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G.J. Dvorak 
Department of Civil Engineering, 
Rensselaer Polytechnic Institute, 

Troy, NY 12180 
Fellow, ASME 

Thermal Expansion of Elastic-
Plastic Composite Materials 
Exact relationships are derived between instantaneous overall thermal stress or 
strain vectors and instantaneous overall mechanical stiffness or compliance, for two 
binary composite systems in which one of the phases may deform plastically. Also, 
the local instantaneous thermal strain and stress concentration factors are related in 
an exact way to the corresponding mechanical concentration factors. The results de­
pend on instantaneous thermoelastic constants and volume fractions of the phases. 
They are found for fibrous composites with two distinct elastically isotropic or 
transversely isotropic phases, and for any binary composite with elastically isotropic 
phases. The results indicate that in the plastic range the thermal and mechanical 
loading effects are coupled even if the phase properties do not depend on changes in 
temperature. The derivation is based on a novel decomposition procedure which 
shows that spatially uniform elastic strain fields can be created in certain 
heterogeneous media by superposition of uniform phase eigenstrains with local 
strains, caused by piecewise uniform stress fields which are in equilibrium with 
prescribed surface tractions. The method is extended to discretized microstructures, 
and also to the analysis of moisture absorption and phase transformation effects on 
overall response and on local fields in the two composite materials. 

1 Introduction 

The response of elastic composite materials to spatially 
uniform changes in temperature is well understood. An essen­
tial contribution to the solution of this problem was made by 
Levin (1967), who found that macroscopic thermal expansion 
coefficients of a composite medium, consisting of two distinct 
isotropic phases of arbitrary shape, depend in a unique way on 
overall elastic moduli of the aggregate and on thermoelastic 
constants of the phases. Thus, if the elastic moduli are known, 
the thermal expansion coefficients can be calculated. This line 
of inquiry was extended by Shapery (1968), who derived 
bounds on thermal expansion coefficients of multi-phase com­
posites with isotropic phases, while Rosen and Hashin (1970) 
applied Levin's approach to binary composites consisting of 
anisotropic phases, and they also found bounds on overall 
thermal expansion coefficients of multiphase materials. Bu-
diansky (1970) gave self-consistent estimates of several ther­
mal and thermoelastic properties of multiphase isotropic mix­
tures. Among the more recent contributions to the subject are 
the papers by Laws (1973) and Craft and Christensen (1981). 

The response of elastic-plastic composite materials to 
uniform thermal changes has been explored only to a limited 
extent. This is a more difficult problem because at least one of 
the phases is inelastic, and the deformation of the phases and 
of the composite is affected both by the overall thermal 
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change and by the current macroscopic mechanical loading. In 
the plastic state the thermal and mechanical loading effects are 
coupled, even if the mechanical properties of the phases do 
not depend on temperature. The problem is, of course, 
nonlinear and must be solved in an incremental way. 
Therefore, the connection between the two effects must be ex­
amined within a combined load increment. A representative 
volume element of the composite is first subjected to a certain 
uniform initial macroscopic stress or strain and to a uniform 
thermal change; then, both the stress or strain and the 
temperature experience a small simultaneous change to 
another uniform state. Overall instantaneous stiffness and 
compliance, and thermal stress and strain vectors are sought. 

Earlier solutions of problems of this kind have been limited 
to simple loading situations in fibrous composites, such as 
pure thermal change (De Silva and Chadwick, 1969) or ther­
mal change combined with axisymmetric mechanical loads 
(Dvorak and Rao, 1976). More recently (Dvorak, 1983) it was 
shown that the total overall strain increment caused in a 
prestressed fibrous composite by a small uniform thermal 
change can be related in an exact way to thermoelastic con­
stants of the phases and to instantaneous overall compliance. 
No restrictions need to be imposed on the type of prestress or 
on the matrix constitutive law except for plastic incom-
pressibility, but the fiber must be isotropic or transversely 
isotropic and remain elastic. This result has been applied in 
analysis of a composite cylinder element (Dvorak and Wung, 
1984) subjected to axisymmetric mechanical loading, uniform 
thermal changes, and variations in matrix yield stress. 

The present paper develops the connections between overall 
instantaneous mechanical and thermal properties in a more 
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general way. First, it is shown that the overall thermal stress 
and strain vectors for an elastic fibrous composite with 
transversely isotropic phases can be obtained through super­
position of certain uniform fields in the phases, and local 
fields caused by a uniform stress or strain. A similar result is 
derived for any composite consisting of two isotropic phases. 
These results are then utilized to find instantaneous ther­
moplastic properties and local fields of these composite 
systems for simultaneous mechanical and thermal load in­
crements. Extensions of the results to discretized microstruc-
tures, and to additional load effects, such as phase transfor­
mations and moisture absorption, are discussed as well. 

2 Elastic Fibrous Composite 

A binary composite material consists of a matrix reinforced 
by aligned and bonded cylindrical fibers. Both phases are 
assumed to be homogeneous and transversely isotropic about 
the fiber direction x3. In the transverse xxx2 plane, the cross 
sections and distribution of the phases can be arbitrary pro­
viding that the composite is statistically homogeneous, 
transversely isotropic, and free of voids. 

A representative volume element V of the composite is 
selected and subjected to a certain loading or deformation 
history which is imposed through application of uniform 
overall stresses a" or strains i° to the surface S of volume V. 
Also, a certain uniform thermal change has been applied such 
that the current temperature in V is constant and equal to 60. 
At this particular point of the loading sequence simultaneous 
increments of da and dd, or de and dd, are applied to V. 

The response of the composite to these load increments is 
described by constitutive equations: 

di = Mdo + mdO, da = Lde-\dd, (1) 

where L,M are (6x6) overall stiffness and compliance 
matrices, and m,l are (6x1) overall thermal strain and stress 
vectors.1 

While Mand L are known, we wish to determine the vectors 
m and I. To this end it is necessary to specify the constitutive 
equations for field averages of the phases: 

der=Mrdar + mrdQ, dar=Lrdtr~\rdd (r=f,m) (2) 

which are analogous to equation ( l ) ; / ,w indicate the "fiber" 
and "matrix" phases. In elastic composites, these phases are 
interchangeable and f,m are used merely for convenience of 
notation. 

Since both the composite and each of the phases are 
transversely isotropic about x3, it is possible to write a subset 
of equations (1) and (2) which relates the first two stress and 
strain invariants. With top bars and subscripts r, f,m omitted 
in equations (1) and (2), one obtains (Dvorak and Bahei-El-
Din, 1979): 

* > ] 

de2J 

{do,~ 

^da2^ 

1 

~~k~E 

l_ r 

n -(' 

_ -l k 

~k r 

j n 

Cdex 

1*2 

Cda 

\da 

1 
) " 

dd 

ka + tfi 

to + n(3 
dd 

(3) 

(4) 

where k,(,n are Hill's (1964) elastic moduli, E = n — l2/k, a 
= 2a r , /S = aL, and aT and aL are linear coefficients of ther­
mal expansion in the transverse plane and longitudinal direc­
tion, respectively. The strain and stress invariants are defined 
as: 

We use the customary notation (Hill, 1963; Laws, 1973) where, except as 
noted, (6x6) matrices are denoted by lightface uppercase Latin letters, and 
(6x 1) vectors by boldface lowercase Latin or Greek letters, Top bars denote 
overall volume averages. 

de7 = de-. 

da i = — (don + da22) da2 = da^ 

(5) 

(6) 

With appropriate values of elastic moduli and coefficients 
a,(3, equations (3) to (6) can be applied either to the composite 
medium or to each of the two phases. 

As long as M,L do not depend on d, m on a, and 1 on i, the 
thermal and mechanical contributions to di and da in equa­
tion (1) can be found separately and superimposed. By 
assumption M and L are known, hence the first terms on the 
right-hand side of equation (1) are evaluated without difficulty 
for any given do or di. To find m and 1, and the second terms 
in equation (1), we utilize the decomposition procedure of 
Dvorak (1983). 

In the first step of the procedure the fiber and matrix phases 
are separated and surface tractions which preserve the current 
local stresses a° and strains t° are applied to each phase r = 
f,m. Alternatively, surface displacements corresponding to e° 
may be prescribed to preserve a°. In addition, a uniform ther­
mal change dd is applied to both phases. The local strains 
caused by dd would make the phases incompatible if the com­
posite was to be reassembled. Therefore, uniform stresses da\, 
dar

2 of as yet unknown magnitude are applied to the phases 
simultaneously with dd. (The top hats indicate auxiliary 
uniform fields used in the decomposition and reassembly of 
the composite.) This leads to the following uniform strain in­
crements in the separated phases: 

de{ = (njdo{ - ljdd%)/kfEf + ctjdd 

de£=(- ifda{ + kfddfr/kj-Ef + $jdd 

def = (n,„daT -emda'2")/k,„Em + amdd 

di"2' = (-emddT + kmdd2")/kmEm + i3,„dd 

(7) 

In the second step of the procedure, the stresses da\ and da2 

must be adjusted to assure compatibility of the phases and 
equilibrium of these stresses at phase interfaces and on the sur­
face S of the representative volume V. The strain and stress in­
crements in equation (7) obviously satisfy the equations dt\ = 
2der

u = 2de22 and dai\ = dar
n = dar

22 in each phase r = f,m. 
Shear components vanish in V, except in the immediate vicini­
ty of fiber ends. Since the magnitude of average fiber diameter 
is assumed to be very small, the shear components may be 
neglected. Therefore, compatibility and equilibrium condi­
tions for the increments can be written in terms of the in­
variants as follows: 

de?=de{, di2"=def
2 

da{ = daf=dST 

Cjda{ + cmda'2
n=dSA. 

(8) 

(9) 

(10) 

The dST and dSA are surface stresses which need to be added 
on S to preserve overall equilibrium of V while da\ and da2 are 
applied to the phases. The magnitudes of phase volume frac­
tions Cf + cm = 1 need also be known at this point; Cj > 0. 

All strain and stress increments in equation (7) are uniform 
and transversely isotropic, hence equations (8) to (10) are ex­
act for any transverse plane geometry. These relations suggest 
that spatially uniform strain fields can be created in certain 
heterogeneous media by superposition of uniform eigenstrains 
ardd, (3rdd in the phases, with local strains caused by piecewise 
uniform stress fields which are in equilibrium with surface 
stresses dSA, dST. 

Internal equilibrium and compatibility of the phases in V 
depend only on the eight unknown strains and stresses de\, 
der

2, db\, do2, and not on dSA, dST. These unknowns can be 
determined from equations (7), (8), and (9), when an addi­
tional constraint is imposed. 

A particular choice which will be useful in the sequel is: 
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daf=pdaf, (11) 

where p ^ 0 is a constant. 
Now, dST and dSA follow from equation (7), after a 

substitution of equations (9) and (10), and from equation (8): 

aldST + a2dSA+aidd = 0 (12) 

bidST + b2dSA+b3dd = 0 (13) 

where: 
'V rhn_ _,_„[ cm^f , C 1 

^ V ^m-^ffi k F 
n"mJ-'m -

a2=-

6i=-

1 *, D/ 
C / kjEf 

a3=af-

kjEj kmEm 

r cm | i I 
L c,Z?, £,„ J + p\—— + 

& , = • 

C/£> 
&3=-/3 / + /3,„ 

and: 

dST = sTdd, dSA=sAd6 (14) 

sT=(a2b1-a3b2)/(a,b2-a2bl) (15) 

sA = (a3bx-alb3)/(alb2-a2bl) (16) 

At this point we change from the invariants (5), (6) to the 
(6 x 1) stress and strain vectors and write 

1 
d?n=d¥22 = —d^=gldd 

d%3 = d%=g2d0 
(17) 

(18) 
de?3=de2"=h2d6 

From equation (7), with equations (8) to (10), (15), and (16): 

Si = [_— ( > V - Y ^ ) / ( £ / £ / ) J . S T + — af 

g2 = l(.-if+ykf)/(kfEf)]sT + ef 

r 1 1 1 d9) 

where 

y=(SA-PCmST)/(CjST), (20) 

and, according to equation (8): 

gi=hu g2 = h2. (21) 

Analogous results for stresses are: 

fi?ff[, = da{2 = dd{=sTdd 

dbf3i = dd{ = ysTdd 

dafl=da'2"2=dal{,=sTde 

dd%=dd'2"=psTd6 

(22) 

(23) 

In the final step of the decomposition procedure, the com­
posite is reassembled and the surface stresses dST, dSA re­
moved. Of course, the local strains and stresses (17) to (23) 
already assure that the phases are compatible and in internal 
equilibrium; in fact thet are equal to local fields caused in the 
composite by simultaneous application of dd, dSA, and dST. 
They must now be added to local fields caused in the com­
posite by surface stresses - dSr, — dSA • 

The final results assume a concise form with the definitions 

(24) 

h = [h, h, h2000]T 

sa = [sTsTsA0 0 0]T 

7=[1 I7OOOF 

p = [ l lpOOO]7" 

where [ ] T denotes a transpose and the coefficients appear in 
equations (11), (15), (16), and (19) to (21). 

Therefore, fordo = 0, dd * 0 in ( l , ) : 

de = mdd (25) 

m = h - M s „ (26) 

where m is the overall thermal strain vector and M is the 
known overall compliance. 

Also, suppose that the local stresses in the phases are written 
in terms of concentration factors: 

dar = Brda + brdd, (r =f,m) (27) 

and that Bm, Bj- are known. 
With regard to equations (22) and (23) one obtains: 

" / -Sfy-Bys, '/"" (28) 
*>m=STP-BmSa 

Similar results can be found for a fully constrained com­
posite subjected to a uniform thermal change. Recall that the 
strains (17) and (18) are actually equal to overall strains under 
dd, dSA, dST. This follows immediately from equations (8) 
and (21). These overall strains must be removed, and the local 
fields adjusted accordingly. 

Therefore, for de = 0, dd * 0 in (12): 

da=-\dd 

1 = - s „ + L h 

where 1 is the overall thermal stress vector, and L is the known 
overall stiffness. 

Also, if the local strains are written in terms of concentra­
tion factors: 

der=Arde-ardd, (r=f,m) (30) 

and if Am, Af are known, one obtains with the help of equa­
tions (17) to (21): 

-7)h (31) 

(32) 

af=(Af-I)h, am = (Am-

To facilitate applications we note that 

m = [ a T a j . a L 0 0 0 ] r 

where aT, aL are linear coefficients of thermal expansion in 
the transverse plane, and in the longitudinal direction. 

For any binary fibrous composite with known phase proper­
ties and phase volume fractions, the effect of thermal change 
is reduced to equivalent mechanical loads and to certain 
uniform fields in the phases. Thus m and 1 are found in terms 
of M and L, and ar, b r in terms of Ar, Br. All these relations 
are exact. While the constant p is a free parameter, none of the 
results actually depend on p. For each p one obtains by super­
position a solution to the same boundary value problem. Ac­
cording to the uniqueness theorem in the theory of elasticity, 
all such solutions must coincide. This can be verified by 
numerical calculations. 

