = 5.24273. The fixed-end rod is in contact with the -

cylinder wall everywhere for {=15.24273. The deflected shape
of the end section for the pinned-end rod is planar.

In Fig. 2a, the radial position of the rod in the transition
section for both the pinned and fixed cases appears to be on
the wall. The numerical results (Sorenson, 1984) show that the

transition sections are actually off the wall by a very small

amount. The maximum clearance for the pinned-end case is
approximately 0.002 r and for the fixed-end case is 0.0005 r.

932/ Vol. 53, DECEMBER 1986

Figures 2 and 3 show that away from the rod end, the rod is
buckled into a constant pitch helical configuration with 6’ =
1/¥Z=0.70711. This is the result obtained by Lubinski et al.
(1962) for a helically buckled rod away from any end effects.
It is interesting to note that while the present analysis does
force the contact section solution to a constant value of 8’ by
requiring that 8” (¢,) =0, it does not force the solution to any
particular value of . The fact that the solution converges to
the value predicted by Lubinski provides corroboration of
these results.

The contact section of the rod can be described by two
subsections: a perturbed helix section and a helical section.
The perturbed helix section is defined as that portion of the
rod from the second contact point at {=¢, to the point {=¢,,
defined such that 8 (¢,) = 0.999/v2 where the choice of the
factor 0.999 is arbitrary. The helical section is defined as the
portion of the rod at {=¢,. Using these definitions, the total
nonhelical length of rod from the rod end to the beginning of
the helical section can be expressed as a fraction of the helix
pitch, p, by (¢,/0D) pipned = 0.760; ($5/P) rixea = 0.877.

As shown in Fig. 4, the pinned-end maximum bending mo-
ment occurs in the end section at { (Mpay pinned) = T/2 =
1.57080 and is My pinnes = 0-59727, which is 19.5 percent
greater than the bending moment in the helical portion of the
rod. The maximum bending moment in the fixed-end rod also
occurs in the end section, at {( My fixea) = 2.99229, and is
M oxixea = 0.50491, which is only 1 percent greater than in
the helical portion. The bending moment at the fixed rod end
equals that of the helical portion.

The maximum shear force occurs in the helical portion of
the rod and is V,, = 0.35355 for both the pinned-end and
fixed-end cases.

The wall contact force is shown in Fig. 5. The pinned-end
contact force is w(¢;)pinnea = 0.14672 at the beginning of the
contact section. The fixed-end force starts at w(d,)nweq =
0.12050. For both cases, the contact force increases along the
length until it reaches a maximum value of w,, = 0.25 in the
helical portion.

The pinned-end radial force acting at the rod end is
FO)pinnea = 0.32670, where F' = F/aWr is the nondimen-
sional force corresponding to the dimensional force F. Con-
centrated radial contact forces associated with the radial shear
discontinuities at the first and second contact points are
F(¢1)pinnea = 0.61028, and F(¢,) inmea = 0.04726. The fixed-
end rod has an end force and moment of #(0)g,.q = 0.19187,
and M(0)geq = 0.50000, and concentrated radial contact
forces of F (¢ )sixea = 0.38202, and F(¢y)gxeq = 0.02557.

The analysis of Sections 2 and 3 was formulated to produce
closed-form solutions for the deflected shapes of the end and
transition sections for both the pinned-end and fixed-end
cases. The rod geometry is described by

Uy =ay;+ by +c;cos {+dysin ¢ (2.10)

The internal rod reactions are
— nr _
and
— ”o_ 3
M =uj= —c;cos {~dsin §.

Parameter values for the pinned-end problem are:

ay= 0 ap= 0

b= 0.22147 b, = —0.24017
ep= "0 cp= 0

d;, =-0.26884 d; = —0.53335
ay = 0.57127 axy = —1.39407
b,y = —0.00994 by= 0.32454
Cy = —0.14423 ¢y = 0.35197
d, = —0.44980 dy, = —0.09174
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1.2 T T T T T T T

1.0 F Pinned - o

Contact points e Pinned

O Fixed
)1/2

a=(W/EI
Fig. 2 Rod displacement results in R-~¢ Coordinates: (g) Rod
centerline dimensionless deflection from hole centerline, R = R/r, ver-
sus dimensionless distance from rod end, = «z; (b) Rod centerline
anguiar deflection from x axis, ¢ (radians) versus distance from rod end,
{=ax

Parameter values for the fixed-end problem are:

ay, = —0.12662 ay, = —0.48370
L= 0.19104 b= 0.01782
cy= 0.12662 cp,= 0.48370
= —0.19104 dip=—0.01782
ay = 0.78238 ay = — 1.62402
by = —0.04708 by = 0.31654
cy= 0.27556 = 0.29687
dy, = ~0.37685 dp= 021527

Summary

The effect of pinned and fixed-end conditions on the post-
buckling behavior of a circular rod constrained within a cir-
cular cylinder has been investigated subject to certain idealiza-
tions. The rod is found to buckle into a helical configuration
far from the end, with the helix pitch given by Lubinski et al.
(1962). Both end conditions are found to perturb the helix
near the rod end in an exponentially decaying manner for a
distance of less than one helix pitch length. The pinned-end
condition is more severe than the fixed-end condition. The
maximum bending moment increases by 19.5 percent due to
end effects for the pinned-end condition, and increases by less
than 1 percent for the fixed-end condition.
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Fig. 3 Local helix angie results: rate of change of angular deflection,
0’ =vy/ar versus distance from rod end, { = oz, where tan y =2xr/p
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Fig. 4 Bending moment results: dimensionless bending moment,
M = M/Wr versus dimensionless distance from rod end, {= oz

Pinned !

Fig. 5 Wall contact force results: dimensionless contact force,
w = wia? Wr versus dimensioniess distance from rod end, {=az
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Comparison of the pinned and fixed-end results shows that
the general behavior is very similar for the two cases. Both can
be described by an end section, a transition section, and a con-
tact section. Both have the same helix pitch far from the rod
end. The rod first contacts the wall farther from the rod end
for the fixed-end case, and the transition section is shorter.
The distance from the rod end to the beginning of the helical
section is longer for the fixed-end case than for the pinned-end
case. The magnitudes of the concentrated contact forces for
the fixed-end case are approximately 60 percent of those for
the pinned-end case. The maximum bending moment occurs in
the end section for both cases. The maximum shear force and
maximum wall contact force occur in the helical section and
are the same for both cases. Closed-form analytical solutions
are obtained for the deflected shape of the end portions of the
rod.
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study, we built and used an annular shear cell test apparatus. In this apparatus the
dry metal powders are rapidly sheared by rotating one of the shear surfaces while the
other shear surface remains fixed. The shear stress and normal stress on the sta-
tionary surface were measured as a function of three parameters: the shear-cell gap

thickness, the shear-rate and the fractional solids content. Stresses are measured
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while holding both the fractional-solids content and the gap thickness at prescribed
values. The results show the dependence of the normal stress and the shear stress on
the shear-rate. Likewise, a significant stress dependence on both the fractional solids
content and the shear-cell gap thickness was observed. Our experimental results are

compared with the results of other reported experimental studies.

I Introduction

Traditionally, a granular material is defined as an assembly
of discrete solid components, When these solid constituents
are in static equilibrium, substantial contact with their near
neighbors occurs. We examine the flow of such a granular
material. In these flows the individual particle motions
dominate the dynamics of motion. The material’s behavior is
governed by interparticle cohesion, friction, and particle colli-
sions. In general, the motion and flow of the individual beads
are very complex.

Granular materials form one member of the class of
materials known as dispersed two-phase systems. These
systems consist of solid and fluid components. An example of
one such system is dilute suspension. Granular flows are en-
countered in industrial situations in the following two ex-
amples: mineral and powder processing in both chemical and
pharmaceutical industries, and the storage, handling and
transport of particulate materials. Granular material flow also
occurs in the environment. Two additional related examples
are rock slides and debris flows. Likewise, some analogous
flows are snow avalances, mud slides, and subaqueous sedi-
ment flow. These latter examples have close affinities with the
motion of granular materials. An understanding of the
mechanics of granular material flow is essential for the
understanding and solution of a wide range of technological
and scientific problems.

The motivation for this study arose from the process of
xerography. In this process a dry powder image is formed
upon a xerographic plate by optical and electrostatic
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mechanisms. Toner, a dry, thermoplastic powder, is used and
the powder image is then transferred to a sheet of ordinary
paper. This process relies upon the use of both a magnetic
field and the use of flow of metal powders to transport the
thermoplastic powder. The results reported here are for the
rapid flow of carbon steel beads without a magnetic field. The
results we obtain for the flow of other metal powders and car-
bon steel beads with a magnetic field are to be reported in
another publication.

The understanding of granular flow situations has evolved
over time. Early experimental investigation of granular
material by Reynolds (1885) shows that a closely-packed
assemblage of solid particles tends to expand when deformed.
Later, Hvorslev (1936, 1939) developed the first annular shear
cell to consider the behavior of soils. Subsequent to his study,
other studies were performed at low strain-rates. Bulk solids
are then experimentally considered by: Novosad (1964); Carr
and Walker (1968); Scarlett and Todd (1968, 1969); Scarlett et
al. (1969, 1970); Mandl et al. (1977); and Stephens and
Bridgwater (1978). However, very low rates-of-deformation
are used in the above mentioned studies. Consequently, the
measured stresses are found to be independent of the shear-
rate. However, experiments to test dry, coarse, granular
materials at high shear-rates are then developed by Novosad
(1964), Bridgwater (1972), Savage and Sayed (1984), and by
Hanes and Inman (1985). All of the latter experiments use
the annular, shear-cell test apparatus. Novosad (1964) is the
first to study departure from quasistatic deformation. He does
not observe that the measured stresses depend on shear-rate.
In another study, Bridgwater (1972) develops an annular shear
cell to operate at shear-rates that are larger than the ones
reported by Novosad. Savage and Sayed also developed a
shear-cell test apparatus to operate at high shear-rate; they
configured their test apparatus to allow a prescribed, frac-
tional solids content. Similar tests are reported by Hanes and
Inman. In a theoretical study, a computer simulation of two-
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dimensional granular flow is presented by Campbell and Bren-
nen (1985). Their two-dimensional results can be extended to
three-dimensional shear-flow experiments by using ap-
propriate scale factors. Surveys of granular flows are made by
Spencer (1981), by Mroz (1980), and by Savage (1985).

One of the central issues related to the prediction of
granular material flow is characterization of its material
properties. One view, the one adopted in this paper, is a con-
tinuum approach. Another angle of vision could consider the
dynamics of the individual particles. The continuum
mechanics point-of-view to describe the granular flow involves
determining an appropriate constitutive equation. Therefore,
we focus on the issue of stress as a function of shear-rate. The
purpose of this experiment is to study the stresses associated
with the shearing motion of metal powders. The results ob-
tained can guide the theoretical development of constitutive
equations for metal powders. Stress measurements are obtain-
ed that are analogous to the type obtained in rheological tests
of beth viscous fluids and solid suspensions.

It is essential to control as many of the independent
parameters as possible. One of these independent parameters,
the fractional solids content, is maintained at a prescribed
constant value for a range of experimental conditions. The
average stresses are then measured as functions of shear-rate.
The importance of holding the fractional solids content fixed
is first pointed out by Savage (1978). Fractional solids content
changes because volumetric expansion occurs during the
shearing of dry granular materials. Therefore, it is necessary
that special care be taken in the design of the shear cell test ap-
paratus. The experimental apparatus used here is designed
such that the fractional solids content can be controlled. The
first flow data obtained under conditions of fixed fractional
solids content for high density metal powders are given.

II Description of Experimental Apparatus

The apparatus, as shown in Fig. 1, has two concentric
horizontal aluminum disks that are mounted on a rotating ver-
tical stainless steel shaft. The bottom -disk has an annular
channel 19.05 mm wide. This channel is 19.05 mm deep at a
mean radius of 68.26 mm. The granular material to be tested is
contained in this annular channel. The top disk has an annular
protrusion that fits into the channel of the bottom disk. The
top disk must be free to rotate in order to measure the torque
caused by the shearing action of the granular material. It must
also be free to translate in the vertical direction, so as to allow
for expansion or contraction of the granular material under
shear. The translation of the upper shear surface is ac-
complished by using a linear, ball-bearing mounting. The re-
quired tolerances are met and the apparatus performs excep-
tionally well. The annular protrusion of the top disk does not
contact the side walls of the bottom disk channel. The
clearance between these two surfaces is approximately 50
microns., A small ¢learance is needed to prevent the jamming
of the granular material being sheared. The top disk is kept
from rotating by a torque arm that is connected to a force
transducer. The rotation rate of the bottom disk is determined
by using an optical tachometer. The displacement of the top
disk relative to the bottom disk is measured by using a dial in-
dicator. Thus, the fractional solids content can be determined.
The side walls of the annular channel are hard-coated both for
abrasion resistance and reduced friction. The top and bottom

horizontal surfaces of the annular channel are the shear ~

transmission surfaces. The top surface is stationary, and the
bottom one is rotated about the vertical axis. Thus, a nearly
simple shearing type flow of metal beads is expected to occur
in the annular channel. The beads are driven into motion by
contact with the moving surface.

Both the moving and stationary surfaces are coated with the

carbon steel beads being tested. Spherical particles of the
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Fig. 1 Sketch of the shear flow test apparatus

material tested are bonded onto two, thin-aluminum annular
rings. A high temperature epoxy is used to attach a dense
monolayer of beads to the annular aluminum rings. These
aluminum rings are then secured to the top and bottom of the
annular channel by very thin, high-shear-strength, double-
sided adhesive tape. The rings can be replaced as different
materials are tested. During the testing no particles were
observed to be dislodged from the shear transmission surfaces.
Nor did the rings slip during the tests. Particle jamming in the
gap between the side walls of the annular channel and the up-
per shear transmission surface was avoided. A recess is cut in-
to the top disk so that approximately a half particle diameter
layer can protrude from the top disk. Forces are applied to the
top disk by using a system of weights and counterweights. This
system is used to change the applied normal stresses.

HI Metal Powders Tested and Testing Procedure

oo ~F i

Several different types of materials and bead sizes are being
tested. This study reports the results for carbon-steel 1018
spherical beads. The carbon-steel, bead diameter range tested
is 0.85 mm to 0.71 mm, and the bead density is 7.86 gm/cm?.

The experimental apparatus is designed to study the normal
and shear stresses as a function of shear-rate. Prescribed
values of both the fractional solids content and shear-cell gap
thickness are used. The fractional solids content is measured
using the method described below. The top disk is fixed into
position and the vertical displacement reading, without
powder in the annular channel, is used as a reference. Then,
the carbon-steel particles are placed into the annular channel
of the bottom disk. The top disk is then placed back into its
position. A prescribed normal load is applied to the metal
powder. The bottom disk is then placed into rotation. This
bottom-disk rotation causes the granular material to expand
so as to lift the top disk. The rotation rate is increased until a
desired fractional solids content is achieved. The fractional
solids content is determined from the total mass of the beads
in the annular channel, the density of the beads, and the
volume of the annular shear region. The latter is calculated
after determining the relative positions of the top and bottom
disks from the vertical displacement reading. We measure the
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Fig. 2(a) Dimensional plot of average normal stress versus average
shear rate for carbon steel beads; (h/d) g, =7.38

normal stress, the shear stress, and rotation rate, corre-
sponding to this particular value of the fractional solids con-
tent. The maximum normal stress applied is 5535 N/m? (0.802
psi). Higher normal stresses can be obtained, but this would
cause greater wear on the test apparatus, The minimum nor-
mal stress applied is 1725 N/m? (0.250 psi). Rotation rates
possible for the apparatus are 0-375 RPM. The depth of the
powder in the annular channel is controlled so as to study the
effect of different shear-cell gap thicknesses.

IV Measurement of Average Stresses, Shear-Rates and
Fractional Solids Content

The average shear-rate is determined by dividing the veloci-
ty of the lower disk, at the mean radius of the annular chan-
nel, by the height of the shear cell gap % (i.e., the distance be-
tween the top and bottom disks):

12 N( 27r)(R,-+Rg> )
h 60 /\ 2 . M
In the above expression, N is the rotation rate of the bottom
disk (RPM), and R, and R, are the inner and outer radii of the
annular channel. This shear-rate calculation assumes a no-slip
velocity boundary condition on both the top and bottom shear
surfaces of the test apparatus. Because of gravitational and
rotational effects in the shear-cell, the fractional solids content
may be nonuniformly distributed in both the radial and axial
directions. For example, the value of the fractional solids con-
tent can be larger at the lower-outside radius. Likewise, it can
be smallest at the upper-inside radius of the annular channel.

The average normal stress applied to the top of the granular
material is o=w/w(R2— R?). The applied weight is W. The
torque, T, is a result of the shear stresses developed on the up-
per disk. The torque is calculated from the measured force;
this force is multiplied by the radius of the torque arm. The
torque is related to the local value of the shear stress 7 at the
upper surface by:

RO
T= SR,- rr(2nr)dr - @

If we assumne 7 is uniform and independent of r, then:
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Fig. 2(b) Dimensional plot of average shear stress versus average
shear-rate for carbon-steel beads; (h/d),,g =7.38
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Fig. 2(c) Dimensional piot of stress ratio versus average shear-rate for
carbon-steel beads; (h/d)avg. =7.38

RO
T= TSRi 2xridr (3a)
and :
L3 T o
2 w(R}-R})

The increase in the shear surface speed at an increasing radius
will cause the shear stresses on the upper transmission surface
to increase with the radius. Therefore, the effective shear force
on the upper transmission surface is located at a radius larger
than the mean radius of the annular channel. This is because
of the nonuniform; shear stress distribution. The largest possi-
ble variation will occur for an extreme case, when the shear
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Iable 1 (A, B) Values of the power-law exponents M and P are given for a range of the
fractional solids content and the shear-cell gap thickness-to-bead diameter ratio: Table 1A
shows the values for the exponent M, Table 1B shows the values for the exponent P

Table 1A
h
-————-) 3.70 5.54 7.38 9.23 11.07 12.90
d / AVG. :
0.559-0.561 L.93 2.02 2.04 2.13 2.24 2.40
0.549-0.551 1.90 1.99 2.02 2.08 2.13 2.20
v 0.539-0.541 1.85 1.96 2.01 2.01 2.06 2.11
0.530-0.532 1.83 1.94 2.03 2.01 2.02 2.11
0.521-0.523 1.85 1.98 2.00 1.94 2.04 2.06
Table 1B
h
(—) 3.70 5.54 7.38 9.23 11.07 12.90
d / AVG.
0.559~0.561 1.78 1.92 1.95 2.13 2.23 2.49
0.549-0.551 1.75 1.90 1.94 2.10 2.12 2.29
2 0.539-0.541 1.71 1.86 1.92 2.03 2.07 2.24
0.530~-0.532 1.69 1.86 1.93 2.01 2.05 2.21
0.521-0.523 1.71 1.89 1.89 1.98 2.07 2.14

stress is concentrated at the outer radius. The ratio of the ex-
treme to the average shear stress is calculated. The average
stress for the extreme case is roughly 12.2 percent lower than
the average stress obtained by neglecting this rotational effect.
Rotational effects for the test apparatus are thus small. They
tend to reduce the average shear stress (i.e., when the shear
stress is assumed uniform) by only a few percent. Therefore,
no rotational effect corrections are applied to the data
reported in this paper.

V Experimental Results and Discussion

Experiments are conducted to measure both the normal and
shear stresses averaged over one of the drive surfaces. These
stresses are functions of: the shear-rate, the fractional solids
content, and the shear-cell gap thickness. The stresses and
shear-rate results are presented in their dimensional form;
stresses are given in Newtons/meter?, and shear-rate is given
in sec™!. The shear-cell gap thickness is normalized by the
average bead diameter. The fractional solids content is dimen-
sionless by definition.

Six experiments for different shear-cell gap thicknesses were
done. This was accomplished by using amounts of granular
material from 100g to 350g. The average values of the gap
thicknesses are 3.70, 5.54, 7.38, 9.23, 11.07, and 12.90 bead
diameters. The fractional solids content varies from 0.561 to
0.521. At values of »=0.561 (i.e., low shear-rates) changing
the normal load at a fixed rotation rate had only a small effect
on the shear-cell gap thickness. Values of »<0.521 were not
tested because of the test apparatus limitations.

First, data is presented in dimensional form for the rapid
shearing of 200 grams of carbon steel beads. A shear-cell gap
thickness range of 7.12<h/d <7.64 was used. Figures (2a, b,
¢) show the normal stress, shear stress and stress ratio as a
function of the average shear-rate. The results are
parameterized by the fractional solids content. We make the
following observations regarding Figs. 2(a), 2(b), 2(c).

The fractional solids content tends to decrease with increas-
ing shear-surface speed for a fixed value of the normal stress.
This occurs because more momentum is imparted to the upper
surface by the bead collisions. Consequently, the upper sur-
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face tends to move upward. This displacement of the upper
surface decreases the fractional solids content.

For the range of » tested and at fixed value of the shear-rate
there is a strong increase in stresses with only small increases in
fractional solids content. As the fractional solids content in-
creases, multiple collisions and sliding friction between par-
ticles play an increasingly significant role in stress generation.

At a constant fractional solids content, the stresses vary as
the shear-rate raised to a power. This power law behavior be-
tween stress and average shear-rate is paraphrased in Table 1.
In this table, M is the power for the shear stress 7,

VM
T=a(—h ) (4a)
and P is the power for the normal stress o,
VNP
o 7 4b)

Shear-rate powers for both the normal and shear stress are
near a value of two. A simple physical argument for this
square shear-rate dependence is given (Bagnold, 1954), The
stresses in a rapid granular shear flow are developed as a result
of glancing particle collisions when particles in one layer over-
take those of an adjacent slower layer. Both the change in
momentum during a single collision and the rate at which col-
lisions occur are proportional to the relative velocity of the
two layers. Thus, it is not surprising that the stresses are pro-
portional to the square of the shear-rate. Savage and Sayed
(1984) point out that departures from this square shear-rate
dependence may result from the effects of enduring contacts
beween particles, interparticle surface friction, interparticle
locking, formation of rigid zones, gravitational effects and
finite particle size effects.

The stress ratio, K, is shown to be weakly dependent upon
shear-rate for-a constant value of the fractional solids content.
This weak shear-rate dependence does vary with the depth of
the granular material tested. The stress ratio increases with in-
creasing shear rate when the gap thickness to bead diameter
ratio is equal to 3.70, 5.54, and 7.38. When the gap thickness
to bead diameter is 9.13 and 11.03 the stress ratio is shown to
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Fig. 3(a) Nondimensional normal stress as a function of unscaled frac-

tional solids content

be independent of the shear rate. Finally, when
(h/d) pyg. = 12.90 the stress ratio was found to decrease with
increasing shear rate. A physical explanation for this relation-
ship between stress ratio and shear-rate is not evident.

For a prescribed amount of test material and prescribed
shear-rate, the stress ratio increases slightly with decreasing
values of the fractional solids content. This behavior is op-
posite to that usually observed in quasi-static granular
material testing at high stresses. Savage and Sayed (1984) and
Campbell and Brennen (1985b) give a physical explanation for
the increase in K as » decreases in continuous fully-developed
shear flow experiments.

The dependence of the stresses upon fractional solids con-
tent and shear-cell gap thickness is shown in Figs. 3(@), 3(b).
The stresses have been nondimensionalized using the scaling
p,d? (V/h)* where p,, is the mass density of the individual par-
ticles. Each data point represents the average of 5 to 8 ex-
perimental tests. The stresses are shown to be strongly depen-
dent on ». This dependence increases with shear-cell gap
thickness. At a constant value of », the stresses are also shown
to increase with increasing shear-cell gap thickness. This
observation is contrary to both intuition and the observations
of Savage and Sayed (1984). We offer the following explana-
tions. At the conclusion of each test the bottom disk was
gradually stopped and the gap thickness recorded. For a con-
stant amount of test material, this gap thickness never varied
more than +0.0005 in. for the entire range of fractional solids
content. Table 2 shows the values of the corresponding frac-
tional solids content, »,. The precise value of ». should only
depend on the bead characteristics. The differences are due to
the effect of a finite-sized apparatus, The larger the shear-cell
gap thickness, the greater the effect of the side walls on the
flow field and the larger the reduction in the value of »,. We
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Table 2 Values of the post-test fractional solids content, »_,
are given for the six different ranges of h/d tested

Mass Tested Test Range Post-Test
(Grams) of h/d Value of h/d Ve
100 3.57-3.83 3.06 0.652
150 5.34-5.73 4.80 0.623
200 7.12-7.64 6.51 0.612
250 8.91-9.23 8.26 0.603
300 10.68-11.07 9.95 0.601
350 12.44-12.90 11.65 0.599

propose that results obtained from testing different amounts
of the same material in the same apparatus cannot be directly
compared. To compare this data the fractional solids content
is scaled as follows:

®)

In this scaling the », is the measured post-test fractional solids
content for a prescribed amount of test material and v, is the
value », would have without side-wall effects. We assume »,,
to be approximately 0.66. A similar scaling procedure based
on the maximum attainable value of » was used by Hanes and
Inman (1985). The data shown in Figs. 3(a), 3(b) is now replot-
ted as shown in Figs. 4(a), 4(b). The abscissa is now the scaled
fractional solids content. The stresses are now shown to in-
crease with increasing fractional solids content as expected.
Figure 3(c) shows the stress-ratio as a function of the un-
scaled fractional solids content with the shear-cell gap
thickness as the parameter. For a prescribed amount of test
material, the stress ratio increases slightly as the fractional
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solids content decreases. However when the stress ratio is plot-
ted as a function of the scaled fractional solids content, as
done in Fig. 4(c), the stress ratio is still seen to increase with in-
creasing shear-cell gap thickness at a prescribed value of »’.
As the shear-cell gap thickness is increased, the influence of

the side walls on the material behavior is increased. The effect

of the apparatus side walls on the measured fractional solids
content has been approximately accounted for by scaling the
measured fractional solids content. The side walls also affect
the measured normal and shear stresses. Data has not been
rescaled to include this latter effect. The side walls are hard-
coated for increased hardness and lubricity; the particles in
contact with the side walls have a larger velocity than particles
which are near the walls. This is especially true at the outer
wall where centrifugal forces on the particles cause increased
particle-wall friction. The effect of the side wall velocity is to
increase the measured normal and shear stresses on the top
surface. This effect on the shear stress is larger than on the
normal stress. This accounts for the increasing stress ratio
with increasing shear-cell gap thickness at a prescribed value
of the scaled fractional solids content.

Direct visual observation of the granular material during
testing was not possible. Therefore, it is quite possible that as
the shear-cell gap thickness increased (i.e., as more material
was being tested), an internal boundary, separating a shearing
region from a rigid region, is developed. This was directly
observed by Hanes and Inman (1985). They deduce this
phenomenon to be the result of both a momentum conserva-
tion in a gravity field and a Coulomb-type yield criterion.
Hanes and Inman (1985) found that the stress ratios for the
fully shearing experiments were significantly higher than those
resulting from the partially shearing flows. A significant
decrease in stress ratio with increasing shear-cell gap thickness
was not observed in the present tests; on the contrary, the
stress ratio continued to increase. This lends support to the
assumption that all experiments reported here involved fully
shearing conditions. However, there still remains some
question regarding the side-wall effects and the remarkable
dependence of stress ratio on shear-rate as the shear-cell gap
thickness varies.

Figures 5(a), 5(b) show comparisons of the nondimensional
stresses and stress ratio. Results presented here are compared
to those of Savage and Sayed and of Hanes and Inman. Both
of the stresses and the stress ratio are shown as a function of
unscaled fractional solids content. Savage and Sayed (1984)
tested 1.80 mm diameter glass spheres. They used a shear cell
with an annular channel 21 beads wide at a mean radius of
12.7 cm. The shear-cell gap thickness for these tests was be-
tween 5.90 to 6.45 beads. They used sandpaper for the shear
transmission surfaces. Hanes and Inman (1985) tested 1.85
mm diameter glass spheres in a shear cell with an annular
channel 24 beads wide at mean radius of 12.4 cm. The shear-
cell gap thickness for these tests was approximately 7 beads.
The shear transmission surfaces were of the same material be-
ing tested, prepared in a manner similar to that of the present
tests. The annular channel in the present tests is 25 beads wide
at a mean radius of 6.83 cm. The data plotted in Figs. 5(a),
5(b) from the present tests is for a shear-cell gap thickness
range 7.12 to 7.64 beads. In all these tests it is certain that
shearing is occurring over the full depth of the test material.
The stress levels in the experiments of Hanes and Inman (1985)
are greater than the stress levels in the experiments of Savage
and Sayed (1984), at equivalent concentrations. Hanes and In-
man believe the differences are the result of the following: (a)
The materials used for the shear transmission surfaces may act
as sources or sinks of energy. The rigid bead boundaries of
Hanes and Inman may have been more of an energy source
than the sandpaper boundaries of Savage and Sayed. (b) The
frictional nature (i.e., smooth or rough) of the test particles.
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Fig. 5(a) Comparison of nondimensional stresses measured by Savage
and Sayed (1984) and Hanes and Inman (1985) with present results. Frac-
tional solids content is unscaled.
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Fig. 5(b) Comparison of the ratio of shear stress to normal stress
measured by Savage and Sayed (1984) and Hanes and inman (1985) with
present results. Fractional solids content is unscaied.

Recent microstructural theories for rapid granular flow show
that the shearing of rough particles generates lower stresses
than a similar shearing of smooth particles. The test particles
used by Savage and Sayed are believed to have been roughened
by the sandpaper shear-transmission surfaces.

In addition to the effects of the finite-sized test apparatus,
the differences between the boundary material properties and
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the test material properties will contribute to differences in
stress measurements between this paper and other published
data.

VYI Conclusion

The results presented in this paper show that the stress
generated in a rapid shear flow of purely granular carbon-steel
beads has a nearly quadratic dependence on the shear-rate.
The stresses depend upon the fractional solids content. They
increase with increasing values of the fractional solids content,
when the shear rate is prescribed.

The general trends observed here are consistent with the
results reported by both Savage and Sayed (1984) and Hanes
and Inman (1985). Although the general trends are similar the
results of these three experiments have some differences. In
these three experimental studies a large number of factors af-
fect the generation of stresses: shear-rate; fractional solids
content; bead size and shape; bead material properties and the
surface coefficient of friction, the bead density, and the bead
coefficient of restitution; size of test apparatus; elastic and
surface frictional properties of the boundaries of the flow;
amount of material being tested and thickness of the shearing
layer; oxidation of metal powders; and effects of temperature
on the beads and test apparatus. It is often difficult to ex-
perimentally isolate each of the above effects. We are current-
ly exploring the effect of different particle sizes and materials
in order to better understand material property effects.
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and there may be suction or injection at either surface which must vary as h='.
Asymptotic solutions are found for large and small values of a modified Reynolds
number which is based on the sliding velocity or the suction/injection rate. Boun-
dary layer behavior may be exhibited at high Reynolds number. The present solu-
tion, being “‘exact’ for all Reynolds numbers once the thin film assumptions have
been invoked, may be of value to hydrodynamic lubrication workers to test approx-

imations for the fluid inertia effect.

Introduction

The tribology literature contains many papers which ap-
proximately account for fluid inertia forces which are omitted
in Reynolds’ hydrodynamic lubrication theory. Such papers
often use small Reynolds number perturbations, e.g.,
Reinhardt and Lund (1975) and Tichy and Winer (1970), or
various cross-film averaging techniques (Szeri et al., 1983;
Constantinescu and Galetuse, 1974), but questions often arise
as to their accuracy and range of validity.

Recently, an exact similarity solution for squeeze film flow
between disks of long plates if the dimensionless film thickness
varies by # = (a+ bt)!/? was published (Wang, 1976). The
authors have found Wang’s paper valuable as a test case of in-
ertia approximations for the simple squeeze film bearing
(Tichy and Bourgin, 1986; Bourgin and Tichy, 1985). Further,
we have noted the lack of a comparable test for the
presumably simpler case of the steady slider bearing.

Fortunately such a similarity solution does exist for steady
thin film flows where the film thickness variation is 2 =
(a+bx)™ where a, b and m are constants. The analogy to
Wang’s solution is obviously strong but there is at least one
important difference. Wang’s solution is exact in the sense
that all terms of the Navier-Stokes equation are retained. In
the present case, the thin film lubrication assumptions must be
used. The present solution is ¢‘exact’’ for the limiting case of a
narrow channel far downstream of the inlet.