3 Two Isotropic Elastic Phases 

Suppose that a composite aggregate consists of two perfect­
ly bonded elastic phases, which are distinct but isotropic. The 
microstructural geometry can be arbitrary, providing that the 
composite is statistically homogeneous and free of voids. The 
composite itself need not be isotropic, it can be reinforced by 
aligned, braided, or otherwise distributed continuous fibers, 
short fibers, particles of any shape, and by combinations of 
such reinforcements. 
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Assume that the overall constitutive relations are again 
given by equation (1) and that the overall compliance M and 
stiffness L are known. Also, let local fields be described by 
equations (27) and (30), and assume that Ar, Br are known. As 
in the previous section we utilize the subscripts f,m to identify 
the two phases, even though we no longer require that either 
phase be of cylindrical shape. Local phase properties need be 
known only in terms of bulk moduli Kf, Km, and linear ther­
mal expansion coefficients a.j, am. 

We again pose the problem described in the previous sec­
tion: The composite has been loaded by a certain uniform 
overall stress a", or strain e°, and uniform temperature d0. 
Simultaneous increments da and dd, or de and dd are applied. 
The response of the aggregate is sought in terms of the overall 
thermal strain and stress vectors m and 1, and phase concentra­
tion factors ar, br, {r = f,m). 

As in Section 2, the phases are first separated, and loaded 
by dO and by certain unknown tractions which correspond to 
isotropic stresses dar. The nonvanishing stress and strain in­
crements are 

dd{{ = d¥22 — d&n — dSf 

dafi=daT2 = daT3=dSm 

defu = def22 = d^ = dSf/(3Kf) + otjdB 

d&Pi = di?2 = de% = dSm/(3K,„) + a,„dd 

To assure equilibrium and compatibility: 

dSf = dSm = dS, de{j = de%, (34) 

a n d dS = sdd, s=-3(af~am)/(.l/Kf-l/Km) (35) 

The composite is now loaded by three equal overall normal 
stresses dS, and by dd. Local strain and stress fields follow 
from equations (33) and (34). 

Finally, the composite is reassembled and surface stresses 
dS are removed. 

Let 

q = s/(3Kf)+af = s/(3Km)+am 

q = ? [ 1 1 1 0 0 0 ] r (36) 

s = s[l 1 1000] 7 -

In analogy with equations (25) to (30), one obtains 

For do = Q,dd ^ 0, in equation (1) 

di = mdd 
<37> m = q — M s 

dor = brdd (r=f,m) 

bf = (I-Bf)s, bm = (I-Bm)s 

For de = 0, dd ?* 0 in equation (1): 

da=-\dd 

1= - s + Lq 

dtr = 2irdd (r=f,m) 
a / = (4/—7)«1. am=04m- /)<l 

If the composite is macroscopically anisotropic, then M and 
L can depend on up to 21 elastic constants, and 

m = [ a , a 2 a 3 a4 a5 a6]
T (41) 

where ax to a6 are overall linear thermal expansion coeffi­
cients, defined by (1,) at da = 0. For a fibrous composite 
which is transversely isotropic one recovers equation (32). For 
an isotropic composite all a in equation (32) become equal to 

(39) 

(40) 

a = a m + -
(af-am) 

(J—L) 
U L) (42) 

This last equation was derived in a different way by Levin 
(1967). 

4 Elastic-Plastic Composites 

(/) Fibrous Composites. Consider again the fibrous com­
posite system of Section 2. Suppose that the matrix phase is 
elastic within a certain stress region, but becomes elastic-
plastic when a given yield condition has been satisfied. The 
fiber remains elastic until failure. This suggests a metal 
matrix, which is usually elastically isotropic. Thus the matrix 
elastic moduli in equations (3) and (4) become related as 
follows: 

g = fa m 

nm 2 ( 1 - » m ) 

" ^m ' "*m» *-*m "m ^m/ ^m 

2v„ 

k F 
, a m = 2/?„ 

(43) 

where K is the overall bulk modulus. 

k F F 
lym m J-'m 

where Em, vm are the isotropic constants, and /3,„ is the linear 
thermal expansion coefficient of the matrix. 

In the plastic range the matrix response is assumed to be 
piecewise linear and given by equation (2), but M,„ and Lm, 
mm and lm are now instantaneous compliance and stiffness 
matrices, and thermal vectors, at a particular point of a 
loading path. We assume that M,„ and Lm are symmetric, 
satisfy the requirement of plastic incompressibility of the 
matrix, and do not depend on d; mm and lm are piecewise con­
stant, within each dd, but their values may change with 9. 

Furthermore, we assume that the response of the composite 
to any purely mechanical loading by uniform do or by di is 
also piecewise linear and described by equation (1). Suppose 
that instantaneous overall properties M and L in equation (1), 
as well as instantaneous phase concentration factors An Br in 
equation (27) can be evaluated for any given mechanical 
loading step. The instantaneous thermal properties m, 1, and 
concentration factors ar and br are to be determined. 

Therefore, we again pose the problem stated in Section 2: A 
representative volume V of the composite has been subjected 
to a certain loading or deformation history such that the cur­
rent overall stresses and strains in V are uniform and have 
magnitudes 6° and i°. Also, the current temperature in F is 
constant and equal to d0. At this particular point of the 
loading sequence we apply simultaneous increments of do and 
dd, or de and dd in V, and wish to evaluate instantaneous 
values of M, L, m, 1, and of the concentration factors Ar, Br, 
ar, b r during the loading step. 

This problem is solved by the decomposition procedure of 
Section 2. Initially, the composite is subjected to the pre­
scribed thermal change dd and to simultaneously applied sur­
face stresses dST and dSA given by equations (14) to (16). 
These thermal and mechanical loads create local strain in­
crements dem in equation (18) and stress increments dam in 
equation (23). In general, these strain increments may be in­
elastic. However, since the matrix is plastically incompressi­
ble, it is possible to assure that these increments correspond to 
purely elastic deformation in both phases under dd, dSA and 
dST. This is obviously the case when one chooses p = 1 in 
equation (11), so that the stress and strain increments in the 
matrix are isotropic. 

The stresses dSA and dST must now be removed. This may 
lead to plastic straining in the matrix, which corresponds to or 
is caused by dd. Also, if an overall stress increment do is ap­
plied simultaneously with dd, then dSA, dST, and do must be 
added and applied together. 

The final results for a plastically deforming composite can 
now be written on the basis of equations (24) to (31). With p = 
1 in equations (11) to (23), we retain the definitions (24) of vec­
tors h, s„ and 7 and of their components but replace that of p 
with 
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1 = [1 1 1 0 0 0 ] T . (44) 

For loading by da anddd, the overall strain increment de is: 

de = hdd + M(da-sadd). (45) 

A comparison with (1 ^) again yields the form (26) 

m = h - M s a (46) 

We note that for p = 1 and an isotropic matrix one obtains 
from equations (19) and (43) the following expression for h in 
equation (24): 

h = hi (47) 

where 

h = hi=h2=sT/OKm)+Pm, 

and sT is given by equation (15). 
Therefore, the first term in equation (45) is an overall 

isotropic strain increment, and, according to equation (18), it 
is equal to the matrix strain increment. The loading vector da 
— sa dd represents total mechanical load that must be applied 
to the composite to reflect the effect of simultaneous applica­
tion of da and dd. M is the instantaneous overall compliance 
corresponding to this loading vector. 

The stresses caused in the phases by simultaneous applica­
tion of da and dd are: 

do. 

dan 

(48) 
--sTydd + Bf(do-sadd) 

= sTldd + Bm(dd-sad6) 

where Bf, Bm are the instantaneous concentration factors for 
the overall mechanical load increment da — sadd. If these in­
crements are described by equation (27), then the instan­
taneous thermal stress concentration factors become: 

bf = sTy-Bfsa 

--sA-Bmsa 

(49) 

Equations (45) to (49) convert in an exact way the ther-
momechanical problem into a mechanical loading problem 
along the incremental path da - sa dd. 

Next, consider loading by de and dd. The composite is first 
subjected to loading by dd, dSA, and dST, which causes 
isotropic strains h dd in both the composite and matrix. Since 
the overall strain increment is now prescribed, the h dd and 
any additional overall strains must be equal to de. Hence, the 
overall stress increment is: 

da = sadd + L(de-hdd) 

A comparison with (12) again yields (29): 

1= -sa+Lh. 

(50) 

(51) 

While s„ is not isotropic, together with dd it causes an isotropic 
stress increment sT 1 dd in the matrix. This is found from 
equation (23) at p = 1. Accordingly, plastic loading of the 
composite is caused only by the second term in equation (50). 
The overall mechanical strain is equal to de - h dd. L is the in­
stantaneous overall stiffness corresponding to this strain 
increment. 

The strain increments in the phases are: 

(52) 
def = hdd+Af(de- hdd) 

dem = hdd+A,„(de- hdd) 

where A{, Am are instantaneous strain concentration factors 
for overall strain de - hdd. If equation (30) is used, then the 
instantaneous thermal strain concentration factors are: 

af=(Af—I)h 
(53) 

Inasmuch as the instantaneous M and L may have as many 
as 21 independent coefficients, the vectors m in equation (46) 
and 1 in equation (51) may have 6 independent coefficients. 

For example, m assumes the form (41), with a, (;' = 1 to 6) 
representing instantaneous thermal expansion coefficients of 
the composite. 

As in the previous case, equations (50) to (52) convert in an 
exact way the thermomechanical problem into a mechanical 
deformation problem along the path de — hdd. It is seen that 
in both cases the thermal and mechanical effects are coupled, 
even though phase mechanical properties do not depend 
directly on temperature. 

(il) Two-Phase Composites. Finally, we consider the 
two-phase composite with isotropic phases of arbitrary 
geometry, Section 3. The reinforcement phase (/) is assumed 
to remain elastic, while the matrix phase (w) may become 
elastic-plastic when a given yield condition has been satisfied. 
In the plastic region, the matrix constitutive relation is de­
scribed by equation (2), with Mm and Lm replaced by instan­
taneous compliance and stiffness. Again, Mm and Lm are 
assumed to be piecewise linear, symmetric, and satisfy the re­
quirement of plastic incompressibility of the matrix. Also, we 
assume that overall instantaneous properties M and L of the 
composite, as well as the instantaneous concentration factors 
An Br can be evaluated for any purely mechanical overall 
stress or strain increment in the elastic and plastic range. 

To find instantaneous thermal properties m, 1, and the con­
centration factors ar, b r , we again consider a representative 
volume V of the composite which has been loaded to current 
uniform overall stress a0, strain e°, and temperature 60. The 
volume Kis now subjected to additional increments of da and 
dd, or de and dd. As in Section 3, we apply overall increments 
of temperature dd and of isotropic stress dS, with dS given by 
equation (35). Resulting phase stresses and strains follow from 
equation (33), they are isotropic and by assumption cannot 
cause plastic deformation in the matrix. The surface tractions 
or strains must now be adjusted to satisfy the prescribed da or 
de at the boundary S of V. 

For the case dd and da applied simultaneously one obtains 
the overall composite strain increment 

de = qdd + M(da-sdd) (54) 

where q and s are given by equations (35) and (36), and M is 
the overall instantaneous compliance for the mechanical stress 
increment da - s dd. 

A comparison with (1,) again yields the form (37) 

m = q—Ms (55) 

The stresses caused in the phases are: 

(56) 
dof = sdd + Bf(da-sdd) 

dam = s dd + B„, (da-s dd) 

where Bj, B,„ are instantaneous stress concentration factors 
for the overall mechanical load increment do - s dd. From 
equations (27) and (56), the instantaneous thermal stress con­
centration factors are: 

b,= (I-Bf)s, b,„ = (I-Bm)s (57) »f-yi-ofl 

For the case of dd and de applied together, one obtains the 
overall stress increment 

do = sdd + L(de-qdd) (58) 

and 

l = - s + Z,q (59) 

where L is the instantaneous composite stiffness for the 
overall strain increment de - q dd, and q is given by equation 
(36). The phase strain increments in this case are 

def = qdd + Af(de-qd6) 

de,„ = qdd+Am(de-qdd) 

and the instantaneous concentration factors: 

(60) 
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»/=(Af~I)q, am=(Am-I)q (61) 

where Aj-, Am are instantaneous strain concentration factors 
for an overall mechanical strain increment equal to di — q dd. 

Equations (54), or (58), again convert in an exact way the 
thermomechanical loading problem into a mechanical one 
along a loading path do - s dd, or a strain path di - q dd, 
respectively. As in the case of a fibrous composite, the thermal 
and mechanical loading effects are coupled in the instan­
taneous M, L, and Ar, Br. 

5 Discretization of the Phases 

Results of the previous sections depend on the availability 
of overall instantaneous mechanical stiffnesses, compliances, 
and phase concentration factors in each loading step. These 
quantities need to be evaluated for a certain model geometry 
of the composite material. An important consideration in the 
choice of a material model is the fact that the thermal loading 
paths da - sa dd in equation (45) and da - s dd in equation 
(54), as well as the thermal strain paths di - h dd in equation 
(50) and di - q dd in equation (58), may have a significant 
isotropic component. That is easily seen from the definitions 
(24), (36), and (47) of sa, s, h and q. It follows that the 
material model chosen for analysis of the mechanical response 
must give reasonably accurate predictions when the composite 
is loaded by isotropic overall stresses or strains. This restric­
tion may exclude certain models which are primarily useful in 
predicting the behavior of a fibrous lamina under in-plane 
loads, such as the VFD model (Dvorak and Bahei-El-Din, 
1982). 

Another important consideration in the choice of a material 
model is the fact that when the matrix phase becomes plastic, 
the local properties (2) are stress-dependent, and therefore, Lm 

and Mm are no longer spatially uniform. Even if (2) are 
regarded as relations for averages in the phases, the phase 
properties need to be determined for the actual local fields or 
their approximations. This excludes application of certain 
averaging techniques, such as the self-consistent method, 
which assume that phase fields are uniform. 

These considerations suggest that the chosen composite 
model should be based on a specific representative geometry 
of the microstructure, which allows for discretization of each 
phase into a number of subelements with locally uniform 
fields. An example of such an approach was outlined by 
Dvorak and Teply (1985). In general, if the representative 
volume of the composite and the phase geometry in this 
volume are specified, then each phase can be subdivided into a 
certain number of finite elements, and the overall properties 
L, M, local properties in the plastically deforming 
subelements, as well as the concentration factors for each 
subelement can be calculated for any load or strain increment. 

Suppose that the subelement stresses, strains, as well as the 
stiffnesses and compliances of plastically deformed 
subelements have been found for a certain increment da or di 
applied to the representative volume at dd = 0. Let subscripts 
i, and j , denote subelements in the matrix and fiber, respec­
tively. If the partial contributions of each row of da or di are 
identified, one can write the uniform subelement fields in the 
form 

daim=Bimda 

dtlm=A,„,do 

doJf=Bjfdo 

dth 

(62) 
t)f^AiSdl 

where the A, B are instantaneous subelement concentration 
factors. 