The present problem, which may involve suction or injec-
tion at the surfaces, is similar to the well-known problem for
suction or injection in a straight channel, studied by Berman
(1953), Terrill and Shrestha (1965), Terrill (1965), Yuan
(1956), and others.
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Fig. 1 Channel geometry

Analysis

Consider the steady, two-dimensional, laminar incompressi-
ble flow of a Newtonian fluid in a long, narrow channel of
slowly varying height as shown in Fig. 1. All symbols represent
dimensionless variables. The coordinates x and y as shown are
scaled to a reference film thickness, and the velocities ¥ and v
are scaled to a reference sliding speed, thus we havex > > 1,y
~ 1, u ~ 1, v << 1. The lower surface may slide along its
length at varying speed and there may be spatially varying suc-
tion or injection at either surface. The channel arbitrarily
begins at x = 0 but we are concerned with the region x > > 1
and 2 > 0.

Under these conditions the Navier Stokes equations can be
written in terms of the stream function as

Re(Vy ¥y —¥utlyyy) =¥y ey
The no-slip boundary conditions are
y=0 u=U,(x) u=V,(x) @
y=h(x): u=0 v="V;(x)

The Reynolds number Re is the reference sliding velocity times
film thickness divided by kinematic viscosity. Introducing the
transformation

) _ e

"0 E=x y=h(&)f(n) 3
the differential equation (1) becomes

S+ Rehh’ [-c)f f" +¢ff"]=0 O]

where the prime (’) superscript represents differentiation with
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respect to the appropriate independent variable. An ordinary
differential equation is obtained when we set

hh'=a %)

which gives
i

h=[rgH" +a(c+ Dx] ™! (6)

using & = h, when x = 0. The resulting differential equation
is )

Y+ aRelf' f" (2—c) +cff"1=0 %)

where « is a measure of the slope #” and the parameter aRe is
analogous to the modified or reduced Reynolds number com-
monly used in lubrication analysis (Szeri, 1980). In this case
the velocities become

u=h=lf" (), v=~h"h"Ncf—nf"). ®

We can find a similarity solution if we choose appropriate
functions for U,, V,, and V;, namely,

Ua(x)zhc—l(_jo’ VO(X)z—Ch’hc;lVo:
Vl(x)z—Ch,hc¥ll71, (9)
Thus, the boundary conditions on f can be obtained:
0=V, D=V
S (10)
fo=u, F(y=0.

Equation (6) can be integrated once to yield

S +oRe[(l—c)f"?+cff"]1=B an
where B is an integration constant.
The dimensionless flow rate is given by
P .
0=| udy=y(em) —$(xO=K=V) (12
while the dimensionless pressure gradient is
d, 8 d d
__{)_=__,%—Re<u __Ll._+v _u__)
dx ay ox ay
=3 (f" +aRel(1 - O)f > +¢ff" 1) (13)
which can be integrated to obtain
= x>>1 (14

p=Bin
I—x;
using p = 0 at the film exit x = x,.

The present configuration is not really a bearing in the con-
ventional sense where fluid is drawn into the gap from am-
bient conditions. Assuming fluid exits the channel at ambient
conditions, it must be injected into the channel at a prescribed
pressure.

The flow described above is analogous to Falkner-Skan
flow (White, 1974), for flow past a wedge for the case #(x =
0) = h, = 0, c.f. equation (6). The solid wedge surface is
represented by 5 = 1 where U = V = 0, while g = 0
represents a horizontal surface in the flow where U = bx™.

In the calculations and discussion which follow, let us con-
fine ourselves to the case when s, = 1,1i.e.,

h=(1+2ax)"? (15

and

Uu,=U, V,=~h'V, Vi=-h'V,. (16)
The analogy to Wang’s problem is now stronger and the flow
is more realistic since these are the fluid boundary velocities
which would be achieved by a sliding horizontal solid surface
and a stationary curved porous surface with a constant (nor-
mal) suction or ejection velocity.

Let us confine our further attention to four cases which il-
lustrate many interesting features of this flow. For a widening
gap (a>0) with no suction or injection at the lower surface
(V, = 0) they are:
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Fig. 2 Velocity profiles, Case (a); no suction or injection, sliding
toward a widening gap
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Fig. 3 Velocity profiles, Case (b); no suction or injection, sliding
taward a widening gap
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Fig. 4 Velocity profiles, Case (¢); net suction, no sliding
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Fig. 5 Velocity profiles, Case (d); net suction, no sliding

(a),(b) Positive/negative sliding with no suction or injec-
tion:

SO =)= 1)=0 fO=U,==1,

(c),(d) Suction/injection on the upper surface with no
sliding:

SO =, 0= D=0 A=V ==l

Small oRe Solution
We assume a regular perturbation solution of the form
J=/, +aRef
B=B,+aReB,
and substitute into equations (10) and (11) in the conventional

an
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manner. The results are obtained by gathering coefficients
@R)°, (R . .. .:

fo =Ca7]3 +Cbn2+cc77+ I—/o

C,=(U,-2V) C,=(-20,+3V) C.=U, (@18)
Si=Km" +Kgnb+ . ... Kyn?

C? C,C ¢ c.c C
K,=—"% K =—"t g = "0 0 g = (19
Y T 57730 10 ¢ (19)
Ky= —5K, —4Ks —3K; —2K, K,=4K,+3K,+2K,+K,

B,=6C, B,=6K,. (20)

Computed Results

A NAG, ‘“‘Numerical Algorithms Group’’ (1982), FOR-
TRAN Library routine for solving two-point boundary value
systems of ordinary differential equations (DO2RAF) was
used to obtain the present solution. The DO2RAF subroutine
uses a finite difference technique with Newton iteration, in-
cluding a ‘‘continuation’’ feature where a simple problem
solution is provided {oRe = 0) and a sequence of problems is
solved leading up to the desired case (aRe = 10, 25, 50). Con-
vergence was obtained in all cases with mesh sizes between Ay
= 0.02 and An = 0.002. The algorithm selects an optimum
mesh size at least as fine as the user’s initial estimate and
distributes errors over the mesh until they are everywhere less
than the user’s selected tolerance (in this case 0.1%).

Figures 2-5 depict the velocity profiles f” () of the four
cases for different Reynolds numbers.

Figure 6 portrays the variations of the constant B with
Reynolds number for the various cases. Recall that B
(=f"(0)) is proportional to the pressure and pressure gra-
dient, equations (13) and (14). The small Reynolds number
asymptotic behavior is also shown. For cases (b) and (c), the
pressure gradient is favorable to the flow direction.

Journal of Applied Mechanics

Large aRe Solution

Outer Solution. The large oRe limit of equation (7) is
singular because the highest derivative is lost as «Re — oo. The
first term outer solution, denoted £, (), must satisfy (for ¢ =

1)

Jof s+ fofd=0, 2D
which can be integrated once to yield
Jofo=D;. 22
The first integral of equation (22) is
f3= £ 2D tf, + D] @3)
and the formula for f, is
P A 24)
Fo@® (2D S+ Dy)!?

We drop the boundary condition f'(0) = U, and retain the
boundary conditions f* (1) = 0, f(0) = 0, (1) = V;. Using the
latter two boundary conditions we obtain
I, o
o (2D, nf+D,)?
To illustrate some interesting properties of this flow, let us
confine ourselves to the cases (¢) and (b) where ¥, = 0.
Clearly the denominator of the integrand is zero hence D; =
D, = 0. From equation (23), /' = 0, and therefore f = const.
But since f(0) = f(1) = 0, therefore

Jo=/=0,

which is clearly an inviscid flow.
To match this outer solution, a boundary layer must form
on the lower surface where f;, = U, = =1,

==1. (25)

(26)

We search for a solution in the form

F~eF ) +eFyt ... f=— ¢
€

Inner Solution.
= ! < <1
" aRe ’
valid near y = 0 where the F ’s and { are o (1). Substituting in
equation (11), the leading term in powers of ¢ is
2F" + F\F{=B, (28)
which is the same as the Blasius boundary layer equation.
The matching condition is that the first term inner expan-
sion of f, must equal the first term outer expansion of Fy, i.e.,
fo (y_’0)=FI(§-_'°°);
from which one obtains
(=0 F=0,F =U,==+1
=  F'=0
and B = 0, i.e., pressure gradient is zero.
It is well known that a solution to equations (28)-(29) results

only if U, = +1, hence case (b) does not appear to have a
large Re asymptotic solution.

@7

29

Discussion

Each of the four sets of boundary conditions used seems to
generate a separate special case, The flow may be in either or
both directions, boundary layers may or may not be present,
and the pressure gradient may be positive or negative. Results
have been shown for the widening channel only (o > 0). For o
< 0, the solutions are identical other than the fact that case (@)
behaves like case (b) (and vice versa) with f and its derivatives
multiplied by minus one. Similarly, case (¢) behaves like case
(d) fora < 0.

The present results have some qualitative similarities to
those found in squeeze film flow by Wang (1976) and in other
references cited. In these cases the flow is symmetric about the
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midplane. During the fast squeezing case of Wang or injection
due to Berman (1953), boundary layers form in both walls and
the core becomes inviscid. In Wang’s study, for the case of
reverse squeezing, complicated flow reversals occur at large
Reynolds number and boundary layers do not develop. In the
analysis of suction due to Terrill (1965), a singular shear layer
occurs at the channel midplane. Thus there exists a boundary
layer of sorts, but not at a wall.

As stated above, the authors believe this result will be useful
to test approximations used in lubrication to account for fluid
inertia. In fact from Fig. 6 we can assess the range of validity
of the small Reynolds number perturbation. The approxima-
tion may be very good for modified Reynolds numbers (xRe)
up to one hundred, or very poor at aRe = 10, depending on
the specific case. There is no apparent a priori reason why one
approximation is good and the other bad. Strictly speaking,
the approximation need only be valid for laRel < < 1in all
cases.

References
Berman, A. S., 1953, ‘‘Laminar Flow in Channels with Porous Walls,’’ Jour-

nal of Applied Physics, Vol. 24, No. 9, pp. 1232-1235,
Bourgin, P., and Tichy, J. A., 1985, ““Lubricating Films of a Viscoelastic

946/ Vol. 53, DECEMBER 1986

Fluid Studied by a Linearization Method,”’ International Journal of Engineer-
ing Science, pp. 1135-1149.

Constantinescu, V. N., and Galetuse, S., 1974, **On the Possibilities of Im-
proving the Accuracy of the Evaluation of Inertia Forces in Laminar and Tur-
bulent Films,”” ASME Journal of Lubrication Technology, Vol. 96, No. 1, pp.
69-79.

NAG (Numerical Analysis Group), 1982, FORTRAN Library, Vol. 2,

‘Mayfield House, Oxford, England.

Reinhardt, E., and Lund, J. W., 1975, *“The Influence of Fluid Inertia on the
Dynamic Properties of Journal Bearings,”” ASME Journal of Lubrication
Technology, Yol. 97, No. 2, pp. 159-167.

Szeri, A. Z., Raimondi, A. A., and Giron-Duarte, A., 1983, ‘“‘Linear Force
Coefficients for Squeeze Film Dampers,”” ASME Journal of Lubrication
Technology, Vol. 105, No. 3, pp. 326-333.

Terrill, R. M., and Shrestha, G. M., 1965, “Laminar Flow Through a Chan-
nel with Uniformly Porous Walls of Different Permeability,”” Applied Science
Research, Sec. A, Vol. 15, pp. 440-468.

Terrill, R. M., 1965, ‘‘Laminar Flow in a Uniformly Porous Channel with
Large Injection,”” The Aeronautical Quarterly, Vol. XVI, pp. 323-332.

Tichy, J. A., and Winer, W, O., 1978, “‘Inertia Considerations in Parallel
Circular Squeeze Film Bearings,”” ASME Journal of Lubrication Techology,
Vol. 92, No. 4, pp. 588-592.

Tichy, J. A., and Bourgin, P., 1986, *‘The Effect of Inertia in Lubrication
Flow Including Entrance and Initial Conditions,”” ASME JOURNAL OF APPLIED
MEecuANiIcs, Vol. 107, No. 4, pp. 759-765.

Wang, C. Y., 1976, ““The Squeezing of a Fluid Between Two Plates,” ASME
JOURNAL OF APPLIED MECHANICS, Vol. 43, No. 4, pp. 579-583.

White, F. M., 1974, Viscous Fluid Flow, McGraw-Hill, New York.

Yuan, S. W., 1956, ‘““Further Investigations of Laminar Flow in Channels
with Porous Walls,” Journal of Applied Physics, Vol. 27, pp. 267-269.

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



A. Sanz

Laboratorio de Asrodinamica,
E.T.S. 1. Aeronduticos,
Universidad Politécnica,

28040 Madrid, Spain

On the Two-Dimensional Theory of
Incompressible Flow Over Inlets

The linearized solution for the two-dimensional flow over an inlet of general form

has been derived, assuming incompressible potential flow. With this theory suction
Sforces at sharp inlet lips can be estimated and ideal inlets can be designed.

1 Introduction

The interest of studying the suction forces at the sharp lips
of an air inlet has been pointed out by Huang (1982). This
kind of inlet is used on supersonic aircraft to reduce the wave
drag at supersonic speeds. However, sharp lips produce flow
separation at subsonic speeds and that is the reason why
rounded noses are preferred in this regime to obtain maximum
thrust over the cowl (Donovan and Lawrence, 1957). In the
case of an idealized intake of infinite length of general cross
section, the thrust Fis given by (Kuchemann and Weber, 1953)

F

Cr= =(1-)?, 1

FE A (1-a) 1
where ¢ is the dynamic pressure of the free stream, A4, the inlet
duct area, o= U;/U,, the inlet duct to the free stream velocity
ratio, and Cp the force coefficient. At a rounded nose this
force can be efficiently distributed, e.g., optimum intake con-
tours are designed to obtain an uniform pressure distribution
over the suction part of the intake (Ruden, 1941).

In the case of sharp lips, the suction localized just at the lip
should substantially contribute the total thrust, but, unfor-
tunately, that force is almost lost due to the flow separation.

It is of interest to estimate the suction force and also to
design the so called ‘‘ideal’’ inlets in which there exits smooth
flow without separation at the sharp lip, so that the localized
force is redistributed avoiding the abovementioned thrust loss.

A simple method to estimate the suction force of a two-
dimensional inlet of general shape has recently appeared
(Huang, 1982). This author utilizes a conformal mapping
which preserves the complex velocity in the transformation.
His solution can be considered as the superposition of those of
the following two problems: an almost-straight inlet with oo =1
and a straight inlet with o # 1. However, the first solution is
only valid for o =0(1) because it is obtained by a linearization
process with respect to the free stream velocity U,,, so that no
real influence of « in the first problem is considered.

The contribution here presented solves the problem of the
inlet flow by linearizing with respect to the solution of the
straight inlet with «# 1, thus the influence of « in the almost-
straight inlet problem is retained, avoiding restrictions in the
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value of «. It should be pointed out that the zone which has
more influence in the calculation of the suction force is the
neighborhood of the inlet lip, and it is also where boundary
conditions are more affected by the flow with respect to which
linearizations are made. Furthermore, a different approach
conserving the complex potential function is employed. In this
way singularities are clearly identified although the relation
between boundary conditions in both planes requires some
manipulation.

In the Huang’s approach (derived from Lissaman, 1968)
boundary conditions are conserved because they are stated in
terms of velocity although appropriate singularities should be
added. Anyway, it can be demonstrated that the solutions of
the problems derived from both approaches coincide.

One interesting point in this kind of problem is that before
linearization is made the boundary condition only gives a rela-
tionship between velocity components. Over the inlet contour
in the transformed half plane, which is a horizontal straight
line, the horizontal component of the velocity can be written
as a function of both the vertical component and the velocity
generated by a discrete singularity. The combination of both
expressions gives raise to an integral equation whose
simplification is based on the small slopes of the inlet.

The method followed here, which is applicable to two-
dimensional, almost-straight inlets consists mainly of three
steps: first, finding a suitable conformal mapping which
transforms the “’skeleton’’ of the intake in the real axis; se-
cond, identifying and taking into account the singularities of
the transformation which occur at the inlet lip and at the in-
finity inside the inlet; and third, calculating the velocity at the
mapped plane. Thus, design criteria for ideal inlets are ob-
tained and validation of the expressions derived is performed
by checking against the exact solution of a simple problem ob-
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tained by a Schwarz-Christoffel transformation. Finally a
comparison is made with Huang’s results showing a 20 percent
differences although both results match for a =1, as expected.