One can also write the following relations between the 
overall averages and the uniform local fields in the 
subelements of the representative volume: 

, + T.Cjdtjf 

(63) 
di = ECjdtj, 

where ch Cj are subelement volume fractions such that 

T.Ci = cm, Lcj = cf, cf + cm = \ (64) 

Using equations (62) and (63) one can obtain the average 
phase concentration factors 

A, = -

1 

c / 

LC,A:, 

Lc.A 

B„ 

i^jf B '/-

1 

L / 

Sc.fi,-, 

LCjBjf 

(65) 

From the local instantaneous Ljm, Mlm in the plastically 
deforming subelements, known Lm, Mm, Lt, M{ in the elastic 
subelements, and equations (62) to (65), one can find the 
overall instantaneous properties as: 

L = L,C[LimAim + LcjLj-Ajf 

M=LciMimBim + ZcjM/Bjf 

The local thermal strain vectors mm and my remain constant in 
each subelement, at least for a given dd, and equal to those of 
the elastic phase. These thermal stress vectors are: 

(66) 

h h --Lj-rrif ie—i^eiuf (67) 

The decomposition procedure can now be applied to the 
discretized representative volume. The results follow from 
those presented in Section 4. 

In the fibrous composite one obtains: For do ^ 0, dd ^ 0, 
the overall strain increment di, and overall m, follow from 
equation (45) and (46), with M taken from equation (66). The 
local subelement stresses and thermal stress concentration fac­
tors are, in analogy with equations (48) and (49): 

dajf = sTydd + By (do-sadd) 

daim = sTldd + Bjm (da-sadd) 
(68) 

bJf=sTy-Bjfsa 

For di ^ 0 dd 7s 0, the overall stress increment do and 
overall 1, follow from equations (50), (51), and (66), and the 
local fields and thermal strain concentration factors are as in 
equations (52), (53): 

(69) 

dijf = hdd + Ajf( di - hdd) 

diim = hdd + A,-m (di-hdd) 

ajf = (Ajj—I)h 

*im = Wim-I)h 

These results can be utilized to find average instantaneous 
thermal strain concentration factors in the phases as: 

1 

3 m — -

E C J % 

^ c / a im 

1 
»/ = £cy.b,7 

Ec,b,m 

(70) 

dd=Y,Cjdaim + T,cjdoj •if 

6 Related Applications 

• In addition to mechanical and thermal loading, the com­
posite may also undergo a phase transformation such that one 
or both phases, if free, experience a volume change over an in­
crement of temperature dd: 

dVr/V=de%k = 3cordd (r=f,m) (71) 

Furthermore, composites with polymer matrices may absorb 
moisture. This causes swelling of the unconstrained matrix 
material. If the moisture concentration is uniform, then 
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de& = 3ymdc (72) 

where ym is the linear swelling coefficient and c is moisture 
concentration. If the matrix remains elastic in dilatation, and 
inviscid, then the above theory may be applied with the 
following adjustments. 

Suppose that dd and dc are applied simultaneously and that 
a free phase r undergoes total volume change 

der
kk=(delk + delk + de%)r (73) 

If this superposition holds in a piecewise linear manner, 
then one can write in phase r for each loading step 

dekk = 3(ar + ar„Ur + ?'nyr)dd (74) 

where, in a particular loading step n: 

« = {de\k/deT
kk)r, ?„= (d4k/deg)r 

are known distribution coefficients. Hence, 

dtkk = K\ + £'n+?n)ardd. (75) 

This suggests that for each loading step n one can evaluate a 
certain multiplier of 3d8 that can be substituted for the instan­
taneous linear thermal expansion coefficient of phase r in 
equation (2). Indeed, even in the case of thermal loading alone 
it may be appropriate to change ar with temperature, and that 
is obviously possible in the present theory. 

7 Discussion 

Although the results are valid only for the two binary 
systems, they apply to most composite materials of practical 
interest. For the composite systems in question, the elastic 
values of m and 1 found from equations (26) and (29) are iden­
tical with those that can be calculated from Levin (1967) for­
mulae, or equation (2.20) in Rosen and Hashin (1970) and 
equation (33) in Laws (1973) which are all similar and valid 
only for elastic composites. However, the methods used in 
deriving these equations, and their internal structure, are en­
tirely different from those in the present paper. The decom­
position used herein makes it possible to find overall ther-
momechanical response of the composite in the plastic range 
in terms of instantaneous overall mechanical properties and 
thermoelastic constants of the phases. Also, average instan­
taneous phase stresses and strains are found in terms of 
mechanical concentration factors. All these relations are ex­
act. They make it possible to convert any available facility, 
such as a computer program for analysis of isothermal elastic-
plastic behavior of the two composite systems to one which 
can analyze the effect of both mechanical loads and uniform 
changes in temperature, as well as other transformation 
strains in the phases. 

It has not escaped our attention that equations similar to (7) 
to (10) can be written for three-phase fibrous composites. The 
resulting system has at most one solution, and if it exists it 

leads to evaluation ofWeralfthermar vectors and local ther­
mal concentration factors for the elastic three-phase materials 
which are analogous to those derived in Section 2. However, 
no additional constraints are allowed in this case, hence equa­
tion (11) cannot be introduced, and, therefore, it is not possi­
ble to analyze elastic-plastic deformation of the three-phase 
aggregate by the method of Section 4(f). 
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An Efficient Method for the 
Calculation of Interlaminar 
Stresses in Composite Materials 
A simple and efficient method is presented to determine the interlaminar stresses in a 
symmetric composite laminate under uniaxial loading. Expressions for the in­
terlaminar stresses are assumed in terms of exponentials based on shapes that the in­
terlaminar stresses must take in order to assure overall (integral) force and moment 
equilibrium. The boundary conditions and the traction continuity between plies are 
satisfied exactly. The exponential terms in the stress expressions are determined by 
minimizing the laminate complementary energy. Typical results are presented and 
compared with previous results found in the literature. The current method is shown 
to efficiently deal with the problem including the ability to perform the analysis of 
thick laminates (100 plies or more) with relative ease and cost-effectiveness. 

1 Introduction 
It is well-established (Pipes and Pagano, 1970) that at free 

edges in composite laminates, interlaminar stresses arise due 
to a mismatch in elastic properties between plies. Thus, in this 
region near the free edge known as the boundary layer, 
Classical Laminated Plate Theory is not valid and a full three-
dimensional state of stress is present. These interlaminar 
stresses can lead to delamination and failure of the laminate at 
in-plane loads which are significantly lower than the loads at 
which the laminate would fail if only in-plane fracture were 
the failure mechanism (e.g., Lagace, 1983). 

Numerous investigators have used a variety of methods to 
attempt to calculate these interlaminar stresses at straight free 
edges. These methods include finite difference (e.g., Pipes and 
Pagano, 1970), finite elements (e.g., Rybicki, 1970, and Wang 
and Crossman, 1977), and stress potentials (e.g., Wang and 
Choi, 1982a). There are two main problems in the current 
methods used to calculate interlaminar stresses. The various 
methods often yield different results for the same problem 
(Whitcomb et al., 1982). In addition, the methods require 
large amounts of computer storage and computer time and are 
therefore not cost-effective. In addition, some of these 
analyses do not exactly satisfy the boundary condition that the 
free edge is stress free. 

The computation limitations are inherent in the methods 
which are utilized. Finite difference methods involve the solu­
tion of very large systems of equations and require tedious ex­
trapolations. Pipes and Pagano (1970) report using 120 CPU 
seconds on an IBM 360-365 to solve the 1200 by by 1200 
problem for a simple four-ply laminate. Finite element 
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methods require the use of meshes with a large number of 
elements even for the case of four-ply laminates. Other 
methods proposed are also limited to few plies either because 
intermediate numbers generated are so large that most com­
puters cannot store them (Pagano, 1978) or involve the use of 
unknown parameters, the value of which cannot be determin­
ed exactly (Hsu and Herakovich, 1977). The eigenfunction 
method developed by Wang and Choi (1982a, 1982b) involves 
the solution of a complicated and tedious eigenvalue problem 
and requires the use of a collocation technique at every ply in­
terface in order to satisfy traction continuity. This limits the 
application of this technique to relatively thin laminates. 

These limitations make it hard for the methods to deal with 
laminates that have more than ten to twelve plies. Thicker 
laminates generally cannot be handled by the methods 
developed or require an inordinate amount of computer time 
and storage, and thus cost. In the preliminary design phase, it 
is necessary for the designer to have access to an efficient 
means to analyze laminates in order to select a few for final 
consideration. Current restrictions on analysis limit the 
laminates which can be considered. 

There is only one method, to the authors' knowledge, that is 
capable of analyzing thick laminates. This is a global-local 
model developed by Pagano and Soni (1983). However, this 
method involves substituting part of the laminate with an 
equipollent system. The solution is very sensitive to the 
substructuring scheme and the results may differ significantly 
from one scheme to another. Furthermore, a different "lump­
ing" scheme is required for different plies in the same 
laminate which makes the procedure inefficient in that it must 
be repeated for different plies within the same laminate and 
there are no specific guidelines as to how this "lumping" 
should be done. 

The solution method presented herein, based on overall 
force and moment equilibrium and the principle of minimum 
complementary energy, calculates the three-dimensional stress 
state in laminated plates. The analysis is meant to fulfill the 
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Fig. 1 Geometry for problem of a laminated plate under uniaxial 
loading 

Fig. 2 Free body diagram of a section of a laminate at the free edge 

need for a simple, efficient, and cost-effective technique to 
calculate interlaminar stresses which the designer can use, 
especially in preliminary design stages, to avoid delamination-
prone laminates. 

2 Formulation 

A composite laminate under uniaxial load is illustrated in 
Fig. 1. The out-of-plane direction is denoted by z, as opposed 
to x}. In order to determine the three-dimensional state of 
stress in the laminate, three assumptions are made. One, each 
ply is treated as macroscopically homogenous and is 
represented by its three-dimensional elastic constants. This ef­
fective modulus approach has the effect of "smearing out" 
the individual behavior of the fiber and matrix and is valid 
over distances sufficiently larger than the size of an individual 
fiber (0.0076 mm for typical graphite). Two, far from the free 
edge, the classical laminated plate theory solution is recovered 
and the interlaminar stresses are thus zero. Three, away from 
the effects of load introduction, stresses do not depend on the 
longitudinal direction xx. 

In addition to these assumptions, the stress field must 
satisfy several boundary conditions. One, the top and bottom 
surfaces of the laminate at z equal to ± h/2, where h is the 
total laminate thickness, are stress free. Two, the x2 faces of 
the laminate at x2 equal to ±b, with 2b as the total laminate 
width, are stress free. Three, the boundary condition in the xx 
direction is that there is some applied uniform traction an. 
Four, traction continuity must be satisfied from ply to ply. 

3 Solution 

The solution is based upon the qualitative description of the 
interlaminar stress field obtained by enforcing overall 
equilibrium (Pagano and Pipes, 1971) and the application of 
the principle of minimum complementary energy. By 
judiciously placing a rectangular parallelepiped element so 
that its x2 faces correspond with the stress-free edge and center 
plane of a laminate, as shown in Fig. 2, six general equations 
are derived from overall force and moment equilibrium con­
siderations (Lagace and Kassapoglou, 1985): 

\z+ °izdx- j 2 _ °Udx~ J2_ al2dz = 0 (1) 

- j 2 _ a22dz+ ] z + a2zdx- j z _ u2zdx=0 (2) 

\z+"zzdx-\z_
azzdx = 0 (3) 

]2_ "zizdz- j 2 + ozzxdx+ j z _ oaxdx-h\z+ a2zdx = Q (4) 

- + aXzdxdz- _ anzdz + h\ + audx=0 (5) 

+ <sndxdz- + ou(b-x)dx+ _ alz(b-x)dx=0 (6) 

where the subscript on the integral sign represents the face 
over which the integral is taken as referenced to Fig. 2. For 
convenience, a coordinate transformation has been 
introduced: 

x = b-x2 (7) 
such that the origin of x is at the free edge. The choice of xx 
faces for this parallelepiped is arbitrary due to the assumption 
that there is no variation of stress in the xx direction. The z 
faces can also be chosen at any location. The location choice 
will depend on the z location which is to be considered. It will 
later be convenient to choose ply interfaces as z face locations. 

Given these equilibrium equations, the solution procedure is 
a three step process: one, stress shapes are chosen that satisfy 
equilibrium on an integral (equations (1) through (6)) as well 
as differential basis; two, the specified boundary conditions 
and traction continuity at ply interfaces are satisfied; and 
three, the remaining unknown parameters are determined by 
minimizing the complementary energy of the entire laminate. 

3.1 Choice of Stress Shapes. It is assumed that for each 
stress (except r/Jf) the x2 dependence and z dependence can be 
functionally separated. Using the axis transformation of equa­
tion (7), the stresses in the kth ply of an n-ply laminate can be 
expressed as (with no sum on / andy): 

4*' =fhk) WW (*) (g) 
given that the stresses do not depend on xx. The /W M and 
gW (z) are functions to be determined for each ply. It will 
later be shown that the longitudinal stress ajf can be ex­
pressed as a combination of the other stresses. For simplicity, 
the laminate will be assumed to be symmetric and balanced. 
However, the analysis can easily be generalized to other types 
of laminates. 

The use of these expressions in the three equations of dif­
ferential equilibrium yields equations for the unknown func­
tions which can be placed in four functional groups: 

4fW 
dx 

dx -f%\ 

•=AP 

dx ~Jh 

(9) 

(10) 
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?£> = 
(*) 

dz 

Stt1 -
dg& ' dg® 

dz 
g® =- dz 

(11) 

(12) 

Thus, the minimum number of functions that must be as­
sumed is four, with the remaining functions determined using 
equations (9) through (12). 

Consider the g\k) (z) functions first. The assumption that 
far from the free edge the classical laminated plate theory 
solution is recovered shows that 3$ and <?}£' are constants 
outside the boundary layer in a given ply. (Note that the 
denotes the in-plane stress value determined from classical 
laminated plate theory). This implies that the gjp (z) func­
tions corresponding to these two stresses are constants. Using 
this fact and equations (11) and (12) yields the basic expres­
sions for the five gW (z) functions: 

Sf2«(«)=fl|*> (13) 

g£Hz)=BP 
g[P(z)=B[*h + Bi» 
g£Hz)=Bpz + Bik> 

ggHz)=BP^- + Bpz + BP 

(14) 

(15) 

(16) 

(17) 

where the Bjk) are constants to be determined for a specific 
ply. 

The determination of the j}k) (x) requires the well-known 
fact (Pagano and Pipes, 1971) that azz must cross the x axis at 
least once and must decay to zero away from the free edge in 
order to satisfy overall equilibrium. To satisfy these condi­
t ions , / ^ ' (x) is chosen to be a linear combination of two ex­
ponential functions in x. Exponential functions are needed 
since aa must drop rapidly to zero away from the free edge. 
The algebra is more straightforward if, instead of a shape for 
f\k) (x), a shape forfffl (x) is assumed: 

f^)(x)=A\k)e-*x+A^e-}i*x+A^ (18) 

where the Afk) and X and <j> are unknown constants to be 
determined. The constant A\k) is introduced so that far from 
the free edge the constant value of o$} predicted by classical 
laminated plate theory can be recovered. The dimensions of <f> 
are 1/length and X is dimensionless. The exponents X and \4> 
are assumed in that particular form since the final form of the 
equations for X and <j> becomes less cumbersome. 

As previously noted, the requirements of integral 
equilibrium imply that aa must cross the x axis at least once. 
However, this does not preclude multiple crossings. For each 
additional crossing, another exponential term would be 
necessary, although additional exponential terms would not 
guarantee additional crossings. The solution for the unknowns 
will be obtained by minimizing the complementary energy of 
the laminate. A mode which has more crossings of the x axis 
intuitively represents a higher energy mode. This is analogous 
to higher modes in plate vibration and buckling. Thus, the 
assumed mode with two exponentials and only one crossing 
represents the lowest energy state while still satisfying the re­
quirements of overall equilibrium. It is thus proposed that if a 
solution exists using this mode, it represents the minimum 
energy and is thus the proper solution. 

Similar requirements lead to an assumed shape for/jf > (x): 

/,<£> (x) =A?> +Al»e- (19) 
The same exponent is used for f{k) (x) as is used for f[k) (x). 
This is mandated from the following argument. If the assump­
tion that stresses do not depend on xl is relaxed and a more 
general problem is considered, the stresses crff and a\k) 

become coupled via the equations of differential equilibrium. 

Maintaining the assumption that the functional dependencies 
are separable implies that o[!p and o$) must have the same 
form for their x dependency. The case considered here is a 
degenerate case of the more general problem. However, this 
argument should still apply and thus the same exponent can be 
used for/ff' (x) as fo r / l ^ (x). 

The utilization of equations (9) and (10) enable the deter­
mination of the remaining/^1 (x) functions: 

W (x) =A{k)<t>2e-'l>x + \2</>2Aik>e-Ux (20) M-
f[k) (x) = -v4{*>&?-** -MA^e ' ^* 

The choice of stress shapes is now complete. 

(21) 

(22) 

3.2 Boundary Conditions and Traction Continuity. The 
A\k) for each ply can be expressed in terms of the stresses 
determined from classical laminated plate theory by applying 
the traction free condition at x equal to 0: 

A\*> = -

A^ =-

( X - l ) 

"22 

(X-

A\k^5\? 

1) 

(23a) 

(23b) 

(23c) 

(23d) 

Aik) = -5\!£> (23e) 

The Bfk) are determined by applying traction continuity at ply 
interfaces starting from the bottom surface of the laminate 
and proceeding towards the midplane (as defined in Fig. 1). At 
the interface between ply k+l and ply k, the three in-
terlaminar tractions (stresses) a2z> °u> a r R l azz> m u s t be con­
tinuous. The constants B\k) are determined in succession by 
this process by utilizing the traction free condition at the top 
and bottom surfaces of the laminate. The B\k) for a particular 
ply will therefore be dependent on the value of Bfk) in all the 
plies below that particular ply: 

B{»=1 
n 

Bik)= £ fffi,^') 

y = *+l 

y=*+i 

j=k+l 

(24a) 

(24b) 

(24c) 

(24d) 

(24e) 

where both B{k) and B^k) can be set to one without loss of 
generality. The t{k) are the thicknesses of the individual layers. 

The final general expressions for the stresses in the fcth ply 
can now be summarized using the results for 5/*1 , A\k), 
gy>(z), and /<«(*) : 

^'^'[i-Yrri6 - « X _ -x^Al (25) 

T<*> = ^,2-

- ( 
X e - ^ - e - *)(^T 

+ y3f>z + 73f>) (26) 

a%)=<hj—r(e~'l*~e~X*X) (aiPz + Bi^) (27) 
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a|*>=*e-*(ff|2*>Z + Bi*>) (28) ^ l = X V 4 / 2 + 2 X ^ 4 / 2 + X 2 ^ 2 ( / 6 + / 9 + / l ) 

ff#>=aj£>(l-<?"**) (29) 

The constants B\k) contain the stacking sequence information 
in their expressions. 

Different values for X and <j> could have been assumed for 
each ply. However, the condition of traction continuity at 
each ply interface would result in X and </> being constant 
throughout the laminate as is assumed here. To illustrate this 
concept, consider the azz stress at any ply interface defined by 
some value of z. Since azz must cross the x axis in order to 
satisfy integral equilibrium, azz will equal zero at some point 
x. This point must be the same within two plies in order to 
satisfy the requirements of traction continuity. This can only 
be satisfied if X and <j> are the same throughout the laminate. 
Similar arguments can be made for the alz and a2z stresses as 
well. 

Since it was assumed that stresses do not depend on xy, aff> 
dropped out of the equilibrium equations. To determine the 
expression for a\k) in each ply, the stress-strain and strain-
displacement equations are utilized. This procedure, presented 
in Appendix A, results in the equation: 

- JS^M!' -StfaW -S|«*M*>)] (30) 

where the Sfjk) are the ply compliances. 
The expressions for the stresses in each ply are now com­

plete and all the constants can be found except for X and <j>. 
All the requirements of equilibrium have now been satisfied. 

3.3 Minimization of the Laminate Complementary 
Energy. The remaining two undetermined constants X and <j> 
are found by minimizing the complementary energy of the en­
tire laminate. The expression for the laminate complementary 
energy, IIC, is the sum of the contributions of each of the in­
dividual plies: 

nc=£n<*> 

= i-^\\\vW<rr^adV-\\AjrMA ( 3 1 ) 

where a is the stress vector, S is the compliance tensor, Vik) is 
the volume of the kth ply, Aa is the area over which 
displacements u are prescribed, and T is the traction vector 
corresponding to those displacements. 

Due to the geometrical symmetry about the x2 plane at x2 

equal to zero (or x equal to the width b), only half of the 
laminate need be considered. In addition, the current analysis 
is restricted to the case of midplane symmetric laminates. The 
problem is the same independent of which outer z face is con­
sidered to be the " t o p " or "bottom" of the laminate. Thus, 
only one-half of the stacking sequence need be considered in 
minimizing the energy. Finally, since stresses do not depend 
on xx, the expression for IIC can be evaluated per unit of length 
without changing the final expressions for X and </>. 

The stress expressions of equations (25) through (30) are 
used in the equation for the complementary energy. It is as­
sumed that the laminate is wide enough so that e~Mb and e"~*6 

are approximately zero. This is valid if the thickness to width 
ratio of the laminate is less than 0.1. 

The value of n c is made stationary by taking partial 
derivatives of the expression for ITC with respect to the two 
unknowns X and 4> to yield the two equations: 

+ tfWn + / 3 " Vio " 2 / 8 ) ] + M4/6 + 8/9 + 6/,) 

+ 2 / 6 +4/ 9 + 3 / 1 =0 (32) 

and 

- ^ = 304X3/2 + tf jx2(/-4 + 2 / u + / 3 - 2 / 1 0 - 2/8) + X/4] 

+ X 2 ( / 5 +6/ 9 + 3 / 1 +2( / 7 +/ 6 ) ] 

+ \ [ / 5 + 8/9 + 5/1+2(/-7 + 2/6)j 

+ 4/9 + 3/,+2/6 = 0 (33) 

which are to be solved simultaneously for X and <t>. The/} are 
coefficients given in Appendix B. 

Both equations (32) and (33) are biquadratic in 0. This 
makes their solution simpler and is a direct consequence of the 
way the exponential terms were assumed in the expressions for 
fl$} and/jl*. In general, there are sixteen pairs of X and </> 
values which satisfy equations (32) and (33). From these, only 
the pairs with real and positive X and </> are admissible and, if 
there are more than one such pair, the one that minimizes n c is 
the correct solution pair. Since equation (33) is cubic in X, 
there is at least one real X value that is a solution to both equa­
tions for a given value of 4>-

It is important to point out that the procedure used here is 
general and that other stress expressions could be used and 
results obtained provided that these stress expressions satisfy 
the requirements of integral and different equilibrium. It was 
felt that the two-exponential form of the expressions best 
represented the physical reality of the situation. It is also im­
portant to note that in assuming stress shapes, interface 
displacement continuity is not satisfied. It is felt that this is not 
a serious drawback since the interlaminar stresses are the im­
portant factors in delamination. 

4 Computer Implementation 

The two resulting equations for X and <f> must be solved 
numerically. This involves a five-step process: 

(1) A starting value is picked for <j>. An order of magnitude 
analysis shows that the product </>/z is of order 1, where h is the 
total laminate thickness. This fact was used in arriving at the 
expression for the starting value of </> of 4.4//?. 

(2) This initial value of <t> is substituted into equation (32) 
and solutions for X (both real and complex) are obtained using 
the Newton-Raphson method. 

(3) The X value which, along with the <j> value utilized, 
minimizes IIC, is substituted into equation (33). This equation 
is quadratic in </>2, and thus relatively easy to solve for </>. 

(4) Of these solutions for <f>, the one which, along with the 
X value utilized, minimizes the complementary energy is used 
as the corrected value for 4> in repeating this process beginning 
with step two. 

(5) The procedure is repeated until a predetermined degree 
of accuracy for <f> and X is achieved. 

In this investigation, the scheme was considered to have con­
verged if the 4> values for two successive iterations differed by 
less than one part in a million. 

The above scheme was implemented in FORTRAN on a 
PDP-11/34 computer. The computer program uses the 
laminate information (ply orientations, ply thicknesses, elastic 
constants for each material type) and the classical laminated 
plate theory solution as input. The output consists of the com-
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Table 1 Computation times for various laminates 

Number of 
Plies 

4 
6 

12 
50 

100 

Number of 
Iterations 

0* 
8 

15 
50 
69 

CPU Time On 
VAX 11/782, 

0.20 
1.01 
2.66 
3.29 
5.37 

seconds 
Actual Run Time On 
PDP-11/34, seconds 

2 
15 
30 
80 

120 

'Solution is obtained in closed form. 

o 
Q. 

N 

bN 

14 

12 

10 

8 

6 

4 

2 

0 

-2 

- 4 

- 6 

[+45 /0 /90 ] 

@ 0 /90 Interface 

Present 

Wang a Crossman, Ref [5 

-

i i i i i i i i 

/ 

1 

0 . 2 0 .4 0 .8 0 .8 1 .0 
x 2 / b 

Fig. 3 Interlaminar normal stress azz at 0/90 interface of a [±45/0/90]s 

laminate 

a 
Q. 

O 

4 

2 

- 2 

- 4 

- 6 

- 8 

•10 

[±45/0/90] s 

" (a) 0/90 Interface 

" ~ ~ ^ ~ ^ \ / 

r ^ \ / 
^^~^y 

—— Present 

Wang a Crossman, Ref [5] 

i i i i p i i i i 

0 . 2 0 .4 o.e 0 .8 1 .0 
x 2 / b 

Fig. 4 Interlaminar shear stress <r2z at 0/90 interface of a [±45/0/90] s 
laminate 

pliances for each ply, the value of X and c6, and the constants 
in the stress expressions of equations (25) through (30) for 
various z locations (chosen as the ply interfaces in this case). 

5 Results 

Many different cases with laminates of different thicknesses 
and different materials (within the same laminate) were solved 
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Fig. 5 Interlaminar shear stress <J1Z at + 4 5 / - 4 5 interface of 
[±45/0/90]. laminate 

using this procedure. The computer program is very efficient 
and convergence is generally achieved after relatively few 
iterations (see Table 1). There are some cases where no itera­
tions are needed and the running time for the program is very 
small. 

In order to gain some insight into the accuracy of the ap­
proach and program, similar cases to those reported in the 
literature were analyzed. Specifically, the case of a 
[±45/0/90]^ graphite/epoxy laminate under uniaxial loading 
was analyzed. The following basic ply properties were used: 

En = 138 GPa G12 = 5.9GPa 

£•,, = 14.5 GPa G,, = 5.9GPa v r13 

14.5 GPa G 2 3 =5.9GPa 
13 

"23 

= 0.21 

= 0.21 

= 0.21 

This laminate, with these ply properties, was analyzed by 
Wang and Crossman (1977) using a finite element scheme with 
constant strain triangular elements and 792 degrees of 
freedom. 

The current technique yields a solution in under 15 seconds 
of run time on the PDP-11/34 computer. The resulting values 
for c6 and X are 42.01 1/m and 2.381, respectively. Generally, 
the two methods yield relatively the same results. Three ex­
amples of the results for the interlaminar stresses are presented 
in Figs. 3, 4, and 5 to illustrate the similarities and differences 
in the solutions. The results presented in Figs. 3, 4, and 5 are 
for the interlaminar stresses azz and a2z at the 0 deg/90 deg in­
terface and for alz at the +45deg / -45 deg interface, 
respectively. 

For the interlaminar normal stress, the two techniques yield 
virtually the same result as evidenced in Fig. 3. However, the 
results are not as similar for the interlaminar shear stresses as 
evidenced in Figs. 4 and 5. For these cases, the two methods 
produce similar results away from the free edge, but diverge 
slightly as the free edge is approached. In the case of o2z at the 
0 deg/90 deg interface, the current solution technique exactly 
satisfies the traction free boundary condition, while the finite 

748 / Vol. 53, DECEMBER 1986 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



element technique of Wang and Crossman predicts a finite 
value at the free edge. Several other previous solution pro­
cedures also do not exactly satisfy the traction free boundary 
conditions. 

This may be related to the existence of a weak stress 
singularity at the free edge. This is suggested in the solution of 
Wang and Crossman for alz shown in Fig. 5 while the current 
technique does not capture this behavior. S. S. Wang and 
Choi (1982b) have shown that the stress field is indeed singular 
at the free edge based on the assumption that a composite ply 
can be represented by effective elastic moduli (i.e., "smeared" 
properties). However, Soni and Pagano (1982) have noted that 
these free edge stress singularities simply represent an artifact 
of the effective modulus approach. It has been further noted 
by Wang and Crossman (1977) that these singularities would 
probably dissipate themselves into the laminate resulting in 
stress redistribution and/or relaxation. Furthermore, the 
strength of the stress singularities reported by Wang and Choi 
is so small that it becomes dominant over a region that is so 
close to the free edge (a few fiber diameters away) that the 
assumption of material homogeneity breaks down. This does 
not invalidate their solution, but it also means that methods 
which do not predict/incorporate a stress singularity, such as 
the present technique, are equally valid. In that small region 
very close to the free edge, any analysis that treats the material 
as homogeneous is not truly valid and a modified theory that 
accounts for the bimaterial nature of the laminate must be 
used. However, over the remainder of the boundary layer, all 
these analyses are valid. 

Thus, especially in a solution technique oriented toward 
preliminary design, the exact value of the stresses at the free 
edge is not important. This is further emphasized by recent 
results on delamination reported by Kim and Soni (1984) 
where they suggest that delamination is controlled by the 
stresses averaged over some distance from the free edge. 
Therefore, the current technique provides sufficiently accurate 
results for the purpose intended, and these results do exactly 
satisfy the stress-free boundary conditions. 