2 Problem Definition

Let us consider a two-dimensional inlet with a ramp as
shown in Fig. 1, in which BL, CK, and FK are straight lines
parallel to the x axis. Assume that the flow is incompressible,
inviscid, and irrotational. Thus, the solution can be expressed
as an analytical function of a complex variable. Also, the
deformations of the inlet with respect to straight horizontal
lines are supposed to be so small that the boundary conditions
can be transferred to the cut LBACK and x axis, as shown in
Fig. 2(a), where speeds are made dimensionless with U, and
lengths with a characteristic length, L = H/« (H is the capture
height). Boundary conditions are

d.
L~ “°_Fx) onBAC and EF,
u dx
v =0 on CKF and ELB. (2)

W =u—ivis the complex velocity in the z plane and y (x) is the
equation of the nonstraight surfaces of the inlet. Let M be the
contour BAC and EF.

3 Conformal Mapping

To solve the problem we use the conformal mapping
(Lissaman, 1968; Huang, 1982)

g—ir=7-1-Int 3)

which transforms the interior of the region shown in Fig. 2(a)
in the interior of the transformed boundary (Fig. 2(b)). In par-
ticular, the boundary of the inlet is defined by
x=(—1—-Inl¢l. £<0 corresponds to the x axis, £>0 to the
cowl (§>1, £<1 the upper and lower surfaces, respectively),
as shown in Figs. 2(a) and 3. Conserving the complex potential
function, we should consider the derivative of equation (3)

948/ Vol. 53, DECEMBER 1986

10

K
o/

<10 0 E 10

Fig.3 Mapping of the x coordinate of the inlet contour into the £ axis in
the = plane. £ <0, x axis; 0<t<1 and £>1 lower and upper surfaces of
the cowl, respectively. Points corresponds to the example in Fig. 4.

dz 1

=1-— 4
dr T “

in order to analyze the characteristics of the transformation.

The complex velocity in the 7 plane, W' =u’ —iv’, is related

to W(z) by the expression

W(z)=W'(ry/(1-1/7). 5)

At the infinity in the 7-plane (7— o) which corresponds to
the infinity outside of the inlet in z plane, the transformation
is an identity. Thus, the free stream velocities are identically in
both planes. The critical points of the mapping are K'(r=0)
and A’(r=1), close to which the transformation should be
carefully studied. In the neighborhood of K (splitted into K™
and X™)

7—0, g=—InT— + o, 6)

which shows that in this region the mapping is similar to the
classical one transforming a strip on a half plane. The finite
segment K~ K+ (inlet duct) is transformed in the semicircle
K-'K*’, of vanishing radius, centered at the origin K’ of the
r-plane. In this region the complex velocities are related by
W =—-W/r=—-a/T, O]

where it has been taken into account that in the inlet duct
(7—0) the velocity W—«. Equation (7) shows that near K’ the
flow field is like that induced by a sink of strength 27, which
accounts for the flux through both K~ K* and their image in
the symmetric half plane,

Concerning the other critical point, let 7=1+¢, lel—0in
the neighborhood of 4’. Then the transformation can be ap-
proximated by

1
z~i7r=e—1n(1+e)=—2— e, ®)

which shows that the arguments of straight lines passing
through A’ are multiplied by 2. The derivative of the transfor-
mation is dz/dr=e¢ and velocities are related through the ex-
pression
w'Q w1
e W _ »__
€ 21/2(2 _ I7l')1/2

If W’ (1)#0, oo, equation (9) represents, as expected, the flat-
plate leading edge singularity. In conserving the complex

)
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velocity, Huang and Lissaman introduce a singularity in point
A’ to model the velocity at the leading edge. If the complex
potential function is conserved the velocity singularities ap-
pear in a straightforward way. However, in this case the cor-
respondence of boundary conditions requires some
elaboration.

4 Boundary Conditions
The velocities in both planes are related by the expression
(5), that can be written as
u—iv=A@®u’' -iv'), (10)

where A(7)=dr/dz is in general complex. Fortunately, in this
problem both 7=£¢ and A(¢) are real-valued over the contour
so that the velocity components are decoupled

u, = Au,
v = A,

where subscript ¢ indicates values over the contour. If A(£)
were complex, u, and v, in both planes would appear
coupled. In 7 plane conditions (2) become

an

’

Y FxE=£(8)

(4
v =20

on C'’A’B’ and E'F’,

on C'K’F’ and

E'L'B’. (12)
The segments C'K’F’ and E’'L’B’ are streamlines and a rela-
tion between v/ and u/ is specified over the segments E'F’ and
C'A’'B’.

By adding the image of the flow formed in the other half-
plane we obtain a problem for the whole 7 plane which is sym-
metrical with respect to the £ axis. Boundaries E'F’ and
C’'A’B’ can be regarded as a distributed array of sources with
the appropriate intensity to fulfil the boundary conditions in
these segments. Based on the symmetry of the flow, the
strength of each source is twice the value of v/ at that point, as
it occurs for instance in the symmetric thin airfoil theory
(Ashley and Landahl, 1965), and the condition over C'K'F"
and E'L’B’ is automatically fulfilled. Therefore, the velocity
in the whole 7-plane is generated by superposition of the nor-
malized free stream velocity, a sink at K'(7r=0) of strength
27 and the source distribution of intensity 2v; over E'F’ and
C’'A’B’. Thatis ,

WI(T)=1"'—0[—+‘—1‘—S L(E‘)_)_dgo, (13)
T M T—§ 0

T
where M’ represents both the segments C'A’'B’ and E’'F’,
The Cauchy value of the integral should be taken in the seg-
ment where £, =7. Over the boundary the imaginary part of
equation (13) is an identity and the real part expresses u/ as a
function of v/. At this stage v/ is not known because boundary
conditions (12) only states a relation between u/ and vu/.
Calculating #/ by using equation (13), and substituting in the
first of conditions (12) we obtain

, o 1
v®=A0 15+, o |-
This equation relates f(¢) and v/(£) over M. Once v/(¥) is
calculated, the solution for the complex velocity in the whole
7-plane is given by equation (13).

As in the thin wing section theory, three kinds of problems
can be considered. First, the direct problem where the inlet
shape f(£) is known and we look for the pressure distribution.
This problem is easily solved by using Bernoulli’s equation,
once v/(£) is obtained from the integral equation (14). The se-
cond is the inverse problem in which the pressure distribution
¢,(x) is fixed and the shape f(£) is sought. In this case

1
N =1~ 4202 1+ ]

ve(€,) (14)

(15)

Journal of Applied Mechanics

With equations (14) and (15) the shape of the inlet f{§) can be
calculated. The third is the mixed problem in which a com-
bination of both previous conditions applies over different
parts of the boundary. In what follows we will deal with the
direct problem by introducing additional simplifications.

5 Direct Problem

The integral equation (14), which resembles that appearing
in the Lanchester — Prandtl finite airfoil theory, has to be solv-
ed to determine v/(£) once f(£) is given. However, if f(§) is a
C° function as it happens in supersonic inlets (not in subsonic
ones) and f(£) < < 1, we can use the expansion

vi(E) = 8u/(£)+0(%),
f&) = 8f19), (16)

where § is a small parameter of the order of the maximum
slope of the inlet shape. Introducing equation (16) into (14)
and retaining first order terms we obtain

= Z o

w® =71 -]
This is the approximate solution of integral equation (14). In
the following we drop the bars.

a7

6 Forces Over the Inlet

The total thrust over the inlet is given by equation (1). The
suction force coefficient C; is calculated in the same way as
the leading edge suction in the thin wing theory (Milne-
Thompson, 1952)

F, mwplULLB* H
Co=—-=227 2wy, 18
s 24, 7y ) (18)

where B is obtained from the approximate expression of W
near 4 in the form W=2-12B/(z —ir)/2. From equation (9),
B=W’(1). Equation (18) shows that C, depends on the veloci-
ty generated at 4’ by the singularities.

In the case of a straight inlet W’ =1 - o/, so that

C,;=(1-)? 19)

since H=A; and W’'(1)=1-«. Expression (19) compared
with equation (1) shows that all the thrust over the inlet is con-
centrated in the lip suction. The stagnation point position over
the cowl is given by r=a, that is, z,, —imw
=a—1—Inoe=1/2(x—1)? in the case o= 0(1).

To calculate the suction in a general case, we bring the value
of v/ given by equation (17) to equation (13) reaching

W’(l)=1—a+%SM, {(—Eg) [1~?°‘-]d£o=1+11
—a(l+1, - 1), (20)
where
_ ! Ao 1 &)
= ot e =, T e @D

The main contribution to the suction force is 1+ I, if o is small
and I, if a=0(1). I; and I, are, respectively, the velocities
generated at the points A’ and K’ by the distribution of the
physical slopes f(£). With this idea, it is easy to estimate the
variation of the suction force due to the change of the slope in
a given part of the inlet surface. For instance, increasing the
slope of the ramp (E’F’) or of the cowl (C’B’) has opposite
influence in I,, because these segments are symmetrically
placed with respect to K”.

The integral I, can be transformed in a more convenient ex-
pression. To this aim lets write down the differential relation-
ship (4) over the x axis and his transformed £ axis

DECEMBER 1986, Vol. 53/949
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dx - 1
dt £
in the form d§,/%,=d§,—dx,. By substitution of equation
(22) in I, we obtain
1 1
h=—oI Fod-—1{ e,

T

(22

(23)
and thence

1 1 ¢
h= D)~ $eie) + ) ~ vl -— | FENE,

@4

If the lip has not width y.(xp) =y.(xc).

As in the thin wing section theory, an ideal configuration
with smooth flow without separation at the sharp lip is ob-
tained if W'(1)=0, or a=q;

1+

= 25)
1+1, -1, ¢

; =1+12

giving a thrust

3
(1+1; - L) =L (26)
Thus, for a fixed geometry we can determine the ideal velocity
ratio and the associated thrust. The approximations in equa-
tions (25) and (26) are made considering that both 7; and I, are
small as a consequence of the assumptions made in Section 5.
The main contribution to C,;i is produced by I,.

CF,- =(1-a)=

7 Example

In trying to check the approximate linearized method
presented here, lets consider the problem of a straight inlet
with a ramp of constant slope tan ¢ placed between points E
and F.

The Schwarz-Christoffel mapping which transforms this in-
let in a half plane 7’ (similar to 7 plane) is given by

dz T'—l(T'—é;:)d’/"
dr’ 7’ 7' —¢p ’

As in the previous section, a sink of strength 278 should
exits in the origin X’ of 7’ plane, where «f3 is the flow crossing
the inlet duct (line K~K+). Equation (27) defines a normal-
ized transformation since at the infinity (' —o0) dz/dr’ =1.
In the 7 plane the velocity is generated by the free stream and
the sink, so that

@n

Wi(r)y=1-8/7".
Dividing by equation (27) we obtain the complex velocity in

the z plane
’__ r__ g o/
W= 0 (LB
7' =1 7' —¢F
In the section X~ K+ (7’ —0) the velocity should be «, thus
from equation (28) in this limit

a=B< Eé )WT.

28)

29

By substituting 8 from equation (29) into equation (28) the
complex velocity is fully determined. The suction force is pro-
portional to the coefficient of the sharp lip singularity in 4
(7’ —1) which, with the notation introduced in Section 6, is

’ o/x 1 ! o/ x
B=Ilim (+' - )W(r')= [1 —a( ‘Ef ) ] [ E’f ] (30)
7'=1 EE 1- EF
As ¢ is small the angle can be substituted by the tangent so
that ¢ has either meaning. Furthermore, the ¢/7 powered
terms can be expanded to obtain
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Fig. 4 Examples of inlets studied in Huang (1982): (a) ramp surface of
siope 5 deg; (b) ramps surface divided in two parts with slope 5 and 12
deg, respectively.

B={1—a[1+—:#1n ;fF 1} f1e2 —1—_—@"—}=1+Il

i T 1-£¢5

—a(l+1, —12)+o[(—;1:—) ’ ]

which clearly match with the value given in equation (20) after
calculation of I; and 7, in equation (21) for f{{)=¢. A point
should be made concerning £z and &j.. They are not the same
as those obtained from transformation (3). However, for
small ¢ the difference between them should be 0(¢/7) and the
contribution of these corrections to equation (31) should be

0[(¢/7)].

31

8 Discussion and Conclusions

For a=1, which is the common range of validity, equation
(20) gives W' (1) =1I,, which expressed as in equation (24) coin-
cides with the result of Huang. It can be shown that by perfor-
ming a similar approximation process like that explained in
Sections 4 and 5, using the complex velocity conservation
method, the same solution as in equation (20) would be
obtained.

In what follows we consider the examples studied by Huang
(1982) and sketched in Fig. 4. The ramp surfaces of the inlet
has constant slope, simplifying the integrations in equation
(21). However, it raises a problem because f(£) is not a C°
function. It experiences jumps at the ramp ends that generate
singularities at F and B of the type appearing in equation (28).
Nevertheless, following the approach explained in Section 5
these singularities would be neglected in deriving equation (17)
as long as £ is far enough from the singularities (in this case,
£=1). Anyway, the effect of each jump is retained, and it ap-
pears in the form of a logarithmic singularity when perform-
ing integration of I; and I,. For the suction in the cases ex-
plained in Fig. 4 we obtain the following results:

C,,=1.08(0.99 — 1.11x)?, Cg=1.23(1.01-1.07x)?,
which compared with those obtained by Huang (1982)

C,,=1.08(0.83 - 0.93x)%, C,,=1.23(0.74 —0.81c)?,
indicate that there exists differences in coefficients of some 20
percent although the values coincide for a=0(1), as men-
tioned above.

We should remark that in the formulation in Section 4, the
only simplification is the transference of boundary conditions,

~which only implies proximity of the inlet surfaces to the

skeleton, although f(£) is allowed to be discontinuous except
at point A in which it should be continuous. Otherwise the
suction force calculation method should change because the
sharp lip singularity changes. Obviously, to solve the non-
simplified problem, even without singularities, is far more
complicated and requires additional effort.

Concerning the comments of Huang on the small influence
of the inside wall of the inlet, it is true as far as the second
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term of 1, is concerned but it is not for the first term, which re-
presents the asymptotic width of the ramp. Additionally, it
could be shown that, if a#1, I, has a significant influence,
and therefore the effect of both the external and internal sur-
faces are of the same order. As Fig. 3 shows, this occurs
because the inside upper wall of the inlet maps close to the lip
A’, thus appreciably contributing to the velocity at this point.

In Huang’s example I, ~(1/3)I, over the cowl and
I, ~(1/2)I, over the ramp.
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Introduction -2 T e
In this brief note, the motion of a simply supported circular e i -7
plate, made of rigid-plastic material, is studied. The plate e o o 6% o5 07 08 09 1o
material is assumed to obey the Tresca yield criterion which re- r/R
tains the transverse shear force; the resulting yield criterionis  Fig. 1 variation of dimensionless shear forces (Q,/Q,) with dimen-

of the form proposed by Sawczuk and Duszek (1963) and
adopted, for example, by Jones and Gomes de Oliveira (1980).
The plate is subjected to a uniformly distributed load which is
applied suddenly at time ¢=0, kept constant at an intensity p
during 0<¢<7 and suddenly removed at #=17.

In a similar study undertaken by Jones and Gomes de
Oliveira (1980) for circular plates subjectd to blast loading
idealized by an instantaneous uniform velocity, it was con-
cluded that the pattern of velocity profile depends on a dimen-
sionless parameter »=RQ,/2M, (i.e., the relative importance
of the product of the radius of the plate and the shear capacity
per unit length over the moment capacity per unit length). Ac-
cordingly, the plates have been classified into three categories,
Class I being in the range 0<» =<1.5, Class II in the range
1.5<¢ =<2, and Class Il in the range »=2. It is found that the
shear sliding at the supports is possible only when

sionless radius (+/R) for different vaiues of » and pressure intensity ratio
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Following a procedure similar to the one adopted by Jones

- y
1—p,/RQ2+p,/R oo .
Po (1=po/R)2+p0/R) and Gomes de Oliveira (1980), the expressions for shear force,

bending moment, and the plate deflection are obtained
analytically and, wherever necessary, numerically. Relations
between the radius of the plate and the shear force as well as
_ between the radius and the radial bending moment (all in non-
dimensional forms) are plotted in Figs. 1 and 2, respectively.
The solution of the problem including shear in the yield
criterion shows smaller shear forces in the inner regions of the
plate and larger in outer regions and the radial moments are
greater throughout the plate, when compared with the bending
solution. In Fig. 3, for a given ratio of p/p,, the variation of
" dimensionless deflections (with respect to a standard deflec-
tion of 10 p,7%/u) with radius is plotted. It can be observed

R
)

for Class III plates. If these conditions are not satisfied, the
problem has the bending solution only which is similar to the
one presented by Hopkins and Prager (1954), and, also, by
Kumar and Hegde (1982).
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that as the value of » increases the shear deformations are less.
It is interesting to note that, for a given p/p, ratio, there exists
a value of the dimensionless radius at which the deflections are
more or less the same, irrespective of the value of », for Class
II1 plates. Figure 4 shows the variation in the dimensionless
central w(0,f,) and edge (W) deflections (with respect to a
standard deflection of 16.25 p,7%/u) with ». It is observed that
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if v is decreased from 1.5 to some lower values, the plate will
yield at the support indefinitely. This figure also represents the
variation in deflection with the ratio p/p,.
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Note on Southwell’s Method for Buckling
Tests of Struts

W.-T. Tsai?

Introduction

Southwell (1931) devised a method by which linear elastic
test data from a strut with initial curvature could be analyzed
to determine the buckling capacity which the strut would have
if it were perfectly straight. The capacity is estimated from the
measured lateral deflection and the applied axial force. The
method proved to be very practical and efficient in most ap-
plications (Donnell, 1938; Horton, et al., 1971). It is especially
useful in nondestructive testing to demonstrate strength and
stiffness properties of an actual structural component since
the strut would be required to be loaded within the elastic
limit. However, the accuracy of the predicted buckling capaci-
ty and the associated stiffness properties become poor if the
initial curvature is small. The reason, among others, is that the
actual deflection dwells within the deviation range of the
employed gauges. Errors introduced by the uncertainties in
gauge measurements become the dominating factor of the
measurements taken during the test. This should not be sur-
prising since the method is not applicable to a perfectly
straight strut, The difficulty in obtaining an accurate result for
a strut of small initial bow was also recognized by Donnell
(1938).

Due to improvements in manufacturing control nowadays,
a strut can be made with very little initial imperfection. The
buckling capacity of such a strut becomes hard to estimate
without loaded into yield range. In order to obtain an accurate
buckling capacity for the strut to remain within the elastic
limit at low axial force, an alternate method of testing is pro-
posed. This method introduces an eccentricity at both ends of
the strut (Fig. 1). Such eccentricity, together with any existing
initial bow, produces a moment which in turn induces a lateral
deflection in the strut. The magnitude of the lateral deflection
is directly influenced by the magnitude of introduced eccen-
tricity. It can be made large enough to overcome the difficulty
of measurement error. Although the same idea was briefly
discussed by Donnell (1938), he did not pursue it further since
he anticipated difficulties in using harmonic series to treat the
eccentricity. In this note, a closed-form solution is obtained to
relate the introduced eccentricity to the lateral deflection of a
strut.

Governing Differentiai Equation and the Solution

Accounting for the effect of an initial bow and an eccen-
tricity, the governing differential equation of a strut is

EI(y" =»,")+P(y+e)=0 (1)

3president, Tsais & Associates, South Pasadena, Calif. 91030.
Manuscript received by ASME Applied Mechanics Division, March 18, 1986;
final revision June 6, 1986.

DECEMBER 1986, Vol. 53/ 953

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



p _ 2
] T, =5 Wsg = 10pT %y
g — = — ————— »=10
L
v 1.2
2]
~
=
. i — 1.5
| .
> L
0.8
~
B N 178
"~ N\
\
0.4 \ 2.0
—.—.— CLASS I PLATES
i — CLASS II PLATES
- CLASS I PLATES 20
P S T B SR 0.0
0 0.2 0.4 06 0.8 1.0

r/R
Fig. 3 Variation of dimensionless transverse deflection across plate,
with v, for constant pressure intensity (the circles indicate the positions
of the stationary hinge circles)

16.0
A Ws =16.25 p,T%/ 4
-—-—— BENDING SOLUTION
T SOLUTION WITH SHEAR
| w(O,tf)/Ws
12.04
p /p°= 15
S; ;‘" 8.0
2
oJ
- N
3=z
10
4.0
5
\l\l\l\-’s; |

Fig. 4 Variation of dimensionless central, edge deflections of plate
with », for different load intensities

that as the value of » increases the shear deformations are less.
It is interesting to note that, for a given p/p, ratio, there exists
a value of the dimensionless radius at which the deflections are
more or less the same, irrespective of the value of », for Class
II1 plates. Figure 4 shows the variation in the dimensionless
central w(0,f,) and edge (W) deflections (with respect to a
standard deflection of 16.25 p,7%/u) with ». It is observed that
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if v is decreased from 1.5 to some lower values, the plate will
yield at the support indefinitely. This figure also represents the
variation in deflection with the ratio p/p,.
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Introduction

Southwell (1931) devised a method by which linear elastic
test data from a strut with initial curvature could be analyzed
to determine the buckling capacity which the strut would have
if it were perfectly straight. The capacity is estimated from the
measured lateral deflection and the applied axial force. The
method proved to be very practical and efficient in most ap-
plications (Donnell, 1938; Horton, et al., 1971). It is especially
useful in nondestructive testing to demonstrate strength and
stiffness properties of an actual structural component since
the strut would be required to be loaded within the elastic
limit. However, the accuracy of the predicted buckling capaci-
ty and the associated stiffness properties become poor if the
initial curvature is small. The reason, among others, is that the
actual deflection dwells within the deviation range of the
employed gauges. Errors introduced by the uncertainties in
gauge measurements become the dominating factor of the
measurements taken during the test. This should not be sur-
prising since the method is not applicable to a perfectly
straight strut, The difficulty in obtaining an accurate result for
a strut of small initial bow was also recognized by Donnell
(1938).

Due to improvements in manufacturing control nowadays,
a strut can be made with very little initial imperfection. The
buckling capacity of such a strut becomes hard to estimate
without loaded into yield range. In order to obtain an accurate
buckling capacity for the strut to remain within the elastic
limit at low axial force, an alternate method of testing is pro-
posed. This method introduces an eccentricity at both ends of
the strut (Fig. 1). Such eccentricity, together with any existing
initial bow, produces a moment which in turn induces a lateral
deflection in the strut. The magnitude of the lateral deflection
is directly influenced by the magnitude of introduced eccen-
tricity. It can be made large enough to overcome the difficulty
of measurement error. Although the same idea was briefly
discussed by Donnell (1938), he did not pursue it further since
he anticipated difficulties in using harmonic series to treat the
eccentricity. In this note, a closed-form solution is obtained to
relate the introduced eccentricity to the lateral deflection of a
strut.

Governing Differentiai Equation and the Solution

Accounting for the effect of an initial bow and an eccen-
tricity, the governing differential equation of a strut is

EI(y" =»,")+P(y+e)=0 (1)
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where EI is the bending rigidity of the strut, e the eccentricity,
P the axial force, y the total deflection, and y, the initial bow.
In order to simplify the analysis, the initial bow is assumed to
be a simple sine function

¥y, =a sin 2
This was shown by Southwell to be a good approximation for
determination of the lateral deflection. Upon introduction of
equation (2) and the boundary conditions, y = O at x = 0 and
x = L, into equation (1), the total deflection is given by Tsai
1977)

3

a T cos A (L/2-X)
y [ -1]

“1-pp, "L cos (NL/2)
where P, = w2EI/L? is the buckling capacity of the strut if it
were perfectly straight, and \ = ~P/EI = NP/P,,x/L.

Application of Southwell’s Method

To apply equation (3) to Southwell’s test, the net deflection
at the middle point is to be measured. By introducing x = L/2
into equation (3), the net deflection, d = y—y,, is given by

1
= ? + e[ - 1]
P,./P—1 cos(AL/2)

This expression may be rewritten into an alternate form upon
multiplying equation (4) by a factor, P, /P~ 1, and defining v
= d/P, the result reads

P d a+e[ ! 1] (P" 1)
v—d= —_—— -
il cos(AL/2) P

The left-hand side together with the first term of the right-
hand side of equation (4”) is the typical form of Southwell’s
approach. By plotting v as the abscissa and d as the ordinate, a
straight line is obtained. The slope of this straight line is the
buckling capacity and the negative intercept of the d axis is the
initial bow at the mid-span. It can be seen from this relation
that the buckling capacity cannot be obtained at a testing load
level below P, if there is no initial bow since a perfectly
straight strut would not show any lateral deflection until the
strut collapses at P = P,,.

With an eccentricity added to the possible initial bow, the
entire right-hand side of equation (4') would be applied. The
effect of eccentricity appears to be coupled with AL and P/P,,
in a form much more complicated than that of an initial bow
alone. Actually, a simplified approximation as elegant as that
of an initial bow can be obtained. The simplification starts
with a series expansion of the cosine function. It is then
followed by a series inversion and a multiplication. The final
results of equation (4’), with the help of N\L = W\/P/PC,,
becomes

d “)

4"

? 572 P
PC,v—d=a+ 3 e[1+< 48 "'1)?”—

572 (6171'2 l)<P>2+ ]

48 600 P e

cr
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—a+ 1.234e[l +0.028<

An examination of the coefficients indicates that the max-
imum contribution of the P/P,, term is less than three percent
of P/P,,. By neglecting the effect of P/P,, in the right-hand

- side of equation (5), one obtains a form of first order approx-

imation
P,v—d=a+1.234e 6)

Therefore, the effect of load eccentricity correlates to the
critical buckling load in the same fashion as of the initial bow
except that the negative intercept is now the sum of the initial
bow and 1.234 times of the eccentricity. Explicitly, with a
larger eccentricity, the buckling capacity can be estimated at a
larger lateral deflection for the same axial force. In other
words, it can be estimated at the same deflection with a
smaller axial force. Effectively, the result would have less er-
ror introduced by measuring gauges for a larger eccentricity.
The initial bow would be the negative intercept of the d axis
subtracted by 1.234e.

Conclusion

The buckling capacity and the associated stiffness proper-
ties of a strut can be accurately estimated at tests of low axial
forces if the strut is loaded with an eccentricity. The initial
bow is obtained by subtracting a factor of the eccentricity
from the negative intercept of d axis.
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Mode Il Loading of a Cracked Strip

D. M. Parks*

Energy methods have been widely used in the analysis of
fracture mechanics problems, making use of the equivalence
of compliance (stiffness) changes with respect to crack length
and the energy release rate, J (Rice, 1968). One approach to
the analysis of certain configurations, such as the double can-
tilever beam, has been to idealize the total compliance of the
body using, e.g., assumptions of beam theory in relatively
compliant portions of the body and of rigid bodies in relative-
ly stiffer regions. Most analyses of this sort have been applied
to Mode I problems. The purpose of this note is to present an
elementary energy analysis of a Mode II problem which seems
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where EI is the bending rigidity of the strut, e the eccentricity,
P the axial force, y the total deflection, and y, the initial bow.
In order to simplify the analysis, the initial bow is assumed to
be a simple sine function

¥y, =a sin 2
This was shown by Southwell to be a good approximation for
determination of the lateral deflection. Upon introduction of
equation (2) and the boundary conditions, y = O at x = 0 and
x = L, into equation (1), the total deflection is given by Tsai
1977)

3

a T cos A (L/2-X)
y [ -1]

“1-pp, "L cos (NL/2)
where P, = w2EI/L? is the buckling capacity of the strut if it
were perfectly straight, and \ = ~P/EI = NP/P,,x/L.

Application of Southwell’s Method

To apply equation (3) to Southwell’s test, the net deflection
at the middle point is to be measured. By introducing x = L/2
into equation (3), the net deflection, d = y—y,, is given by

1
= ? + e[ - 1]
P,./P—1 cos(AL/2)

This expression may be rewritten into an alternate form upon
multiplying equation (4) by a factor, P, /P~ 1, and defining v
= d/P, the result reads

P d a+e[ ! 1] (P" 1)
v—d= —_—— -
il cos(AL/2) P

The left-hand side together with the first term of the right-
hand side of equation (4”) is the typical form of Southwell’s
approach. By plotting v as the abscissa and d as the ordinate, a
straight line is obtained. The slope of this straight line is the
buckling capacity and the negative intercept of the d axis is the
initial bow at the mid-span. It can be seen from this relation
that the buckling capacity cannot be obtained at a testing load
level below P, if there is no initial bow since a perfectly
straight strut would not show any lateral deflection until the
strut collapses at P = P,,.

With an eccentricity added to the possible initial bow, the
entire right-hand side of equation (4') would be applied. The
effect of eccentricity appears to be coupled with AL and P/P,,
in a form much more complicated than that of an initial bow
alone. Actually, a simplified approximation as elegant as that
of an initial bow can be obtained. The simplification starts
with a series expansion of the cosine function. It is then
followed by a series inversion and a multiplication. The final
results of equation (4’), with the help of N\L = W\/P/PC,,
becomes
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An examination of the coefficients indicates that the max-
imum contribution of the P/P,, term is less than three percent
of P/P,,. By neglecting the effect of P/P,, in the right-hand

- side of equation (5), one obtains a form of first order approx-

imation
P,v—d=a+1.234e 6)

Therefore, the effect of load eccentricity correlates to the
critical buckling load in the same fashion as of the initial bow
except that the negative intercept is now the sum of the initial
bow and 1.234 times of the eccentricity. Explicitly, with a
larger eccentricity, the buckling capacity can be estimated at a
larger lateral deflection for the same axial force. In other
words, it can be estimated at the same deflection with a
smaller axial force. Effectively, the result would have less er-
ror introduced by measuring gauges for a larger eccentricity.
The initial bow would be the negative intercept of the d axis
subtracted by 1.234e.

Conclusion

The buckling capacity and the associated stiffness proper-
ties of a strut can be accurately estimated at tests of low axial
forces if the strut is loaded with an eccentricity. The initial
bow is obtained by subtracting a factor of the eccentricity
from the negative intercept of d axis.
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Mode Il Loading of a Cracked Strip

D. M. Parks*

Energy methods have been widely used in the analysis of
fracture mechanics problems, making use of the equivalence
of compliance (stiffness) changes with respect to crack length
and the energy release rate, J (Rice, 1968). One approach to
the analysis of certain configurations, such as the double can-
tilever beam, has been to idealize the total compliance of the
body using, e.g., assumptions of beam theory in relatively
compliant portions of the body and of rigid bodies in relative-
ly stiffer regions. Most analyses of this sort have been applied
to Mode I problems. The purpose of this note is to present an
elementary energy analysis of a Mode II problem which seems
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Fig. 2 Idealized model consisting of beam/column kinematics

to have been inappropriately analyzed in a well-known com-
pendium of stress intensity factors (Tada et al., 1985).

Consider in Fig. 1 the long strip of unit thickness and height
2¢ containing a crack of length a> > ¢ which divides a portion
of the body into two strips, each of height ¢. Ahead of the
crack tip is an uncracked ligament of length ¢, which is also
much greater than 7. Loading is imposed at the end of the
body by uniform displacements parallel to the crack. On the
upper strip, the displacement is positive, of magnitude A/2,
while on the lower strip, a displacement of equal magnitude,
but opposite sign, is imposed. The relative offset of the ends
of the two strips is A. Such loading nominally places the upper
strip in compression and the lower strip in tension. A closer
examination, however, reveals additional complexity. For ex-
ample, if the resultant forces in the two strips are + P, we note
that since they are offset by a distance ¢, bending moments
must also be sustained in each strip.

Figure 2 presents an idealized kinematical model of the
deformation in the two strips which allows for an effective
rigid body rotation of angle @ in the ligament material far
ahead of the tip. In the general case of unequal strips, the
‘‘base” at the crack tip should also be permitted a free
displacement 6 in the crack direction, but in the present case,
symmetry considerations show that §=0,

We see from Fig. 2 that each strip is in combined bending
and tension (bottom) or compression (top). The mid-section
strain, e, in the bottom strip is:

e=(A/2—0+t/2)/a ¢))]
while the curvature is:
k=0/a. )

The top strip has the same curvature and midsection strain
equal to —e.