6 Efficiency of Solution Technique 

The efficiency of the present method was better assessed by 
transferring the program to a VAX-11/782 computer so that 
CPU time measurements could be made. Cases ranging from 
four to t one hundred plies were successfully run. It should be 
noted that for all cases, the stacking sequences were chosen in 
such a way that no simplifications could be made by lumping 
part of the laminate or treating a sequence of plies as a single 
ply. For the fifty and one hundred ply cases, more than fifteen 
different ply orientations were used. The CPU times needed to 
obtain solutions for the various laminates are shown in Table 
1. The approximate run times (actual and not CPU time) on 
the PDP-11/34 computer are also given. 

Previous investigators have reported CPU times for their 
analysis techniques. Pipes and Pagano (1970) report using 120 
CPU seconds on an IBM 360-365 for the analysis of a simple 
four-ply laminate using a finite difference scheme. Wang and 
Crossman (1977) report using 12 CPU seconds on a 
UNI VAC-1108, again for the same four-ply laminate using a 
finite element method. 

Three different computers were used in these three cases, 
VAX-11/782, IBM 360-365, and a UNIVAC-1108. Thus, a 
direct comparison of CPU time cannot be easily made. 
However, these three computers are of relatively the same 
class and thus order-of-magnitude comparisons can be made. 
The CPU times reported in Table 1 show that the current solu­
tion technique is more efficient than the other techniques. 
Even for one hundred ply laminates, the CPU time used by the 
present method is still less than that reported for four-ply 
laminates in the two other cases. Furthermore, doubling the 

number of plies increases the computation time in the current 
case by less than double indicating that laminates with even 
larger numbers of plies can be efficiently analyzed. 

The actual run times on the PDP-11/34, a much less power­
ful computer, are also small. Furthermore, the program re­
quires relatively little memory space for operation. This im­
plies that the program can be successfully and efficiently im­
plemented on personal computers. Thus, the technique allows 
a cost-effective method for the calculation of interlaminar 
stresses in composite laminates. 

7 Summary 

A simple and efficient method was presented to determine 
the interlaminar stress field at straight free edges in symmetric 
composite laminates under uniaxial load. The method is based 
on assumed stress shapes suggested by the considerations of 
integral equilibrium and the final solution is obtained by the 
minimization of the complementary energy of the entire 
laminate. The solutions obtained compare well with a previous 
solution in the literature which utilizes a tedious finite element 
analysis. 

The present method is at least an order of magnitude more 
efficient (in terms of CPU time) than previous analyses 
reported in the literature. Solutions were obtained for 
laminates of up to one hundred plies, and even thicker 
laminates could be solved with relative ease. This efficient 
analysis technique gives the designer the ability to cost-
effectively perform parametric studies early in the design pro­
cess and to look at the effects of various parameters such as 
ply thickness, material type, and stacking sequence on the in­
terlaminar stress state and, ultimately, on delamination. This 
results in greater flexibility in design without a substantial in­
crease in effort or cost. The adaptability of the computer pro­
gram to personal computers also makes it a valuable research 
and teaching tool. 

The present analysis is limited to the case of a straight-edged 
laminate under uniaxial load. However, the approach is 
general and could be adapted to more complex situations such 
as the interlaminar stress field around a hole in a laminate. 
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A P P E N D I X A 

Since it was assumed, in the main text, that the stresses do 
not depend on x, , the longitudinal stress a\k) drops out of the 
equilibrium equations. To determine crjf in each ply, the 
stress-strain and strain-displacement equations are utilized. 
The general stress-strain relations can be inverted and placed 
in the strain-displacement equations to yield: 

e / / = S ^ « = ^ - ( - ^ - + - ^ L ) U,k,l=U2,3 (,41) 

where the Sijkl are the material compliances. These equations 
can be integrated (engineering notation is now used for the 
compliances) to give the general expressions: 

u= (Snau +Sl2o22 + Sl3o-zz + Sl6ol2)xl + F(x2,z) 042) 

v = S]2 j audx2 + S22 j c22dx2 + S23 j azzdx2 

+ S26^al2dx2 + G(xuz) 043) 

and 

w = Sn j a, [ dz + S23 ] o22dz + S33 j a^dz 

+ S36yi2dz + H(xux2) 044) 

where the F, G, and H are unknown functions. These expres­
sions are substituted in the equations which relate the shear 
strains to the displacements in order to obtain the two 
equations: 

d ( \ dF dG 
x^\s»a"+s^+s«a«)+-Jx7+lx7 

tion can be solved for o-jf and matched with the classical 
laminated plate solution for 5{k) in order to determine K{k). 
This results in the following expression for ajf> in each ply: 

1 
7 { f > : 

Sff> •[(sff>a|f>+Si2«3#>+SfPffir) 

• [ s f ^ - s f W - s t e M * ) ] ] 048) 

The a,y are the stresses in the kth ply as defined in equations 
(25) through (29) in the main text. 

A P P E N D I X B 

The values for the./} of equations (32) and (33) are: 
i " r r o < * ) i 2 -

[ ^ W j s ^ - 12 

J t = l 

and 

dz 

— ,5l60 ' l l + ' ^ 2 6 ( T 2 2 + ^ 3 6 ^ + ^ 6 6 ° ' l 2 

/ \ dF 

[Suau+ Sl2o-22 + Suazz + Sl6al2J +-

045) 

h—r4rE ' " ' f r M W ' l ' + l5ai«>|i'"lJ 

12U k=1 < -

+ 20S^B^[t^]2+20[B\k^]2[t^]2 

+ 60fl,|*>5j*>f <*> + 60[5|*>]2] [s#> — [ - ^ f - } 

b k=l 

+ 3[5f)]2]s|4*) 
/4=-i-£/(*>f[a{2*)]*[/<* )]2 + 3a|i)fli«f(*) 

+ 3[^>]2 ]^) 

k=\ bn ^ J 

fi = D 3®tM-^\SWsW+S®3® + S|*>a|2*> 
k=i A l r L J 

+ 6B 

•Effir^^^-^l^1) 
dz 

+ -^- = S45cr23+S55olz 046) 
i l k=\ K 

k)tlk) 

which are valid for any ply. 
Functional dependencies are now matched and the assump­

tion that stresses do not depend on xx is utilized to yield: 

S\\ > ff jf) + Sf2*> a#> + S|3*> <#> + S)6aff' = KM 047) 

for any ply, where K{k) is some unknown constant. This equa-

.Mf,}^,_M|?l} 

33{PB?UM +6B?>Bp}sli$ 

A r = l 

+ 3o tf> 
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Effect of Fiber Anisotropy on 
Thermal Stresses in Fibrous 
Composites 
An elasticity solution is utilized to analyze an orthotropic fiber in an isotropic matrix 
under uniform thermal load. The analysis reveals that stress distributions in the fiber 
are singular in the radial coordinate when the radial fiber stiffness (Crr) is greater 
than the hoop stiffness (Cm). Conversely, ifCIT < CM the maximum stress in the 
composite is finite and occurs at the fiber-matrix interface. In both cases the stress 
distributions are radically different than those predicted assuming the fiber to be 
transversely isotropic (C„ = Cm). It is also shown that fiber volume fraction great­
ly influences the stress distribution for transversely isotropic fibers, but has little ef­
fect on the distribution if the fibers are transversely orthotropic. 

I Introduction 
High axial stiffness in graphite fibers is obtained by process­

ing the fiber precursor such that the stiff basal planes of the 
graphite crystals (Fig. 1) are oriented nearly parallel to the 
longitudinal axis of the fiber (Johnson, 1982; Reynolds and 
Sharp, 1974; Diefendorf and Tokarsky, 1975; Brydges, et al., 
1969; Kirk-Othmer, 1978). In the transverse direction, 
however, the orientation of the basal planes can result in many 
different microstructures. Examples of four types of 
microstructures observed in graphite fibers are shown in Fig. 
2. In Fig. 2(a) the basal planes are arranged circumferentially 
around the fiber. This structure is commonly called an 
"onionskin" structure, and it would be expected that Ee > 
Er. In Fig. 2(b) the basal planes are arranged radially, for 
which Er > Ee. Figures 2(c) and 2(d) show combinations of 
radial and circumferential microstructures. Figure 2(c) shows 
a radially oriented core with an onionskin sheath. Figure 2(d) 
shows a random core with a radially oriented sheath. The 
structures shown in Figs. 2(a) and 2(c) are normally associated 
with polyacronitrile-based (PAN) fibers and the structures 
shown in Figs. 2(b) and 2(d) are commonly associated with 
pitch-base fibers (Lemaistre and Diefendorf, 1973; Bennett 
and Johnson, 1978 and 1979; Guigon and Oberlin, 1983; Ng et 
al., 1983). 

The elasticity formulation used in this paper follows the 
previous works of St. Venant (1865), Voigt (1866), Mitinskii 
(1936), Lekhnitskii (1950, 1957), and Cohen et al. (1984a,b,c). 
Lekhnitskii (1950) provides the form of the solution for a 
variety of loading conditions on solid and hollow cylinders 
possessing "cylindrical anisotropy." Cohen and coworkers 
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Fig. 1 The graphite crystal structure 

provided explicit forms of the equations for laminated com­
posite tubes subjected to thermal loading. 

In this paper, the anisotropic elasticity solution is used to 
explore the interrelationshp between fiber orthotropy, as ex­
hibited by the transverse microstructures, and the stress 
distributions in a fiber-matrix composite under uniform ther­
mal load. As will be shown, the type of orthotropy radically 
affects the thermal stress distribution in the fiber. In par­
ticular, radial orthotropy (Crr > Cm) in the center of the fiber 
(Figs. 2(b)-2(c)) results in singular stresses at the center of the 
fiber for all three normal components of stress. This has ob­
vious negative consequences for the development of damage in 
the form of fiber splitting and fiber breakage. 

The results of this analysis provide helpful insight into the 
structural integrity of the fiber as a function of microstruc-
ture. Such insight may prove helpful in choosing a fiber for a 
particular application, such as in carbon-carbon composites, 
which are subjected to large thermal loads. In addition, the 
results may aid in guiding fiber development for improved 
properties. 
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Fig. 2 Transverse microstructures of graphite fibers 

II Mathemat ica l F o r m u l a t i o n 

Consider a long fiber of radius a in an isotropic matrix of 
thickness b - a under uniform thermal load (Fig. 3). 

Due to axial symmetry the hoop displacements are zero, 
stresses and strains are independent of 6, and there is no shear-
extension coupling. Therefore, the thermoelastic stress-strain 
relations are 

°B 

^ YY ^-- Yf) ^ Yl 

(•'fiY W f l (--f)> 

Trd = Greyre\ r„ 

Lrft L„ 

£x-<*xA-T 

ee-aeAT 

er~arAT_ 

(1) 

Gxryxr', Tex-Gexy6x 

where C,-,- are stiffness coefficients and [C] represents the ap­
propriate matrix for the three normal components of stress, a, 
are coefficients of thermal expansion, and A T is the uniform 
temperature change. The nonvanishing equilibrium equations 
for this axisymmetric problem are 

daT 

~dV 
1 

- ( f f , - < r 9 ) = 0 

fa XT 

dr 

1 

The strain-displacement relations 1 

dw 

dr 

w 

du 

= 0 

can be written 

dx 

7^=0 

lxr=-
du 

~~dr~ 

(2a) 

(.2b) 

(3a) 

(3b) 

(3c) 

(3d) 

(3e) 

7 f a = 0 Of) 

where u, v, and w are axial, hoop , and radial displacements, 
respectively. 

x(uh . , 
•Matrix 
Fiber 

Fig. 3 Composite geometry and coordinate system 

Substituting equations (3a)-(3f) into equation (1) and 
substituting the resulting equations into the equilibrium equa­
tion (2a) yields the governing differential equation 

„ r d2w 1 dw ~\ w _ 1 

r r dr1 dr 

+—(Crj-Cej)ajAT (4) 

for generalized plane strain with uniform axial strain ev. Here 
and throughout the paper repeated subscripts i, j are summed 
over x, r, and 6. Equat ion (4) may be solved for the case of ap­
plied thermal load or the case of applied axial strain. 

The general solutions to equation (4), following Cohen and 
Hyer 's (1984b) t reatment of an orthotropic tube under 
uniform thermal load are: 

(5a) 

(5b) 

(5c) 

(6a) 

(6b) 

a) transversely orthotropic fiber (Cm 

where 

w(r)-
* Crr), 

=Atr
xi +A2r

x2+H1exr+H2ATr 

TT Cfa — Crx 

1= r -c 
(Crt-Cei)Uj 

tit — (Crr-CM) 

b) transversely isotropic fiber (Cm = Crr), 

w(r)=Alr
xi+A2r

x2 + Glexr In r+G2ATr In r 

where 

C-ftc — Crx Gy 

G , = 

2CM 

( C „ - Q , ) q ; 

2Cnn 
(6c) 

In both of the above displacement fields (5a and 6a), X, 2 are 
defined 

* 1 , 2 = ± 

The solution of the second equilibrium equation (2b) is 

K 
Txr=T 

(7) 

(8) 
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Table 1 Fiber and matrix properties 
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r (jum) 
Fig. 4 Thermal stress distribution in a composite with a transversely 
isotropic fiber 

800 

«• Matrix •*-
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Fig. 5 Thermal stress distribution in a composite with a radially or-
thotropic fiber 

where AT is a constant of integration determined from the 
boundary condition on rxr at r = b. 

For a composite with an orthotopic fiber and an isotropic 
matrix the equations for the radial displacements are 

wf(r)= A{A + A{A + H{exr + H{A Tr (9a) 

Radially Circumferentially Transversely Matrix 
Orthotropic Fiber Orthotropic Fiber Isotropic Fiber 

(GPa) 

(GPa) 

(GPa) 

e 

r 

r 

(io-6/°o 

(KT6A) 

(io6A) 

220 

27.5 

220 

0.20 

0.25 

0.025 

0.28 

5.56 

0.28 

220 

220 

27.5 

0.20 

0.25 

0.25 

0.28 

0.28 

5.56 

220 

27.5 

27.5 

0.20 

0.20 

0.25 

0.28 

5.56 

5.56 

w'"(r)=A'{<r + A% 

34.5 

34.5 

34.5 

0.12 

0.12 

0.12 

1.11 

1.11 

1.11 

(9b) 

where the superscripts / and m refer to the fiber and matrix, 
respectively, Xf ± 1, and G'l GV = 0 for a material 
wich is transversely isotropic in both elastic and thermal 
constants. 

The equations for the normal components of stress, for the 
fiber and matrix, can be obtained by substituting equations 
(5)-(6) into equations (3a)-(3b) and then substituting the 
results into the constitutive relations (equation (1)). The 
resulting equations are: 

a) transversely isotropic fiber (C{.r = C{e, X12 = ±1), 

of=A{(C{e + C{) +A{(C{e -C{r)\ 

+ C{xex-C{jafAT 

b) transversely orthotropic fiber (C{r ^ Cf
m), 

a{ = A{(Cfe + C{M)r^-[ +A{(Ci 

+ Cpv-O/-^-1 +Liex +NfAT 

where 

L{ = C{x+H{(C{e + Ci) 

N{ = H{(Ci + C{r)-Cla( 
c) isotropic matrix, 

(10«) 

(10Z?) 

of =Af (C% + Cpr) +AT(C%-Cfr)-
1 

(10c) 
+ Cfxex-C1ja.fAT 

The five constants A{, A{, Af, A%, and ex, are determined 
from the following five conditions: 

1) The radial displacement ve must be zero at r = 0. This 
condition, plus the fact that X{ < 0 (equation (7)), requires A{ 
be zero to avoid a singularity in w at r = 0 for both transverse­
ly orthotropic and transversely isotropic fibers (equations (5) 
and (6)). 

2) Continuity of w at the fiber-matrix interface wf(a) = 
w'" (a) requires that: 

a) for a transversely orthotropic fiber (C{r ^ C{e), 

A{(A + a(H{ex + H{AT) =A'?a + A% (11a) 

b) for a transversely isotropic fiber (C{r = C{e) 

A{a = ATa+A% (lib) 
a 

3) Continuity of the radial stress ar at the fiber matrix inter­
face, c/r(a) = of (a) requires that: 

a) for a transversely orthotropic fiber 
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/!{(££, +Cpv-OaM-i +Ljex + N(AT 

--A7(C% + C%) +A? (C%-C>;-)-r-C?ja'j'AT+ C"r'xex 

(12a) 

6) for a transversely isotropic fiber 

A{(0ri) + Ci) + C{xex - CfjaJAT+ 

--Af (CJ? + C%) + A?(C%-C?r)~ + C>;<ex - CPjafAT 

(126) 

4) Since there are no tractions applied at the outer bound­
ary of the matrix ar(b) and rxr(b) equal zero. The condition 
on ar requires that 

^ r ( C 3 + C ™ ) + ^ ? - ^ - ( C g - C ^ ) + C S e , - C J | a f A r = 0 

(13) 

The traction free condition on rxr requires that K in equation 
(8) equal zero. Thus, there are no shear stresses in the fiber or 
matrix. 

5) The final condition for the case of pure thermal loading 
is that the net axial force P on the fiber-matrix composite be 
zero. This is expressed mathematically as 

P = 2ir\ axrdr = Q (14) 

and for a transversely orthotropic fiber results in the condition 

Af^C^ + CiM) 
X{+1 

- + AT (CZ)(b2-a2) 

+ —[Cxx(b
2-a2) 

+ L{a2]ex+—[Nfxa
2 - C%af (b2 - a2)]AT= 0 (15a) 

For a transversely isotropic fiber {0„ = C{e), the form of 
equation (14) is: 

Ai-^-iCie + C'rW+AT 4 " C'x"r{b2-a2) 

+ -L[C"xx(b
2-a2) + Cixa

2}ex—^-[C-XJafa2 

+ C%aJ'(b2-a2)]AT=0 (156) 

The constants A{, AT, Af, and tx are obtained by solving 
equations (11)-(13) and (15) simultaneously. It is noted that 
the axial loading case can be considered for a given axial strain 
ex or a given axial force P. In addition, the radial loading case 
may also be considered by appropriate modification of equa­
tion (13). 

Ill Results and Discussion 

Thermal stress distributions were determined for three types 
of fiber properties: (1) transversely isotropic (Crr = Cm); (2) 
circumferentially orthotropic (Crr < CM); (3) radially or ­
thotropic (Crr > CM). The matrix was considered to be 
isotropic. The fiber and matrix properties used for the calcula­
tions are given in Table 1. A uniform temperature increase of 
1°C was used for loading. Results for a fiber volume fraction 
Vf = 0.623 are presented in Figs. 4-6 and results for variable 
Vj are presented in Figs. 7-9. 

0 10 20 30 40 50 
r (ftm) 

Fig. 6 Thermal stress distribution in a composite with a circumferen­
tially orthotropic fiber 

distributions for the case of a transversely isotropic fiber (Fig. 
4) exhibit a uniform positive axial stress and uniform com­
pressive hoop and radial stresses in the fiber. These distribu­
tions can be explained by examining the equation of the stress 
distribution in a transversely isotropic fiber (equation (10a)). 
Recalling that A{ = 0 in order to eliminate singular w 
displacements at r = 0 allows equation (10a) to be restated as 

a{^A{(C({) + C{r) + Ciex-Cjja(AT (16) 

It is evident from equation (16) that the fiber stresses are in­
dependent of radial coordinate. The stress distributions in the 
matrix are described by equation (Wc). A relatively large, 
positive hoop stress is present in the matrix. The hoop stress 
attains a maximum at the fiber-matrix interface (Fig. 4). The 
decay in the magnitude of the radial and hoop matrix stresses 
with radial coordinate can be explained by examining the Af 
term in equation (10c). The stresses decay as a function of 
1/r2. The axial stress is constant in the matrix because CJg = 
Cfr when i = x. Thus the Af term in equation (10c) is zero and 
there is no axial stress dependence on the radial coordinate. 
For these stress distributions, fiber failure (if present) is ex­
pected to be an axial tensile fracture. 

Radially Orthotropic Fiber (Crr > CM). Figure 5 shows the 
thermal stress distributions for the case of a fiber with radial 
orthotropy. All three components of stress are positive and 
singular at the center of the fiber. These distributions can be 
explained by examining equation (106). For radial orthotropy 
Cn > CM and X{ is less than unity. Defining 5 = (1 - X{), and 
recalling once again that A{ = 0, equation (106) can be 
written 

of = A{ (C{e + Ci\{)^ + L*ex + N{AT (17) 

Transversely Isotropic Fiber (C„ CM). The stress 

For the example problem considered here X{ = 0.343 and 8 = 
0.657. Therefore, a stress singularity of order o exists at r = 0 
for X{ < 1.0. It should be noted that 5 is a function only of the 
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Fig. 7 Effect of volume fraction on thermal stress distributions in a 
composite with a transversely isotropic fiber 

fiber properties C{r and C{e. The term A{ (C{„ + C{r X{), 
which defines the strength of the singularity, is a function of 
fiber and matrix properties, fiber volume fraction, and 
boundary conditions. 

A similar singularity was shown by Lekhnitskii (1957) to ex­
ist in an anisotropic disk under radial compression. Lekhnit­
skii also notes that for the limiting case r = 0 there is no dif­
ference in material properties between the r and 8 directions; 
therefore, the fiber must be transversely isotropic at r = 0. 
Such a condition precludes the existence of a mathematical 
singularity at the center of the fiber. (This point is also men­
tioned in a latter paper by Olson and Bert, 1966.) However, 
the singular nature of the stress distributions as r approaches 
zero remains valid for the actual case. 

The potential failure mode of the fiber can be addressed by 
examining the relationship between the orientation of the 
graphite crystals in the fiber and the mechanical properties of 
a graphite crystal. For a radially orthotropic fiber, the basal 
planes of the graphite crystals (Fig. 1), which exhibit max­
imum strength (Kirk-Othmer, 1978) are oriented parallel to 
the radial and axial directions. Thus, the direction of 
minimum strength is in the hoop direction. Therefore, fiber 
splitting due to ae is a potential failure mode for a radially or­
thotropic fiber which exhibits singular hoop stresses. 

Circumferentially Orthotropic Fiber (Cm > Crr). Stress 
distributions for circumferentially orthotropic fibers are 
shown in Fig. 6. The stresses in the fiber are governed by the 
reduced form of equation (106), which is now written in the 
form 

/ -<rf = /l{(Cf9 + C{rX{)/-M'1 + L{ex+N{AT (18) 

and it is noted that X{ - 1 > 0. Comparison of the stress 
distributions in Figs. 5 and 6 (or comparison of equations (17) 
and (18)) shows that the distributions in fibers with cir­
cumferential orthotropy (Fig. 6) are completely different from 
those in radially orthotropic fibers (Fig. 5). The distribution of 
axial and hoop stresses in circumferentially orthotropic fibers 
varies uniformly from compression along the centerline (/• = 
0) to tension at the fiber-matrix interface. The radial stress is 
compressive throughout the fiber. For this case X{ = 2.876; 
therefore, equation (18) reveals that the stresses have a power 
function distribution. The matrix exhibits compressive radial 
and axial stresses, but positive hoop stresses. All matrix 
stresses are relatively small in magnitude. 

In the circumferentially orthotropic fiber, the basal planes 
are oriented parallel to the axial and circumferential direc­
tions. Thus, the directions of maximum fiber strength are ex­
pected to be in the axial and hoop directions with minimum 
fiber strength in the radial direction. Therefore, the maximum 
tensile stresses are in the directions of maximum strength. The 
direction of minimum strength is under compression 
throughout the fiber. For this type of fiber orthotropy, 
failure, should it occur, would be expected to be via fiber split-
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Fig. 8 Effect of volume fraction on thermal stress distributions in a 
composite with a radially orthotropic fiber 
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Fig. 9 Effect of volume fraction on thermal stress distributions in a 
composite with a circumferentially orthotropic fiber 

ting at the fiber-matrix interface. It is interesting to note that 
under a uniform temperature decrease the signs of the stresses 
will change, resulting in a positive radial stress. In this case the 
maximum tensile stress will be in the direction of minimum 
strength. Therefore, the fiber may be more likely to fail during 
a cooling cycle than a heating cycle. 

It is noted that the solution presented here for a fiber in an 
isotropic matrix is quite different than that of Chen and 
Diefendorf (1985) for a single fiber. 

Influence of Fiber Volume Fraction. The influence of fiber 
volume fraction on the distribution of thermal stresses is 
demonstrated in Figs. 7-9. Figure 7 shows the results for a 
transversely isotropic fiber, Fig. 8 for a fiber with radial or­
thotropy, and Fig. 9 a fiber with circumferential orthotropy. 
The fiber volume fraction was varied by changing the 
thickness of the matrix layer surrounding the fiber and 
holding the fiber radius constant. Results are presented for 
fiber volume fractions in the range 0.391-1.0. 

These figures show that the axial component of stress is a 
function of fiber volume fraction for all three types of fiber 
microstructure. This is a direct consequence of the equilibrium 
requirement of zero axial force for pure thermal loading. 
Equilibrium must always be satisfied regardless of material 
properties. A somewhat surprising result is the fact that the 
distributions of radial and hoop stresses are essentially in­
dependent of fiber volume fraction for both types of 
transversely orthotropic fibers considered (Figs. Sb-c, 9b-c), 
but the distributions of these two stress components varies 
considerably with fiber volume fraction for the case of a 
transversely isotropic fiber. These results can be explained by 
considering the equations for the stress distributions in each 
type of fiber (equations (16)—(18)). 

In the transversely orthotropic fibers, A{ is relatively in­
dependent of volume fraction, differing by less than 4 percent 
in the volume fraction range 0.391-1.0. In contrast, ex differs 
by more than 30 percent in the same volume fraction range. 
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Detailed examination of the equations shows that the hoop 
and radial stresses are a strong function of the term containing 
A{ and a weak function of the term containing ex since (C{g + 
X{ C(r) is large and L; is small for i = r or 6. Thus, it can be 
concluded that in transversely orthotropic fibers the hoop and 
radial stresses are relatively independent of fiber volume frac­
tion. The axial stresses in the transversely orthotropic fibers, 
however, show a greater dependence on fiber volume fraction. 
In this case (C{,e + X{ Cf

xr) is smaller and Lx is more than two 
orders of magnitude greater than the corresponding terms 
mentioned above. Consequently, the axial stresses are a 
stronger function of fiber volume fraction through the term 
associated with axial strain. In transversely isotropic fibers, 
however, both A{ and ex are strong functions of fiber volume 
fraction. A{ and ex vary by approximately 23 and 40 percent, 
respectively, in the fiber volume fraction range 0.391-1.0. 
Thus, all stresses will be greatly influenced by fiber volume 
fraction. 

An equally surprising result is that the stresses in transverse­
ly orthotropic fibers are nonzero for a fiber volume fraction of 
1.0, which corresponds to a fiber with no matrix surrounding 
it. The physical explanation is that as the fiber expands radial­
ly it also expands in the hoop direction; however, if there is a 
mismatch in the thermal expansion coefficients in the radial 
and hoop directions the expansion in the hoop direction can't 
compensate for the radial expansion. Thus, an internal con­
straint exists which gives rise to internal stresses. It should be 
noted that the presence of nonzero stresses in a single fiber is a 
function of the mismatch in radial and hoop thermal expan­
sion coefficients only and not a function of material stiffness 
coefficients. 

IV Conclusions 

The distribution of thermal stresses in a fiber reinforced 
composite material is affected significantly by the microstruc-
ture of the fiber. If the fiber exhibits radial orthotropy, the 
distributions of all three components of normal stress exhibit a 
singularity of type r~s where the order of the singularity is a 
function of the radial and circumferential stiffness coefficients 
of the fiber. For circumferentially orthotropic and transverse­
ly isotropic fibers there is no singularity in the stresses. 

Fiber volume fraction has essentially no influence on the 
radial and hoop stresses in orthotropic fibers. The axial 
stresses in orthotropic fibers and all three components of nor­
mal stress in transversely isotropic fibers are a function of 
fiber volume fraction. 

Single fibers exhibit nonzero stresses when there is a 
mismatch in the radial and circumferential thermal expansion 
coefficients. 
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Stresses and Deformations in 
Composite Tubes Due to a 
Circumferential Temperature 
Gradient 
This paper presents a linear elasticity solution for determining the response of com­
posite tubes subjected to a circumferential temperature gradient of the form AT0 + 
ATI cos(d). The temperature does not vary with distance along the tube nor through 
the wall. Temperature-independent material properties are assumed and a displace­
ment approach is used. The results are limited to tubes with the fibers in each layer 
oriented axially or circumferentially, so-called cross-ply tubes. It is shown that for 
both single layer and multiple layer tubes, one constant characterizes overall ben­
ding of the tube and one constant characterizes overall axial deformation. 
Numerical results show that fiber orientation strongly influences the stresses in a 
single layer tube. When the fibers are aligned axially, all components of stress in the 
tube are small. When the fibers are aligned circumferentially, the hoop stress 
becomes large. This is due to the large difference between the radial and cir­
cumferential coefficients of thermal expansion when the fibers are oriented cir­
cumferentially. Also, for a single layer tube constructed of a material with no ther­
mal expansion in the axial direction, the overall change of length of the tube due to 
the temperature gradient will be zero only if the material is transversely isotropic. 
However, even if the material is transversely isotropic, the tube will still experience 
overall bending. 

Introduction 

Considerable work has been done to understand the 
response of single and multiple layers of fiber-reinforced 
material in tubular form to bending, torsion, and tensile loads 
(Whitney and Halpin, 1968; Pagano and Whitney, 1970; Riz-
zo and Vacario, 1970; Pagano, 1971; Whitney, 1971; Whitney 
et al., 1972; Rizzo and Vacario, 1972, Pagano, 1973). This 
work was done in conjunction with the possible use of tubular 
specimens, rather than traditional flat coupons, to study the 
mechanical behavior of fiber-reinforced materials. To a lesser 
extent some work has been done to understand the thermally-
induced stresses in single (Kalam and Tauchert, 1978) and 
multilayer tubes (Whitney, 1971; Birger, 1971; Tauchert and 
Hsu, 1977; Tauchert, 1980; Hyer et al., 1986). This paper 
summarizes a portion of the analytical work developed to help 
understand the response of fiber-reinforced tubes exposed to a 
temperature change that varies sinusoidally with the cir­
cumferential coordinate but does not vary with distance along 
the tube or through the tube wall. The analysis is limited to 
tubes with the fibers in each layer aligned either axially or cir-
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Applied Mechanics Division, December 26, 1985; final revision April 12, 1986. 

cumferentially, so-called cross-ply tubes. Numerical examples 
are presented for a single layer and a specially-constructed 
three-layer tube. 