In this displacement-loaded problem, the potential energy,
7, per unit thickness is the strain energy, W. For isotropic
elastic response, the total strain energy in the two strips is

W=2[1/2E' stase®> + 1/2E ' I+k?+a]
=E’'t/4a«[(t0 — A)* +62/3]. ?3)
In equation (3), I=¢£3/12 is the strip section moment of iner-
tia per unit thickness, E’ is the Young’s modulus, E, for
generalized plane stress, and E/(1 —»?), where v is Poisson’s

ratio, for plane strain. Evidently, W depends on the
kinematical parameters A and 6. Since no external moment is
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applied to the ligament region, Castigliano’s theorem requires
dW/36 =0, furnishing

0=3A/4t1. “@

When equation (4) is substituted into equation (5), the strain
energy becomes

7=W=E'+tsA2/16a (5)
and the energy release rate is
J=—~0m/da=E"+t+A2/164>. ©6)

From the symmetry of the problem, only Mode I1 is present
so J=K;2/E’ and thus

Ky=Asda-E"VL @)

Tada’s result can be obtained by setting ¢ =0, with resulting
W and J values four times that of equations (5), (6) and thus
K values twice that of equation (7).

By permitting the additional kinematic freedom corres-
ponding to nonzero 6, a decidedly lower strain energy is ob-
tained, so presumably equations (6) and (7) are more correct.
This has been verified numerically by Sharples (1985), who
analyzed this problem in a strip with a/t=36.5 and {/t=3.5
using the virtual crack extension (VCE) capabilities of the
ABAQUS finite element program (Hibbitt, et al., 1982). His
numerical results for J on each of several VCE contours were
in excellent agreement with equation (6).

The methodology of beam/columns applied in this example
could be straightforwardly generalized to include strips of
unequal section area and moment of inertia. In addition,
analysis for nonlinear material response could be accom-
modated by using standard nonlinear models of cylinders
under combined bending and axial load.
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Analyses of problems in elastic membrane theory usually
employ the ad hoc assumption that an equilibrium configura-
tion cannot be stable or neutrally stable unless the principal
stresses are everywhere nonnegative (e.g., Kydoniefs and
Spencer, 1969). We show that this result follows directly from
the principle of minimum potential energy, where the poten-
tial energy E[x] is given by
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to have been inappropriately analyzed in a well-known com-
pendium of stress intensity factors (Tada et al., 1985).

Consider in Fig. 1 the long strip of unit thickness and height
2¢ containing a crack of length a> > ¢ which divides a portion
of the body into two strips, each of height ¢. Ahead of the
crack tip is an uncracked ligament of length ¢, which is also
much greater than 7. Loading is imposed at the end of the
body by uniform displacements parallel to the crack. On the
upper strip, the displacement is positive, of magnitude A/2,
while on the lower strip, a displacement of equal magnitude,
but opposite sign, is imposed. The relative offset of the ends
of the two strips is A. Such loading nominally places the upper
strip in compression and the lower strip in tension. A closer
examination, however, reveals additional complexity. For ex-
ample, if the resultant forces in the two strips are + P, we note
that since they are offset by a distance ¢, bending moments
must also be sustained in each strip.

Figure 2 presents an idealized kinematical model of the
deformation in the two strips which allows for an effective
rigid body rotation of angle @ in the ligament material far
ahead of the tip. In the general case of unequal strips, the
‘‘base” at the crack tip should also be permitted a free
displacement 6 in the crack direction, but in the present case,
symmetry considerations show that §=0,

We see from Fig. 2 that each strip is in combined bending
and tension (bottom) or compression (top). The mid-section
strain, e, in the bottom strip is:

e=(A/2—0+t/2)/a ¢))]
while the curvature is:
k=0/a. )

The top strip has the same curvature and midsection strain
equal to —e.

In this displacement-loaded problem, the potential energy,
7, per unit thickness is the strain energy, W. For isotropic
elastic response, the total strain energy in the two strips is

W=2.[1/2E" stase® + 1/2E' [+x*+a)
=E't/4a+[(t§ — A)? +6%/3]. 3)

In equation (3), I=¢£3/12 is the strip section moment of iner-
tia per unit thickness, E’ is the Young’s modulus, E, for
generalized plane stress, and E/(1 —»?), where v is Poisson’s
ratio, for plane strain. Evidently, W depends on the
kinematical parameters A and 6. Since no external moment is
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applied to the ligament region, Castigliano’s theorem requires
dW/36 =0, furnishing

0=3A/4t1. “@

When equation (4) is substituted into equation (5), the strain
energy becomes

7=W=E'+tsA2/16a (5)
and the energy release rate is
J=—~0m/da=E"+t+A2/164>. ©6)

From the symmetry of the problem, only Mode I1 is present
so J=K;2/E’ and thus

Ky=Asda-E"VL @)

Tada’s result can be obtained by setting ¢ =0, with resulting
W and J values four times that of equations (5), (6) and thus
K values twice that of equation (7).

By permitting the additional kinematic freedom corres-
ponding to nonzero 6, a decidedly lower strain energy is ob-
tained, so presumably equations (6) and (7) are more correct.
This has been verified numerically by Sharples (1985), who
analyzed this problem in a strip with a/t=36.5 and {/t=3.5
using the virtual crack extension (VCE) capabilities of the
ABAQUS finite element program (Hibbitt, et al., 1982). His
numerical results for J on each of several VCE contours were
in excellent agreement with equation (6).

The methodology of beam/columns applied in this example
could be straightforwardly generalized to include strips of
unequal section area and moment of inertia. In addition,
analysis for nonlinear material response could be accom-
modated by using standard nonlinear models of cylinders
under combined bending and axial load.
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Here 6%(x=1,2) are embedded coordinates of a material
point on the membrane surface, x(6',6%) is the position,
a,=0x/00% span the tangent plane at x, A = det(4,5), Ay =
A Ay A, =0X/00%X (6,62) is the position on the reference
surface, {(x) is a potential for the force t(=¢,) per unit
reference arc length s applied to the edge 92, of the reference
surface 2, and
¢ (X7aa ) = W(aa) - ‘I/(x;aa)s
where w is the strain energy and ¢ is a load potential.
We adopt the energy criterion of elastic stability, according
to which a stable or neutrally stable configuration x is a strong
relative minimizer of Efx]. Following Graves (1939), we con-
clude that ¢ (x,a,) must be rank-one convex in a,:

¢ (x,a5+fng) —d(x,85) —nofed, (X,25) =0 3)?
for all vectors f = f®a, + fa, andn = n, A%, where A® is the

dual basis on the reference surface: A* « A; = 5. We con-
sider load potentials ¥ which are rank-one affine in a,:

v(x,ag+ing) —d(x,a5) —n.fey, (x,a5)=0. @
An important example is uniform lateral pressure loading of
constant intensity p. For a closed membrane we have
[y~ Ad8'd6> = pV, where the enclosed volume is ¥ = (1/3)fx
s a;Vad0'do0?; a = det(ayg), a,5 = a, * a5, and a; = e*fa, X
aﬁ/Z\/ @ is the unit normal to the deformed surface. e*® is the
two-dimensional alternator taking values 1, — 1 according as
(,8) = (1,2), (2,1), respectively, and zero otherwise. The load
potential is

¥(%,8,) = (p/6)ufxea, Xag; uf=e" /A, ®

Then g&aa = (p/3)uct a5 X X, and after some calculation we
find

nofey, = (p/3)uf ngx +a, x fand ¥ (x,a, +1n,)

(2

=y (x,a,) + (p/3)p*Pngx-a, xf,
so that (4) is identically satisfied. Then (2) and (4) require that
w be rank-one convex:
w(aﬁ+fnﬁ)—w(aﬁ)——naf-w,a(aﬂ)zo, vin,. (6)

According to the principle of material frame indifference,
the strain energy must be insensitive to transformations
a,—Qa, for all proper orthogonal Q. Then Cauchy’s theorem
on isotropic functions (Truesdell and Noll, 1965) requires that
w be a function of the metric components a,4, so that

Wa, =2(0W/3a,5) 0. )
From (6), (7) and the mean value theorem, we derive the
Legendre-Hadamard condition:
feE* (4, )n,ng+£=0; & =a +1n,, te(0,1), 8)
where
E*® (a,) =4(3?w/da,,das: )a, ®@a, +2(0w/3a,4)1 ®
and1 = a, ® a* + a; ® a, is the unit tensor. The choice f
= 0 in (8) gives
(10$)
Let n, be the unit normal to a curve in the reference surface.
The unit normal » = »,a% to the image of the curve in the
deformed surface is given by v, = /(a/d)n,/\, where A is

the stretch of the curve (Naghdi, 1972). Then (10) is equivalent
to

R NgdW/a,.=0.

NeBy v =0, (11)

2¢ may depend on §” explicitly, as in the case of nonhomogeneous material,
for example.
Graves considered functionals of the form (1) without the boundary integral.
In arriving at (3), he employed variations in x which vanish on the boundary, so
the result is unaffected by the presence of the extra term.
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where N*8 = 27/ (A/a) dw/da,, are the Cauchy stresses. Thus
an equilibrium configuration of a membrane subjected to con-
servative loading is stable or neutrally stable only if the prin-
cipal Cauchy tensions are pointwise nonnegative. The choice f
= fe.a; = 0in (8) gives the two-dimensional analogue of the
classical Legendre-Hadamard condition:

an,nof, f(@*w/a,,0ag. ) +~ (a/A)NPn ngf1f, =0, Vfeng.
(12)

Pipkin (1985) has derived conditions equivalent to (11) and
(12) for the special case of an initially plane isotropic mem-
brane with fixed edges and y = 0, and has shown that the
classical Baker-Ericksen inequality (Baker and Ericksen, 1954)
is implied by (12).
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Pneumatic Chamber Nonlinearities

Ying-Tsai Wang® and Rajendra Singh’-?

1 Introduction

This note examines the nature of nonlinearities associated
with a closed pneumatic chamber coupled to a linear
mechanical system as shown in Fig. 1. This simple model
could represent several practical applications dealing with
passive vibration isolators, shock absorbers, and cushioning
type actuators. The feasibility of finding an approximate
analytical solution for such systems using perturbation tech-
niques has not been investigated, with the exception of a paper
by Chen (1977), who analyzed a symmetric, double-sided
closed pneumatic chamber system coupled to a cam-actuated
mechanism. His study considered only the nonlinearity in-
duced by the gas compressibility; the dynmic response was ob-
tained by the Krylov-Bogoliubov method of slowly varying
parameters. Even though no numerical or experimental
validation was given, his analysis found that the resonant peak
shifted toward a lower frequency as the excitation amplitude
was increased. However, he did not examine some of the
critical issues dealing with singularities, mean value shifting,
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Here 6%(x=1,2) are embedded coordinates of a material
point on the membrane surface, x(6',6%) is the position,
a,=0x/00% span the tangent plane at x, A = det(4,5), Ay =
A Ay A, =0X/00%X (6,62) is the position on the reference
surface, {(x) is a potential for the force t(=¢,) per unit
reference arc length s applied to the edge 92, of the reference
surface 2, and
¢ (X7aa ) = W(aa) - ‘I/(x;aa)s
where w is the strain energy and ¢ is a load potential.
We adopt the energy criterion of elastic stability, according
to which a stable or neutrally stable configuration x is a strong
relative minimizer of Efx]. Following Graves (1939), we con-
clude that ¢ (x,a,) must be rank-one convex in a,:

¢ (x,a5+fng) —d(x,85) —nofed, (X,25) =0 3)?
for all vectors f = f®a, + fa, andn = n, A%, where A® is the

dual basis on the reference surface: A* « A; = 5. We con-
sider load potentials ¥ which are rank-one affine in a,:

v(x,ag+ing) —d(x,a5) —n.fey, (x,a5)=0. @
An important example is uniform lateral pressure loading of
constant intensity p. For a closed membrane we have
[y~ Ad8'd6> = pV, where the enclosed volume is ¥ = (1/3)fx
s a;Vad0'do0?; a = det(ayg), a,5 = a, * a5, and a; = e*fa, X
aﬁ/Z\/ @ is the unit normal to the deformed surface. e*® is the
two-dimensional alternator taking values 1, — 1 according as
(,8) = (1,2), (2,1), respectively, and zero otherwise. The load
potential is

¥(%,8,) = (p/6)ufxea, Xag; uf=e" /A, ®

Then g&aa = (p/3)uct a5 X X, and after some calculation we
find

nofey, = (p/3)uf ngx +a, x fand ¥ (x,a, +1n,)

(2

=y (x,a,) + (p/3)p*Pngx-a, xf,
so that (4) is identically satisfied. Then (2) and (4) require that
w be rank-one convex:
w(aﬁ+fnﬁ)—w(aﬁ)——naf-w,a(aﬂ)zo, vin,. (6)

According to the principle of material frame indifference,
the strain energy must be insensitive to transformations
a,—Qa, for all proper orthogonal Q. Then Cauchy’s theorem
on isotropic functions (Truesdell and Noll, 1965) requires that
w be a function of the metric components a,4, so that

Wa, =2(0W/3a,5) 0. )
From (6), (7) and the mean value theorem, we derive the
Legendre-Hadamard condition:
feE* (4, )n,ng+£=0; & =a +1n,, te(0,1), 8)
where
E*® (a,) =4(3?w/da,,das: )a, ®@a, +2(0w/3a,4)1 ®
and1 = a, ® a* + a; ® a, is the unit tensor. The choice f
= 0 in (8) gives
(10$)
Let n, be the unit normal to a curve in the reference surface.
The unit normal » = »,a% to the image of the curve in the
deformed surface is given by v, = /(a/d)n,/\, where A is

the stretch of the curve (Naghdi, 1972). Then (10) is equivalent
to

R NgdW/a,.=0.

NeBy v =0, (11)

2¢ may depend on §” explicitly, as in the case of nonhomogeneous material,
for example.
Graves considered functionals of the form (1) without the boundary integral.
In arriving at (3), he employed variations in x which vanish on the boundary, so
the result is unaffected by the presence of the extra term.
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where N*8 = 27/ (A/a) dw/da,, are the Cauchy stresses. Thus
an equilibrium configuration of a membrane subjected to con-
servative loading is stable or neutrally stable only if the prin-
cipal Cauchy tensions are pointwise nonnegative. The choice f
= fe.a; = 0in (8) gives the two-dimensional analogue of the
classical Legendre-Hadamard condition:

an,nof, f(@*w/a,,0ag. ) +~ (a/A)NPn ngf1f, =0, Vfeng.
(12)

Pipkin (1985) has derived conditions equivalent to (11) and
(12) for the special case of an initially plane isotropic mem-
brane with fixed edges and y = 0, and has shown that the
classical Baker-Ericksen inequality (Baker and Ericksen, 1954)
is implied by (12).
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1 Introduction

This note examines the nature of nonlinearities associated
with a closed pneumatic chamber coupled to a linear
mechanical system as shown in Fig. 1. This simple model
could represent several practical applications dealing with
passive vibration isolators, shock absorbers, and cushioning
type actuators. The feasibility of finding an approximate
analytical solution for such systems using perturbation tech-
niques has not been investigated, with the exception of a paper
by Chen (1977), who analyzed a symmetric, double-sided
closed pneumatic chamber system coupled to a cam-actuated
mechanism. His study considered only the nonlinearity in-
duced by the gas compressibility; the dynmic response was ob-
tained by the Krylov-Bogoliubov method of slowly varying
parameters. Even though no numerical or experimental
validation was given, his analysis found that the resonant peak
shifted toward a lower frequency as the excitation amplitude
was increased. However, he did not examine some of the
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nonlinearities included

role of nonlinear damping (only the viscous damping was con-
sidered), and the justification of the selection of his perturba-
tion method. Some of these issues will be discussed here.