In this work each layer is idealized as a homogeneous or-
thotropic material with respect to the global geometry of the 
tube. The material properties are assumed temperature-
independent. An elasticity approach, as opposed to a shell-like 
approach, is used. An elasticity approach is used because tube 
radius to wall thickness ratios less than 10 are of interest. 
While radial stresses are expected to be small, radial thermal 
expansion effects can cause axial and circumferential stresses 
in the tube wall. A higher-order shell theory (Whitney, 1971) 
could be used to account for the through-the-thickness effects 
but an elasticity approach is felt to be more direct. Since in­
terest centers on the behavior of the tube away from the ends, 
a planar elasticity approach is used. 

The limitation of a temperature-independent theory is 
fully appreciated. However, there is little documentation on 
the variation with temperature of the nine elastic constants 
and the three expansion coefficients of fiber-reinforced 
materials. Developing an analysis which required data that 
was unavailable was not felt to be a useful first exercise in 
understanding tube response. A forthcoming publication, 
however, examines the issue of temperature-dependent pro­
perties. In addition to providing valuable insight into the ther­
mal response of cross-ply tubes, the solution presented here 
served as a basis for that temperature-dependent work. 
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Problem Definition and Derivation of the Governing 
Equations 

A cylindrical coordinate system is used, x being the axial 
coordinate and 6 and r being the circumferential and radial 
coordinates, respectively. The inner and outer radii are 
denoted as ri and r0, respectively, and rk is the radial location 
of the interface between the kth and (k+l)-st layers. 
Pagano's (1972) most general work, though addressing neither 
thermal effects nor layered tubes, was consulted frequently 
and so the nomenclature and approach used here somewhat 
parallel that work. In this work the temperature variation 
around the tube is given by 

AT0 = AT+ATiCOs(e), (1) 

AT0 and ATX being constants representing the temperature 
change measured relative to some reference temperature. The 
specific reference temperature will be discussed further when 
numerical examples are presented. 

For the cross-ply tubes being considered, the constitutive 
behavior for each layer can be written in the form 
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where the Cy are the elastic constants and the a's the thermal 
expansion coefficients of the layer. Since the study focuses on 
tube response away from the ends, and in light of the in­
dependence of temperature on the axial coordinate, it is 
assumed that the stresses are independent of x. With this 
assumption, the equilibrium equations become 
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The strain-displacement relations for the problem are 
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where w, v, and w are the r, 6, and x components of 
displacements, respectively. Finally, the rotations are given by 
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For this class of problems Leknitskii (1963) has shown that 
the displacements in each layer have the following form: 

u(x,6,r) = U(6,r)+ x2(blcose-b2smd) 

—x(o}ls'md-o}2cosd)+u0cosd+v0sm6 

v(x,6,r) = V(8,r) x2(.b1smd + b2cosd) 

+ xb3r—x(o)lcosd + u2sinO) — u0sind + v0cosd + w3r (6) 

w(x,6,r) = W(8,r) — rxib^osd — b2s'md) +b4x + o>lrsin8 

— co2cosd+w0. 

Lekhnitskii shows this for the case of no thermal expansion ef­
fects. However, it can be shown that the form holds when 
thermal expansion effects are present. The physical interpreta­
tion of some of the constants in equation (6) is interesting and 
will be emphasized when numerical examples are presented. 
Of course the rigid body displacement terms are w0, v0, w0, 
a)!, o>2, and co3. The constant bx represents displacements due 
to overall bending of the layer and the constant b4 represents 
axial expansion. For a layered tube there is a set of constants 
u0, . . . , b{, b4, and a set of functions U, V, and l^for each 
layer. 

Using a displacement approach, the equilibrium equations 
lead to the following three governing equations for U, V, and 
W for each layer: 
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where 

Pi(fi,r)=— [ (C 1 2 -C 1 3 )6 4 + Afl + [ (2C 1 3 - c 1 2 ) 6 , + - ^ | 

JP3(0,r) = - [ c 1 2 6 1 + y ] 

cosfi 

(8) 

(9) 

and 

N= [(C13 - Cn)ax + (C23 - C22)ag + (C33 - C2,)ar}ATx 

M= [(C13 - C12)ax + (C23 - C22)<x6 + (C33 - C2i)ar]AT0 

N=(Cl2ax + C22al) + C23ar)AT1. 

It should be noted that the equation governing the axial 
displacement component, W, is uncoupled from the other two 
equations. For layers with fibers other than circumferentially 
or axially oriented, there would be coupling of all three 
displacement components. 
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Solution of Governing Equations 

Since each layer in the tube is orthotropic in the x-6-r 
system, and since the temperature distribution is an even func­
tion of 6, it is to be expected that in each layer u and w will be 
even functions of d and w will be an odd function of 6. 
Therefore, in equation (6) 

b2 = wl =v0 = b3 =OJ3 =0 . (10) 

More importantly, solutions for U, V, and W in the form 

Oo 

U(6,r)= £ £/„(/•) cosnd+Up(6,r) 

OO 

V(d,r)= X) Vn(r) smnd+Vp(d,r) (11) 
n = 0 

oo 

< * W ) = Yi wn(r) cosnd. 
n = 0 

will be sought. The functions Up and Vp are the particular 
solutions for U and V due to Pl and P 3 . The summation in 
each expression represents the homogeneous solution to the 
governing equations. Recall that there is a solution of the 
above form for each layer. 

Homogeneous Solution. The homogeneous solution to the 
governing equations has several special features corresponding 
to the n = 0 and n = 1 cases. These special features deal mainly 
with the presence of repeated eigenvalues and the fact that 
some of the solutions represent rigid body motions already ac­
counted for in the general form equation (6). 

If the rigid body terms are eliminated (because they are ac­
counted for in equation (6)), the n = 0 solution leads to 

The U and V solutions for n > 2 are of the form 

4 4 

t̂ C) =!>„>*»; MO=I>„ . / • A K S . (19) 
s=[ s=l 

The \m are eigenvalues and A„s and Bns are related through 
the eigenvectors, i.e., Bm = <l>nsAns. As will be seen, the solu­
tions for n > 2 are not involved in predicting the response of 
the tube. 

It can be shown that the particular solutions are 

where 
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Up = (r2A5 + rA4)cosd + r(atb4 + DA) 

Vp=(r2H5+rH4)smd, 

„ Ca-Cn _ M 

C33 — CV C-n — C-y 

(20) 

(21) 

U0(r)=A0lr
xi+A02r-

W0(r)=D02lnr. 

^oi . A02, D02 being constants and 

X,= 
Cr 

(12) 

(13) 

The solution for n = 1 leads to the eigenvalues 
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A4 = (C22N+(C22-C2,)N)/AU 
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A5=a5bi,H5=h5bi, (22) 

where 

fl5 = ((C22 - 3C44)(2C13 - C,2) - C12(C44 

+ 2C23-C22))/A2 
(23) 

h5 = «4C33 - C44 - C22)Cl2 - (2C13 - C12)(3C44 

+ 2C23 + C22))/A2 

and 

Ai = (C33 ~~ C22 — CU)C22 - (C23 — C22)(2C44 + C22 + C23) 

A2 = (4C33 - C44 - C22)(C22 - 3C44) (24) 

- (3C44 + 2C23 + C22)(C44 + 2C23 - C22). 

The complete solution for the three components of displace­
ment is: 

u=Amr^ + AQ2r~*i +(Anr
x2 + A14r-x2)Cosd 

co 4 

-) ' / 2 + 12 (J2Ansr)""s)cosne+ (r2A5+rA4)cos6 

(14) 

for the u and v displacements. If the rigid body motions are 
eliminated from the n = 1 solution, U and V take the form 

where 

Ul(r)=Aur
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X2 being the nonzero eigenvalue from equation (14).-
The solution for n > 2 for (7 and K and for n > 1 for W 

follow regular patterns. For PFthe solutions for n > l are 

Wn(r)=D,aryn+Dn2r~yn, 

y„=n 
ca 

c, 

(17) 
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w=D02lnr + J2 (D\nry" +D2r,r~y") cosnd 
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— bsrxcosd + b4x—o>2rcosd + w0. (25c) 

From the expressions for the displacements, expressions for 
the stresses in terms of the unknown constants can be deter­
mined. With these displacement and stress expressions, 
boundary and interface continuity conditions can be applied 
to a particular problem. In addition, because of the planar 
nature of the analysis, there are certain integral conditions 
that must be satisfied. The totality of the conditions lead to a 
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set of linear algebraic equations for the unknown constants in 
each layer. 

Application to a Single Layer 

Because of orthotropy, a single layer tube provides an in­
teresting numerical example of the theory with which the ef­
fect of fiber orientation can be studied. In addition, a single 
layer tube can be used to study the consequences of having the 
coefficient of thermal expansion of the tube material in the ax­
ial direction being zero. For some applications of composite 
tubes, the condition of no axial dimensional changes due to a 
temperature change is desirable. Usually, this condition is in 
the context of a uniform temperature change of the tube. 
Since graphite fibers contract when heated, they can be com­
bined in the proper proportion with a matrix material that ex­
pands when heated so that in the fiber direction the composite 

1 .0 T 

9=0 

0.04 

0.02 

-0.02 

-0.04 

has a coefficient of thermal expansion of zero. It is interesting 
to study the response of such a material in tubular form to a 
circumferential temperature gradient condition. 

For a single layer tube the inner and outer surfaces are trac­
tion free, i.e., 

o>(0,ri)=cFr(6,ro)=Ter{6,ri)=Tllr(.6,ro) 

= Txr(6,ri)=Txr(9,ro)=0. (26a-./) 

In addition, the following integrals must be satisfied: 

Jo J n 
rrdrd6 = 0 (21a) 

Jo Jr.-
r1 cos6drd6 = 0. {21b) 

The first integral represents the fact that the net axial force on 
the cross section of the tube must be zero. The second integral 
expresses the zero moment condition on the cross section. 
These conditions must be enforced because there are no net 
loads acting on the tube. Two other integral conditions, one 
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Fig. 1 Stresses in a 0 deg tube 
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representing another cross-sectional moment and the other 
representing torsion acting on the cross section, can be writ­
ten. However, for this problem those conditions are 
automatically satisfied. To complete the statement of the 
problem, rigid body translations and the rotations are 
specified at some point. Here the motions at the point (x, 6, r) 
= (0, 0, ra), a point at the outer radius of the tube, are chosen 
to be zero. Because of the assumed functional form of the 
displacements, equation (10), some of the six rigid body condi­
tions are automatically satisfied. 

When applying the traction boundary conditions, equation 
(26), it can be shown that for a single layer 

v 4 r a =0,s=l ,4andn>2;£>„ 1 =£>„ 2 = 0, n a l (28a) 

and 

£>02 = 0. (28*) 

Thus harmonics n > 2 do not appear in any of the displace­
ment components and W(B, r) of equation (6) is identically 
zero. Also, the shear stresses rxr and ra are identically zero 
throughout the tube. 

Suppressing axial rigid body translation and rotation com­
ponent o>xr at (x, 6, r) = (o, o, r0) requires 

= o>2 = 0. (29) 

The remaining unknown constants u0, Am, A02, b4,An,AH, 
and Z?| are determined by using equations (26a) and (26b) and 
equations (27) for the harmonics that do remain in u and v. 
These lead to seven simultaneous algebraic equations for the 
unknowns. (Actually, the seven equations separate into one 
group of three and another group of four equations. The 
group of three represent the response to the tube to a uniform 
temperature change ATg. The group of four represents the 
response to the temperature change A7\cos(0)). Equations 
(26c) and (26d) must also be enforced, but when doing so they 
provide the same information as equations (26a) and (26b) and 
so are not used. 

Figure 1 shows the four nonzero components of stress for a 
graphite-epoxy tube with all the fibers oriented axially. The 
tube has a mean radius to wall thickness ratio of 10 and is sub­
jected to the temperature condition 

A!T=-177+lOOcos0. (30) 
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Specifically, the mean radius is 10 mm and the wall thickness 
is 1 mm. This tube will be referred to as a 0 deg tube. The tube 
is made of a material which is assumed to cure, and be free of 
stress, at 177°C. This will be the reference temperature in all 
examples. With equation 30, at 0 = 0 deg the tube 
temperature is 100°C, while at 0 = 180 deg the tube 
temperature is - 100°C. Table 1 lists the material properties 
used in the examples. The subscript notation in the table 
follows the usual notations for fiber-reinforced materials, i.e., 
1 being the fiber direction, etc. Because the temperatures are 
measured relative to the stress-free state, the stresses can be in-
trepreted as residual stresses. 

In the figures the stresses are plotted as a function of non-
dimensional distance through the wall at 0 = 0 deg, 0 = 90 deg, 
and 8= 180 deg. The nondimensional distance p is defined to 
be 

/ • - / • , • 

(3D 

As can be seen, the stresses are quite small when the fibers 
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are aligned axially. The axial and hoop stresses vary nearly 
linearly with distance through the wall. In addition, the max­
imum value of the axial stress at 6 = 0 deg is very close to the 
maximum value at (9= 180 deg. The same is true of the hoop 
stress. The other two stress components vary in a nonlinear 
fashion. It should be noted that although they are negligible, 
the axial, hoop and radial stresses are not zero at d = 90 deg. If 
the tube was transversely isotropic, then these three com­
ponents of normal stress would be exactly zero at 0 = 90 deg. 
In all cases the shear stress is exactly zero at 6 = 0 deg and 180 
deg. 

The stresses in the 0 deg tube are in sharp contrast to the 
stresses in the 90 deg tube shown in Fig. 2, a tube made of the 
same material and subjected to the same temperature gradient 
except that the fibers are in the circumferential direction. The 
axial stresses for this case, though still low, are nonlinear func­
tions of distance through the wall. The maximum values at 
0 = 0 deg and 0=180 deg are not equal. However, the most 
significant contrast with the 0 deg case is with the hoop 
stresses. These stresses are much larger than in the 0 deg tube 
and are due to the difference between the radial and cir­
cumferential thermal expansions coefficients when the fibers 
are oriented circumferentially. These stresses are not actually 
of concern because they are in the fiber direction and are much 
below the material failure level. However, a comparison of 
Figs. 1 and 2 illustrates the strong influence of fiber 
orientation. 

Returning to the 0 deg tube, Fig. 3(a) shows the radial and 
tangential displacements at various circumferential locations 
as a function of length along the tube. The displacements 
shown are the displacements at the outer radius at the par­
ticular 0. The tube is assumed to be perfectly straight and cir­
cular at the stress-free temperature. The parabolic shape of the 
displacements, with the axial coordinate, is due to the con-
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stant bx and the figure indicates bx >0 . This is due to ax being 
negative. In particular, 6 mm ' . Comparing 
the displacements at 0 = 0 deg, 90 deg, and 180 deg, the figure 
indicates the tube cross section shortens along the 0-180 deg 
diameter about the same as it does along the 90-270 deg 
diameter, the cross section remaining almost circular. Since 
the tangential displacements are zero at 8 — 0 deg and 180 deg, 
the displacements at 0 = 45 deg, 90 deg and 135 deg are shown 
in Fig. 3. For this tube the quantity b4 is positive, namely bA = 
13.7 x 10~6. This means the tube has expanded axially, in ad­
dition to bending. The expansion, relative to the stress-free 
state, is again due to ax being negative. 