2 Mathematical Formulation
For the thermodynamic compression process, we assume a
polytropic model
PV ()" =POIVO]"; V(0)
=A,Land V(¢)=A,(L—-X(¢)) 1)

where n denotes the polytropic constant, P is the absolute
pressure, V is the gas volume, A4, is the chamber or piston
~ area, L is the initial height of the chamber, and X indicates the
piston displacement from the initial point. The equation of
motion is given as

MpX(t) +BX(t) +KX (1) =F(t) + Myg
+ (Pym—P(6))A,—Fp (1) @

where M is the total mass, B is the linear mechanical damping
coefficient, K is the linear mechanical spring stiffness, F(¢) is
the external force, P,,,, is the atmosphere pressure, and Fp, ()
is the total damping force which is assumed to be of the
following form: Fp=p; X+ p,P?+ p,[sign(X)], where
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Table 1 Comparison of results at f; = 0.6 and & = 2.09

Harmonic Numerical The method of
coefficient integration harmonic balance
)Em/xl ﬁk/pl xm/)?l p-k/pl
os -0.261 0.019 —2.60 0.021
1 1 1 1 1
2 0.088 0.356 . 0.094 0.371
3 0.019 0.135 0 0
4 0.005 0.052 0 0
5 0.002 0.019 0 0
Reference  x, =0.464 p;=0.637 x=0.468 p,; =0.656
values

sign(X) =1 for X>0, sign(X) =0 for X=0 and sign(X) = — 1
for X<0, and u; is the viscous friction coefficient (in
force/velocity unit), u, is the scaled sliding friction coefficient
(in force/pressure unit) to account for P,,,, q is the friction
exponent, and y, is the dry (Coulomb) friction coefficient (in
force unit). Note that py, p,, g, and p, are unique to the
physical system chosen.

From the initial point (#=0), we define the excitation F(r)
and responses X (¢) and P(¢) as F(t)=f,+f(¢),
X(t)=x,+x(¢), and P(¢) =p,+p(t), where f, is the time-
averaged value of F(r). Now, define response operating
points x, and p, corresponding to f,. Using equations (1) and
(2), we get

K(L=%,)" %" 4 (f, + Py A, + Mg —KL) (L — X, )"
— P(0)A,L" (L —x,)™~" — , P(O)?L" =0 3)

We find that equation (3) has unique solution at any f,, i.e.,
x,=x,(f,) and p,=p, (f,), provided x, <L. Note that L =x,,
indicates that the piston will compress the gas down to zero
volume—an impossible condition to achieve. However, x,
could approach L which is somewhat realistic for the cushion-
ing type actuation and isolation cases.

3 Nature of Nonlinearity

First, define dimensionless parameters and variables as
follows.

S=11P,AL), B=p/pyy X=x/IL—X,1, =0/ 1PA,),
p’g =I'Lg/[poAp]a K=K(L_xg)/[paAp}y
wy =NEK/ My, d=w/w,, £=[B+ s/ [2NKM,]

where w is the excitation frequency and w, is the undamped
natural frequency of the mechanical system. The governing
equations, equations (1) and (2), are reduced to the following
dimensionless form:

p(Hy=(1-x(£))""-1 “@

2
F(1) + 280, % (1) + wE(t) = °1’{ Fy—HE®), (1),  (5)
2
where H(%,%) = °1’< {5+ By [(1+5)7 — 1] + i [sign(¥)])

N

w .
= f(" ([ —x)=" =11+ g, [(1 —x) =™ — 11+ p, [sign(x) ]}

Note that the system is completely described by equation (5)
in terms of X which is related to p through equation (4). The
nonlinear function H(%,%) consists of the following terms: (i)
nonlinearity induced by the gas compressibility; (i)
nonlinearity induced by the sliding friction model; and (i)
nonlinearity induced by the dry (Coulomb) friction. For both
compressibility and sliding friction effects, we note that H—
as x—1.0, H=0 at x=0 and H is unsymmetrical about x=0.
The unbounded behavior of H close to X—1.0 indicates that
the nonlinearities are very large. The nature of such a
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singularity can be termed as ‘‘hard’’—as defined by Bota and
Mickens (1984). The unsymmetrical behavior about ¥=0 is
somewhat similar to Mahaffey’s problem (1976) on plasma
oscillations—he called such oscillations ‘‘anharmonic’’.

For weakly nonlinear systems, many perturbation methods
(Mickens, 1981; Nayfeh and Mook, 1979; and Siljak, 1969)
may work. But for those cases where nonlinear effects are’
large, it is not clear which method will work. However,
Mickens (1984) claims that the method of harmonic balance
can be applied to such problems. Also, Bota and Mickens
(1984) claim that only the method of harmonic balance will
work for ‘‘hard’’ singularity type, one-dimensional oscillatory
problems. Since our example case fits into such a description,
the method of harmonic balance seems to be the most logical
technique that can be applied.

4 Results

Now, we apply the method of harmonic balance to evaluate
the frequency response. Since the nonlinear function H is not
symmetric about ¥=0, the mean value shift must be con-
sidered even though the excitation f(#) may have a zero mean
value. The excitation f(¢) and responses X(f) and p(r) are
assumed to be given as follows:

f(t) =flCOS(wt),

X(1) =Xy + X cos(wt + 0,) + X,c08(2wt +0,,) and

P(8) =P+ Prcos(wt +8,,) + prcosui +0,,)

where X,/X,=X,/X;=%,=0(€), Pos/P1=D2/py=p=0()
and the subscript os denotes the mean value shift or zeroth
harmonic. Since lower frequencies are of interest in practical
pneumatic systems, the series solution is limited here up to the
second harmonic. Numerical parameters used to illustrate this
example case are: K=0.511, 3,=0.2, g=2, £=0.5, ji, =0.07,
and w,=0.5 (see Wang, 1986, for more details).

Figure 2 shows frequency response curves, the magnitude of
the first harmonic versus the dimensionless frequency
»=w/w,, for various values of H(X,x). Note that the overall
system with all nonlinearities included is still a second order
system, but the resonant frequency is shifted to &=2.09 as
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shown in Fig. 2. It is apparent that the compressibility term is
the most dominant, followed by the sliding friction term
which is also related to the pressure (per our assumption).
Both of these nonlinear effects increase stiffness as well as
damping. Conversely, the dry friction is influential only at the
resonance, thereby adding only to the damping, as one would
expect. We must caution that in a practical system the real
damping mechanism could dictate the response.

In order to validate the results obtained by the method of
harmonic balance, we compare these with the results yielded
by the numerical integration of equations (4) and (5). In Table
1, the zeroth and first five harmonics are examined for both ¥
and p at the resonant frequency (& =2.09); an order analysis
has been performed using the first harmonic results as
reference values. We find that some of the harmonic coeffi-
cients as predicted by the numerical integration are higher
than those assumed for the method of harmonic balance.
Hence, there is some ambiguity regarding our order approx-
imation! Nonetheless, we still obtain very accurate results with
considerably less computer time.
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Stability of a Clamped-Free Rotor Partially
Filled With Liquid®

F. G. Kollmann.? A problem very similar to that treated
in this paper has been solved by the discusser’s former assis-
tant G. Lichtenberg [1]. The author states that the inviscid
analysis presented in the main body of his paper is unable to
predict the stability of the rotating system since the rotor is
unstable at any speed. Clearly this instability is due to the ex-
ternal damper. However, external damping seems to be a
secondary effect in this analysis which deals mainly with the
three-dimensional motion of the trapped fluid.

Lichtenberg analyzed the motion of an overhung rotor par-
tially filled with an inviscid fluid. External damping of this
rotor was not considered. He derived analytical expressions
for the characteristic equation of the rotor motion. For the
three-dimensional motion of the trapped fluid this solution
contains Bessel functions of the first and second kind. The
Bessel functions lead to dense sequences of singularities in a
certain region of the Q—r7—plane (@ = nondimensional
angular speed, 7 = eigenvalue). Therefore, it would be in-
teresting if the author could comment in some more detail on
his remark, that ‘‘the common Bessel functions are not
numerically independent in the range of interest.”’

Due to the mathematical difficulties mentioned,
Lichtenberg confined his numerical analysis to the planar mo-
tion of the enclosed fluid. His computed stability diagram for
one rotor showed very good correspondence with experimen-
tal results. For the rotor investigated by Lichtenberg, the
‘‘planar’’ theory predicts all measured effects with sufficient
accuracy. For completeness it is mentioned that the discusser’s
former assistant R. Wohlbriick {2] solved a more general pro-
blem. He considered again an overhung rotor. However, the
cavity of this rotor was not formed by a cylinder—as in
Lichtenberg’s analysis—but by an arbitrary surface of revolu-
tion. Again external rotor damping was not included and the
fluid was considered as inviscid. Due to the more complex
shape of the interior surface of the rotor, no analytical solu-
tion could be derived. Therefore, Wohlbriick used the Finite
Element Method. His numerically computed stability
diagrams for two different rotors (ellipsoidal and doubly con-
ical interior surface) again showed very good correspondence
with experimental results.

References

{11 Lichtenberg, G., 1982, ‘‘Vibrations of an Ellastically Mounted Spinning
Rotor Partially Filled With Liquid,”” ASME Journ. Mech. Des., Vol. 104, No.
2, pp. 345-355.

lBy S. L. Hendricks and published in the March 1986 issue of the ASME
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Professor, Technische Hochschule Darmstadt, Fachgebiet Maschin-
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[2] Wohlbriick, R., 1985, “Stabilty of a Rotor Whose Cavity has an Arbitrary
Meridian and is Partially Filled With Fluid,”’ ASME Journ. of Vibration,
Acoustics, Stress, and Reliability in Design, Vol. 107, pp. 440-445.

Author’s Closure

The author appreciates Professor Kollman’s interest in the
paper and the additional references. The paper by Lichtenberg
should have been included in the references. The fact that it
was not cited is an oversight for which I apologize. The paper
by Wohlbruck appeared after the present paper was submitted
for publication.

While damping was not highlighted in this paper, the
calculations did include the effect of the external damper. The
damping made it necessary to use Bessel Functions with com-
plex argument. In order to solve the equations numerically it
was necessary to use Hankel functions (which are simply linear
combinations of the Bessel Functions J, and Y,). This was
necessary because the more common Bessel Functions were
not numerically independent in the range of interest. This is
analogous to the situation which occurs in the solution of
X—x=0. The solution may be written in terms of cosh(x) and
sinh(x), however these are not numerically different for large
values of x. This lack of independence of the fundamental
solutions leads to numerical singularities in the solution pro-
cess. For large x it is necessary to write the solution in terms of
e* and e~ (which are just linear combinations of cosh(x) and
sinh(x)) in order to have two independent fundamental solu-
tions to the differential equation.

Hydrodynamic Lubrication in Hemispher-
ical Punch Stretch Forming?

W. R. D. Wilson? and L. Hector’. The authors are to be
congratulated for an interesting paper which couples, for the
first time, a sophisticated finite-element plasticity model with
a hydrodynamic lubrication model. This approach will even-
tually provide computer models of forming processes which
will accurately reflect the complex interactions between metal
deformation, lubrication and friction.

However, we believe that there is a serious flaw in the

3By Kuo-Kuang Chen and D. C. Sun, and published in the June 1986 issue of
the ASME JOURNAL OF APPLIED MECHANICS, Vol. 53, pp. 440-449,
4Professor and Director of the Center for Manufacturing Engineering,
Northwestern University, Evanston, IL 60201.
Graduate Research Student, Northwestern University, Evanston, 1L 60201.
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Finite Element Methods in Structural Mechanics, by C. T. F.
Ross. Ellis Horwood Limited, West Sussex, England, 1985.
319 pages. Price: $33.95/paperback; $61.95/hardcover.

REVIEWED BY W. K. LIU?

This book is indeed an introductory text for undergraduate
students and practicing engineers, The emphasis is on the
simplicity of procedures, and mathematical details are kept to
the minimum. Several examples are worked out and the ade-
quacy of current micro-computers for most applications is em-
phasized. Static analysis and vibrations are the two main
topics covered. Matrix displacement methods and the energy
methods are used to derive the element stiffness and mass
matrices. Vibration analysis is performed by modal analysis
techniques (nothing is mentioned on direct time integration).
Structural elements such as bars, torque bars, beams, frames,
grillages, plates and quadrilateral continuum elements are
described. The book concludes with a brief chapter on
nonlinear structural mechanics.

A separate chapter is devoted to grillages, which seems quite
unnecessary as a grillage is merely a combination of a beam
and a torque bar. The reviewer feels that this material can be
distributed in Chapters 4 and 7.

The sections on plate/shell finite elements are out of date.
In present day finite element plate/shell analysis, C° elements
are rapidly supplanting C! elements because of their superior
performance and versatility.

A few words of caution should be included regarding the
limitations of some finite elements; for example, locking
phenomena in an incompressible continuum, shear and mems-
brane locking in plate/shell elements, and numerical instabili-
ty arising from spurious modes. More up-to-date references
should also be included.

The author defines material nonlinearity, in Chapter 9, as
‘‘the material undergoing plastic deformation,”” Certainly,

-this is just an example of material nonlinearities and there are
other nonlinearities such as the more elementary nonlinear
elasticity.

The author mentions in the preface that “‘the book would
fill the gap between the numerous texts on traditional Strength
of Material and the postgraduate books that have been recent-
ly written on Finite Element Methods.”” This is a questionable
statement as there are numerous introductory texts such as
“Introduction to Matrix Structural Analysis,”” by H. C. Mar-
tin, ““Theory of Matrix Structural Analysis,’”’ by J. S. Prze-
mieniecki, ‘‘Applied Finite Element Analysis,”” by L. J.
Segerlind, ‘‘Finite Element Methods for Engineers,”” by R. T.

1 Associate Professor, Department of Mechanical and Nuclear Engineefing,
Northwestern University, Evanston, Ill. 60201. Mem. ASME.
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Fenner and ‘‘Concepts and Applications of Finite Element
Analysis,”” by R. D. Cook, to name a few. In total, this book
is suitable as a matrix approach to finite element primer.

Computerized Buckling Analysis of Shells, by D. Bushnell.
Martinus Nijhoff Publishers, The Netherlands, 1985. 423
pages. Price: $85.

REVIEWED BY J. ARBOCZ?

The publication of Dave Bushnell’s book could not have
happened at a better moment. It is the reviewers opinion that
with the large scale introduction of computerized structural
analysis in the practice and lately also at many technical
schools, the teaching of and the approach to solving technical
problems has been shifting in the wrong direction.

Twenty-five years ago it was so, that numerical results were
looked upon with a certain amount of distrust and they were
only accepted if supported by experimental results or some
other facts. Today, as the older generation of engineers (the
ones who obtained their degrees before the advent of com-
puters) retire and the younger ones with extensive training in
the ever-so-popular finite element technique take over, one
begins to encounter in technical discussions a new mentality;
the insight of how structures behave under loading of the older
generation is being replaced more and more by the nearly
religious faith of the younger ones in the predictions of their
favorite computer codes. This is especially true when making
buckling predictions for complex structures.

Bushnell’s book represents a very important contribution to
the discussion of how one should introduce computers when
one is teaching or performing structural analysis of buckling
sensitive thin-walled shells. On hand from many practical ex-
amples Bushnell shows that a shell design specialist, who is
aware of the latest theoretical developments and who is
familiar with the theories upon which the nonlinear structural
analysis codes he uses are based, can achieve very accurate
modeling of the collapse behavior of complex structures. On
the other hand, he also demonstrates the danger that can arise
by the use of sophisticated computational tools by persons of
inadequate theoretical background. It is to be hoped that the
failures because of unexpected buckling of the large, expensive
shell structures described in the text will convince all people
that contrary to the beliefs of some, computer codes are no
replacements - for engineering know-how and engineering
expertise.

Zprofessor of Aircraft Structures, Delft University of Technology, Depart-
ment of Aerospace Engineering, The Netherlands.
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The book is divided into nine chapters. In Chapter One the
author initially presents examples of catastrophic failure of
several large, expensive structures followed by a discussion of
what is buckling. The difference between the various types of
bifurcation buckling and nonlinear collapse is particularly well
documented. The chapter concludes with a richly illustrated
discussion of ““classical’’ buckling of cylindrical and spherical
shells, whereby experimental results are used for comparison
with theoretical predictions.

Chapter Two deals with nonlinear collapse and its relation-
ship to bifurcation buckling models. The following examples
are treated: the elastic-plastic axisymmetric creep collapse of
axially compressed monocoque cylinders and the creep col-
lapse of ring-stiffened cylinders under external hydrostatic
pressure; the general collapse of curved and straight pipes
under uniform bending and external pressure; the collapse of
cylindrical panels and shells with concentrated loads and cut-
outs and the collapse of axially compressed noncircular
cylinders. The chapter closes with the axisymmetric collapse of
a complex rocket interstage, where the local load-path eccen-
tricity of the axial compression gives rise to concentrated
bending and local plastic flow.

In Chapter Three the author discusses bifurcation buckling
cases where nonuniformity or nonlinearity of the prebuckling
state is important. Initially nonsymmetric bifurcation buck-
ling in the neighborhood of an edge is illustrated on a cylin-
drical shell under axial compression and on externally
pressurized spherical caps with end rings. Next buckling due to
localized hoop compression caused by prebuckling shape
changes is discussed. Three examples are treated: an ‘‘in-
finite” cylinder heated uniformly over half its length, a
clamped cylinder with an axial thermal gradient near the edge
and the buckling of an internally pressurized rocket fuel tank.
In the following examples of nonsymmetric bifurcation buckl-
ing of shells of revolution in which meridional tension is com-
bined with circumferential compression are presented. Besides
the buckling of complete spheres and of truncated spherical
shell segments subjected to axial tension, particular emphasis
is given to the elastic-plastic bifurcation buckling of internally
pressurized torispherical shells. The chapter closes with the
presentation of a detailed simulation study of the failure of a
large steel water tower, whereby a complex elastic-plastic
model is used which includes the effects of certain fabrication
processes such as cold bending and welding.

Chapter Four deals with the effect of boundary conditions
and eccentric loading and is devoted mostly to cylindrical
shells. Inextensional buckling results are presented for an ax-
ially compressed 5 deg cone and for a spherical shell under ex-
ternal pressure both supported at the edges by rings of square
cross section. The simulation of local plastic flow by ap-
propriate constraint condition is illustrated for a cone-cylinder
specimen under external pressure,

Chapter Five describes the buckling of shells of revolution
subjected to combined uniform loadings and to nonsymmetric
loads. Interaction curves are presented for isotropic and for
anisotropic shells under combined axial compression and in-
ternal or external pressure and under combined torsion and
external pressure. Modeling consideration for shells of revolu-
tion under nonsymmetric static or dynamic loading are
discussed. Especially interesting are the examples in which
buckling under nonsymmetric loading is estimated by a one-
dimensional numerical analysis. Also included are thermal
buckling problems of nonsymmetrically heated shells. The
chapter closes with buckling estimates for a nuclear contain-
ment vessel due to ground motion during an earthquake.

Chapter Six deals with the buckling of ring-stiffened shells.
Initially the effect of boundary conditions on the elastic buck-
ling of ring-stiffened cylinders under external hydrostatic
pressure is treated. This is followed by elastic-plastic buckling
results. Comparisons between theory and tests are included.
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Next the effects of residual stresses and deformations on
plastic buckling of ring-stiffened shells of revolution are
discussed. Modeling tips for using BOSOR 5 to calculate the
buckling loads including residual effects due to cold bending
and welding are presented. The chapter closes with a section
dealing with the effect on buckling of deformations of the ring
cross sections. General and local instability and modal interac-
tion are discussed and comparisons with tests in which local
ring deformations are important are presented.

In Chapter Seven Dave Bushnell presents a method to use a
computer code for shells of revolution to predict buckling
loads of prismatic shells and panels. The author has pioneered
this method and demonstrates its validity by analyzing a cir-
cular cylinder under external pressure as a portion of a torus.
Next the method is applied to obtain predictions of bifurca-
tion buckling loads of noncircular cylindrical shells under ax-
ial compression or external pressure and failure loads of cor-
rugated and beaded panels under axial compression. The
chapter closes with a long section on the modal interaction and
imperfection sensitivity of axially compressed prismatic
structures.

Chapter Eight contains a very concise and readable presen-
tation of the imperfection sensitivity theory by Koiter and the
Harvard school under Budiansky and Hutchinson. The author
presents the most important results of twenty-five years of in-
tensive research by many investigators in a single chapter that
excels in clarity and readability.

In Chapter Nine the buckling of hybrid bodies of revolution
is discussed, that is of shells that contain combinations of one
and two-dimensionally discretized domains, another method
where the author has made pioneering contributions. The
following examples are treated: buckling of ring-stiffened
cylindrical shells under uniform hydrostatic pressure in which
each ring and small regions on either side are modeled with
8-mode quadrilaterals of revolution, spherical shells embed-
ded in structural foam and the elastic-plastic instability of an
axially compressed shell of revolution with axisymmetric
frangible joints.

Most of the numerical results in this excellent book have
been obtained with one of the well known computer codes of
the BOSOR or STAGS family. What makes this book unique
is that the author has succeeded in providing a ‘‘feel’’ for shell
buckling based on a careful mixture of theoretical, analytical,
and numerical procedures. Many of the richly illustrated ex-
amples are written in a tutorial form, a guide-by-example for
the modeling and solving of complex nonlinear problems. It
shows convincingly that the modern structural engineer must
have a very thorough understanding of how structures behave
if he is to use the advanced computational tools successfully.
This book is a must for all those who work in the field of shell
stability.

Linear Variations, by P. C. Miiller and W. O. Schiehlen. Mar-
tinus Nijhoff Publishers, The Netherlands, 1985. 327 pages.
Price: $65.50.

REVIEWED BY R. ABEYARATNE?

This book is concerned with the vibrations of discrete,
linearized systems with many degrees of freedom. The primary
aim of the authors in writing this book was to present the sub-

3 Associate Professor, Department of Mechanical Engineering, Massachusetts
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ject in a form ‘‘allowing the use of computers for finding solu-
tions.”” The book consists of four parts: Mathematical
Description of Vibrating Systems (56 pages), Time-Invariant
Vibrating Systems (200. pages), Time-Variant Vibrating
Systems (33 pages), and Mathematical Background (30 pages).

Part I begins with an introductory discussion of the various
classifications of vibrations. This is followed by a very brief
review of kinematics, Lagrange’s equations, and the momen-
tum principles. The section closes with a chapter on the
linearization of the equations of motion and their state-space
representation.

Part II is devoted to the study of autonomous systems. It
begins with a chapter on the fundamental matrix of the system
and its use in generating the general solution of the equations
of motion. A chapter on stability and boundedness follows.
Here, stability criteria based on the characteristic equation as
well as on Liapunov’s matrix equation are discussed. This is
followed by chapters on free vibrations, forced vibrations,
and resonance. Mode shapes, lightly damped systems,
periodic excitation, vibration absorption, and parameter iden-
tification are some of the topics explored. The final chapter of
this section is devoted to random vibrations.

Part III consists of two chapters: the first is concerned with
the solution of the (nonautonomous) equations of motion and
its stability, while the second addresses parametrically excited
and forced vibrations. The final part of the book presents
background material on matrix algebra—one chapter on its
analytical aspects and a second on its numerical aspects. It
also has a brief chapter on controllability and observability.

I beleive the authors do achieve their aim of presenting the
results in a form convenient for computer implementation.
The results are presented in such a way that when analyzing a
given system, one merely needs to select a set of generalized
coordinates and write down the position vectors of the various
particles in terms of these coordinates. It is then a matter of
“substituting into a sequence of appropriate formulas®. In
fact, even the simplest of examples (e.g., the double pen-
dulum) is worked out in the book in this mechanistic manner.

This book is concerned with the mathematical results
associated with various aspects of linear vibration theory. The
physics of the subject is underplayed. My primary criticism of
the book is that I found it to be extremely concise; often, the
authors simply state results (both elementary and advanced)
without explanation, e.g., the section on Floquet Theory in
Chapter 10.

On the positive side, this book is a comprehensive source for
mathematical results in linear vibration theory of discrete
systems. It discusses the subject through both a state-space
formulation as well as directly through the equations of mo-
tion. This is a useful feature, since it helps link the traditional
mechanical engineering approach to vibrations with the more
modern literature. A second attractive feature is that in order
to illustrate the theory, the authors repeatedly use the same
four mechanical systems throughout the text, thereby giving
the book additional coherence.

Parametric Random Vibration, by R. A. Ibrahim, Wiley,
New York, 1985. 342 pages. Price: $59.95.

REVIEWED BY T. FANG* AND E. H. DOWELLS

This is the first book devoted to parametric random vibra-
tions. It systematically presents the methods and recent results

4Visiting Professor on leave from Northwestern Polytechnical University,
Xian, China. »
J. A. Jones Professor, Dean, School of Engineering, Duke University,
Durham, North Carolina 27706.
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on the subject. The book is really a summary of the state-of-
the-art culled from hundreds of published papers and
technical reports. It consists of nine chapters, dealing with the
mathematical basis, analytical techniques, and theoretical and
experimental results for the behavior of random parametric
systems.

The first chapter is an introduction, in which different kinds
of motions, i.e., chaotic responses, random responses due to
pseudo-random excitations or random initial conditions, and
parametric random vibrations, are briefly reviewed.

The next four chapters introduce the related mathematics of
stochastic analysis. Fundamental concepts of random pro-
cesses and elements of stochastic calculus are outlined in
Chapters 2 and 3, respectively. Chapters 4 and 5 contain the
essential tools for modeling and analyzing random parametric
systems, i.e., the Itd and Stratonovich stochastic calculus, the
Wong-Zakai and Khas’miniskii Limit theorems, the Fokker-
Planck-Kolmogorov equation and its applications, and the
moment equation method. The latter two chapters are par-
ticularly well written with an emphasis on clarifying the con-
troversies and disputes which occurred in the 1960’s.

The last four chapters discuss parametric random vibrations
per se. Chapter 6 describes various stochastic averaging
methods, together with their applications to the study of
stochastic behavior of linear or nonlinear systems. The recent-
ly developed method of stochastic averaging of the energy
envelope appears to be very useful for ‘‘quasi-conservative’’
nonlinear systems. Chapter 7 is devoted to parametric
stochastic stability. Various types of stochastic stability are
summarized. Two of them, i.e., the stability of moments and
almost sure stability, are discussed in some detail. Stability
boundaries obtained by different theorems for typical prob-
lems are compared. Parametric random responses are con-
sidered in Chapter 8. A number of techniques are presented
here to determine the random responses of linear and
nonlinear dynamic systems, including helicopter rotor blades
in atmospheric turbulent flow, liquid sloshing under
parametric random excitations, and coupled beams with
autoparametric resonance. Special attention is given to the
moment equation method. Both Gaussian and non-Gaussian
closure techniques are used and the corresponding results are
compared with each other and also compared with those ob-
tained by stochastic averaging methods. It appears that non-
Gaussian closure schemes are more reasonable for nonlinear
systems. The last chapter compiles the experimental results
reported in the literature.

Historical reviews of the techniques, theories, and their ap-
plications are distributed in related chapters. An extensive list
of references is appended. Among the total of 545 references,
408 of them are cited explicitly.

The book is of a graduate level, well written, and useful to
engineering researchers and scientists working in those fields
involving parametric random vibrations.

Numerical Simulation of Fluid Flow and Heat/Mass Transfer
Processes (Lecture Notes in Engineering), edited by N. C.
Markatos, D. G. Tatchell, M. Cross, and N. Rhodes.
Springer-Verlag, New York, 1986. 482 pages. Price: $36.00.

REVIEWED BY P. D. RICHARDSONS®

The first decision one faces in implementing numerical
studies in applied mechanics is whether to generate one’s own

6professor of Engineering and Physiology, Brown University, Providence, R1
02912. Fellow ASME.
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ject in a form ‘‘allowing the use of computers for finding solu-
tions.”” The book consists of four parts: Mathematical
Description of Vibrating Systems (56 pages), Time-Invariant
Vibrating Systems (200. pages), Time-Variant Vibrating
Systems (33 pages), and Mathematical Background (30 pages).

Part I begins with an introductory discussion of the various
classifications of vibrations. This is followed by a very brief
review of kinematics, Lagrange’s equations, and the momen-
tum principles. The section closes with a chapter on the
linearization of the equations of motion and their state-space
representation.

Part II is devoted to the study of autonomous systems. It
begins with a chapter on the fundamental matrix of the system
and its use in generating the general solution of the equations
of motion. A chapter on stability and boundedness follows.
Here, stability criteria based on the characteristic equation as
well as on Liapunov’s matrix equation are discussed. This is
followed by chapters on free vibrations, forced vibrations,
and resonance. Mode shapes, lightly damped systems,
periodic excitation, vibration absorption, and parameter iden-
tification are some of the topics explored. The final chapter of
this section is devoted to random vibrations.

Part III consists of two chapters: the first is concerned with
the solution of the (nonautonomous) equations of motion and
its stability, while the second addresses parametrically excited
and forced vibrations. The final part of the book presents
background material on matrix algebra—one chapter on its
analytical aspects and a second on its numerical aspects. It
also has a brief chapter on controllability and observability.

I beleive the authors do achieve their aim of presenting the
results in a form convenient for computer implementation.
The results are presented in such a way that when analyzing a
given system, one merely needs to select a set of generalized
coordinates and write down the position vectors of the various
particles in terms of these coordinates. It is then a matter of
“substituting into a sequence of appropriate formulas®. In
fact, even the simplest of examples (e.g., the double pen-
dulum) is worked out in the book in this mechanistic manner.

This book is concerned with the mathematical results
associated with various aspects of linear vibration theory. The
physics of the subject is underplayed. My primary criticism of
the book is that I found it to be extremely concise; often, the
authors simply state results (both elementary and advanced)
without explanation, e.g., the section on Floquet Theory in
Chapter 10.

On the positive side, this book is a comprehensive source for
mathematical results in linear vibration theory of discrete
systems. It discusses the subject through both a state-space
formulation as well as directly through the equations of mo-
tion. This is a useful feature, since it helps link the traditional
mechanical engineering approach to vibrations with the more
modern literature. A second attractive feature is that in order
to illustrate the theory, the authors repeatedly use the same
four mechanical systems throughout the text, thereby giving
the book additional coherence.

Parametric Random Vibration, by R. A. Ibrahim, Wiley,
New York, 1985. 342 pages. Price: $59.95.

REVIEWED BY T. FANG* AND E. H. DOWELLS

This is the first book devoted to parametric random vibra-
tions. It systematically presents the methods and recent results
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on the subject. The book is really a summary of the state-of-
the-art culled from hundreds of published papers and
technical reports. It consists of nine chapters, dealing with the
mathematical basis, analytical techniques, and theoretical and
experimental results for the behavior of random parametric
systems.

The first chapter is an introduction, in which different kinds
of motions, i.e., chaotic responses, random responses due to
pseudo-random excitations or random initial conditions, and
parametric random vibrations, are briefly reviewed.

The next four chapters introduce the related mathematics of
stochastic analysis. Fundamental concepts of random pro-
cesses and elements of stochastic calculus are outlined in
Chapters 2 and 3, respectively. Chapters 4 and 5 contain the
essential tools for modeling and analyzing random parametric
systems, i.e., the Itd and Stratonovich stochastic calculus, the
Wong-Zakai and Khas’miniskii Limit theorems, the Fokker-
Planck-Kolmogorov equation and its applications, and the
moment equation method. The latter two chapters are par-
ticularly well written with an emphasis on clarifying the con-
troversies and disputes which occurred in the 1960’s.

The last four chapters discuss parametric random vibrations
per se. Chapter 6 describes various stochastic averaging
methods, together with their applications to the study of
stochastic behavior of linear or nonlinear systems. The recent-
ly developed method of stochastic averaging of the energy
envelope appears to be very useful for ‘‘quasi-conservative’’
nonlinear systems. Chapter 7 is devoted to parametric
stochastic stability. Various types of stochastic stability are
summarized. Two of them, i.e., the stability of moments and
almost sure stability, are discussed in some detail. Stability
boundaries obtained by different theorems for typical prob-
lems are compared. Parametric random responses are con-
sidered in Chapter 8. A number of techniques are presented
here to determine the random responses of linear and
nonlinear dynamic systems, including helicopter rotor blades
in atmospheric turbulent flow, liquid sloshing under
parametric random excitations, and coupled beams with
autoparametric resonance. Special attention is given to the
moment equation method. Both Gaussian and non-Gaussian
closure techniques are used and the corresponding results are
compared with each other and also compared with those ob-
tained by stochastic averaging methods. It appears that non-
Gaussian closure schemes are more reasonable for nonlinear
systems. The last chapter compiles the experimental results
reported in the literature.

Historical reviews of the techniques, theories, and their ap-
plications are distributed in related chapters. An extensive list
of references is appended. Among the total of 545 references,
408 of them are cited explicitly.

The book is of a graduate level, well written, and useful to
engineering researchers and scientists working in those fields
involving parametric random vibrations.

Numerical Simulation of Fluid Flow and Heat/Mass Transfer
Processes (Lecture Notes in Engineering), edited by N. C.
Markatos, D. G. Tatchell, M. Cross, and N. Rhodes.
Springer-Verlag, New York, 1986. 482 pages. Price: $36.00.
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The first decision one faces in implementing numerical
studies in applied mechanics is whether to generate one’s own
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