It is interesting to consider the case of a material with no 
thermal expansion in one direction. Figure 3(b) shows the 
displacements for the 0 deg tube subjected to the thermal con­
ditions under discussion, but with the coefficient of thermal 
expansion ax arbitrarily set to zero. Being a 0 deg tube, this 
means the tube is made of a material with no thermal expan­
sion in the direction aligned with the axial direction. The 
figure seems to indicate that, relative to the ax ^ 0 case, there 
is no variation in the displacements along the length and so the 
tube remains straight. However, the figure must be viewed 
with caution. For this ax = 0 case, the values of bx and bA are 

actually 1.48x 10~21 m m - 1 and -0 .854x 10"20, respectively. 
These nonzero values mean that the tube actually bends and 
changes length, even though the deformations are orders of 
magnitude less than for the ax ^ 0 case. The tube must be 
transversely isotropic in the 8r plane with ax = 0 if the tube is 
to not change length. However, the tube will still bend. The 
bending effects will be quite small and like the tube of Fig. 
3(a), the cross section of the tube will decrease in diameter but 
remain almost circular. In the numerical examples presented 
here, the material is very close to being transversely isotropic 
and so the variations of the deformations with x in Fig. 3(b) 
are imperceptible. 

As a matter of comparison, for the 90 deg tube bx = 
-332x l0" 6 mm"1 and b. -5980x10-

Application to a Multilayer Tube 
For a multilayer tube, the displacements of equation (25) 

are used but with the superscript k added to the nomenclature 
to denote that the displacements are associated with the Ath 
layer, e.g., A$, . . . X|*>, A\» b[k\ 
Dk *) w$,k). The application of the theory to multiple 
layers is straightforward. Here application will be limited to 
three-layer tubes but the extension to more layers is obvious. 
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For a three-layer tube the following conditions must be 
satisfied at the inner and outer boundaries. 

ar^(e,rl)=ar^(fi,r0)=rllr»HB,rl) 

= Ter^(fi,ro)=rJiKe,rl)=rXr0K0,ro)=O. 

. (32a-./) 

In addition, three of the six components of stress and the 
displacements must be continuous across the layer interfaces, 
namely, 

(*) (d,r)=or<
k+V(0,r) 

V*>(0,r)=T f t 
(k+i) 

<*> (6,r) =r, = T (*+i) 

(fl,r) 

@r = rk, k= 1,2 (33a-f> 
ulkHx,6,r)=u<k+[Hx,e,r) 

v<kHx,6,r)=vlk+l)(x,6,r) 

w(kHx,6,r) = wik+l\x,6,r) 

Equations (27a) and (276) must also be applied to the 
multilayer tube, the integration involving the cross section of 
all the layers. Finally, as with the single layer case, rigid body 
translations and rotations are set to zero at (x,6,r) = (0,0,r„). 

Application of the above conditions leads to several impor­
tant conclusions. They are: 

1) AJV=0, « > 2 , s = l , 4 

2) £>02
(*)=0, £>„!<*> =Z»„2(*>=0,«> 1, U = l , 3 (34) 

3) u 2 < * > = w 0 < A r ) , 

4) 6j1> = 61<
2> = 61<

3> = 6 1 , 6 4 < 1 > = 64<
2> = 64<

3> = 6 4 . 

The first three conclusions parallel the findings for the single 
layer case. The fourth conclusion indicates that even for the 
multilayer tube the planar cross section of the stress-free 
underformed tube remains planar after deformation. This is 
true despite the fact the material properties change from layer 
to layer. Because of this, the constants b^ and 64 describe the 
deformations of the tube as-a-whole, as they did for the single 
layer case. The remaining 17 constants, A$, A(§, uf\ A[f, 
A[k), k =1,3 and b{ and 64 are determined by enforcing 
equations (32a) and (326), equations (33a), (33c?), and (33e), 
equations (27a) and (276) and the condition 

w<3>(0,0,ro)=0 (35) 

for the harmonics that do remain in u and v. As with a single 
layer tube, application of equations (32c) and (i2d), and equa­
tion (336) for the harmonics that remain lead to redundant in­
formation and are not used. 

Figure 4 illustrates the stresses in an 8-layer (90/06/90) tube 
subjected to the temperature gradient of equation (30). The six 
0 deg layers, called the core, are treated as a single layer and 
hence the tube is analyzed as a three-layer tube. The inner and 
outer circumferential layers are referred to as skins. As with 
the single layer examples, the stresses are illustrated as a func­
tion of nondimensional wall thickness at several circumferen­
tial locations. Like the single layer case, rgr is the nonzero 
shear stress. 

As can be seen, three of the four components of stress have 
their largest magnitude at 0 = 180 deg, where the tube is the 
coldest. The two major components of stress are the axial and 
the hoop stresses. The stress components are discontinuous 
functions of p, a characteristic of layered materials. In the 
skins the axial stresses are tensile and they act perpendicular to 
the fiber direction. As 0=180 deg these stresses are large 

enough to crack the material. Also, in the core the hoop 
stresses at 8= 180 deg are tensile and act perpendicular to the 
fibers. They are also large enough to cause cracking in the 
material. The radial and shear stresses are much smaller than 
the other components of stress. These stresses peak at the in­
terfaces between layers, the outer interface experiencing both 
the highest radial and the highest shear stress. The quantities 
6, and 64, which characterize the overall deformations of the 
tubes, have the values -11 .6 x 10~6 mm"1 and -208 x 
10~6. This means the tube bends and contracts axially like the 
90 deg tube. This is due to the fact that the skins, with positive 
axial thermal expansion coefficients, overpower the six 0 deg 
core layers with negative axial expansion coefficients and 
determine the sign of the thermally induced deformations. 

Concluding Comments 

An analysis has been presented for studying the stresses and 
deformations of composite tubes subjected to a circumferen­
tial temperature gradient. Numerical examples have shown 
that in a single layer tube fiber orientation strongly influences 
response. In the multilayer tubes studied, the stresses were 
quite high. Even for a multiple-layer tube, just two constants, 
6, and 64, characterize the overall bending and axial deforma­
tions of the tube. 
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A Mixture Model for 
Unidireotionally Fiber-Reinforced 
Composites 
A binary mixture theory with microstructure is constructed for unidirectionally 
fiber-reinforced elastic composites. Model construction is based on an asymptotic 
scheme with multiple scales and the application of Reissner's new mixed variational 
principle (1984). In order to assess the accuracy of the model, comparison of the 
mixture model predictions with available experimental data on dispersion of har­
monic waves is made for boron/epoxy and tungsten/aluminum composites. For­
mulas for the effective moduli are also presented, and the results are compared with 
test data and other available predictions. 

1 Introduction 

With the advent of high strength and stiffness fibers such as 
boron and carbon, and the development of techniques for 
binding such materials to plastic or metal, fibrous composites 
have become important elements of modern structures. Such 
composites, due to their microstructural heterogeneity, may 
exhibit response phenomena for some environments that are 
not observed for homogeneous materials. An example of these 
phenomena for dynamic environments is wave dispersion, an 
understanding of which is important both from the stand­
points of direct response prediction and indirect analyses 
associated with such topics as nondestructive testing. For 
fibrous composites, wave dispersion has been amply 
demonstrated via ultrasonic techniques by such investigators 
as Tauchert and Guzelsu (1972), and Sutherland and Lingle 
(1972). 

Simulation of response phenomena associated with the 
material microstructure, such as wave dispersion, requires a 
higher-order continuum description. Several such models have 
been proposed, some phenomenological, some nonphenom-
enological. 

A higher-order continuum model which simulates wave 
dispersion was first proposed by Achenbach and Herrmann 
(1968) for unidirectionally fiber-reinforced composites. This 
theory called the "effective stiffness theory", has been further 
studied and applied to fibrous composites by Bartholomew 
and Torvick (1972), Hlavacek (1975), Achenbach (1976), and 
Aboudi (1981). The aforementioned works concerned linear 
materials. By modifying the original methodology, Aboudi 
(1982, 1983) extended the linear model to account for inelastic 
responses of the composite constituents. 

In addition to the effective stiffness modeling concept, a 
mixture approach has been followed by a number of in­
vestigators. A phenomenological version of this model type 
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was adopted by Martin, Bedford and Stern (1971). Deter­
ministic, nonphenomenological mixture theories were in­
troduced by Hegemier, Gurtman and Nayfeh (1973), 
Hegemier and Gurtman (1974), Nayfeh (1977), Murakami, 
Maewal and Hegemier (1979), and Nayfeh, Crane and Hoppe 
(1984). Although capable of simulating nonlinear component 
responses and interfacial slip, this work was limited to 
waveguide-type problems. This limitation was removed in the 
mixture theory developed for laminated composites by 
Hegemier, Murakami and Maewal (1979), and Murakami, 
Maewal, and Hegemier (1982). In their papers, it was 
demonstrated that the mixture-type model was capable of 
simulating harmonic wave dispersion in laminated composites 
more accurately than the effective stiffness theories. Further, 
the mixture-type model requires fewer governing equations. 
The accuracy and efficiency of the mixture theory is due to the 
use of appropriate displacement and stress microstructural 
fields, and a judicious smoothing technique. These are obtain­
ed by an asymptotic procedure with multiple scales. This pro­
cedure yields a series of microboundary value problems 
(MBVP's) defined over a unit cell, which in turn represents the 
(periodic) microstructure of a composite. The lowest order 
version of the MBVP method is equivalent to the "O(l) 
homogenization theory" summarized by Bensoussan, Lions, 
and Papanicolaou (1978), and Sanchez-Palencia (1980). The 
latter, while it generates appropriate static moduli, is non-
dispersive. Simulation of wave dispersion requires at least a 
theory which is classified as an 0(e) homogenization theory in 
which e denotes the representative ratio of micro-to-
macrodimensions of a composite. 

To date an O(e) mixture theory has not been constructed for 
fibrous composites subject to arbitrary wave motion. Con­
struction and validation of such a 3D model for unidirectional 
binary composites with periodic microstructure are the objec­
tives of this paper. To facilitate this task, the asymptotic pro­
cedure with multiple scales noted previously is combined with 
a variational technique (Murakami, 1985). Following develop­
ment of the basic equations, the dispersion of time-harmonic 
waves is studied and the results are compared with experimen-
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Fig. 1 A unidirectionally fiber-reinforced composite 

tal data for boron/epoxy (Tauchert and Guzelsu, 1972) and 
tungsten/aluminum (Sutherland and Lingle, 1972) com­
posites. The good correlation obtained with experimental data 
indicates that the proposed mixture model furnishes a basic 
tool by which dynamic responses of elastic composites can be 
investigated. While the model construction procedure is ap­
plicable to inelastic component response and interface slip, ex­
tension and investigation of the nonlinear problem is deferred 
to later publications. 

2 Formulation 

Consider a domain V which contains a uniaxial periodic ar­
ray of fibers embedded in the matrix, as shown in Fig. 1. Let a 
rectangular system xly x2, x3 be selected with xx in the axial 
direction of the fibers. In the x2, x3 plane, a typical cell that 
represents the geometrical microstructure of the composite is 
shown in Fig. 2 for a hexogonal array. 

For notational convenience forms ( )<a), a =1,2 denote 
quantities associated with material a with a = 1 representing 
fiber and a = 2 matrix. Cartesian indicial notation will be 
employed in which Latin indices range from 1 to 3 and 
repeated indices imply the summation convention unless 
otherwise stated. In addition, the notations ( ) ,• = 9( )/dx, and 
( )_, = 9( )/di will be employed in which t represents time. 
Quantities of the form ( ) and ( ) denote dimensional and 
nondimensional variables, respectively. 

The governing relations for the displacement vector wja) and 
the stress tensor oMn the two constituents are: 

(a) Equations of motion 
=.(«) UT w=w 

where p(o,) is the mass density; 

(b) Constitutive relations 

of = \<«V$+2£<«>e: M?> 

(1) 

(2) 
where X(a), jX^ are Lame's constants, e^f is the infinitesimal 
Cauchy strain, and 8tJ is the Kronecker delta; 

(c) Strain-displacement relations 

„w. 
1 

(3) 

(d) Interface continuity relations 

«{1, = i iM , X- , ) = s/?M1) o n 3 • (4) 
where i^n = 0 on the fiber-matrix interface 3; 

(e) Initial conditions at F=0 and appropriate boundary 
data along the boundary d V. 

Conditions (a)-(e) define a well posed initial boundary value 
problem. However, due to the large number of fiber-matrix 
interfaces the direct solution to this problem is extremely dif­
ficult. The objective of the subsequent analysis is to alleviate 

•CIRCULAR CYLINDERS 
APPROXIMATION 

Fig. 2 A typical cell 

such difficulties by deriving a set of partial differential equa­
tions with constant coefficients whose solution can be utilized 
to approximate the solution of the problem. To this end, it will 
be convenient to nondimensionalize the basic equations by us­
ing the following quantities: 

A = 
A = 
C(m)>P(m) = 

-£(m) = P(ni)p(m) 

'(m)sA/C(m) = 

e = A/A = 

typical macrosignal wavelength 
typical fiber spacing or cell dimension 
reference wave velocity and macro-
density 
reference modulus 
typical macrosignal travel time 
ratio of micro-to-macrodimensions. 

With the aid of the above notation, nondimensional variables 
are now introduced according to 

(*i, x2, x3) = (x,, x2, x3)/A, t= t/tm, 

(X, ,«)<«> = (X, A) w /£ ( m ) , p<»> =/><->//>,„,. (5) 

With the variables defined according to (5), the material 
properties are seen to be periodic in the x2, x3 plane in which 
the periodicity of the fiber lattice structure may be defined by 
the cell. It is expected that stress and deformation fields will 
vary significantly with respect to two basic length scales: (1) a 
"global" or "macro" length typical of the body size or 
loading condition, and (2) a "micro" length typical of "cell" 
planar dimensions. Further, it is expected that these scales will 
differ by at least one order of magnitude in most cases. This 
suggests the use of multivariable asymptotic techniques (Ben-
soussan, Lion, and Papanicolaou, 1978; Hegemier, 
Murakami, and Maewal, 1979; Sanchez-Palencia, 1980). This 
approach commences by introducing new independent 
microvariables according to 

xfmXl/e. (6) 

Therefore, all field variables are considered to be functions of 
the microvariables x2 and x*, as well as the macrovariables xh 

; ' = l - 3 : 

f(xux2,x3, t)=f*(xx,x2,x3,xl,x\, t;e) (la) 

Spacial derivatives of a function/then takes the form 

dx; dx, e dxf 
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where d( )/dx* = 0. By introducing the notation ( )j* = d( ) / 
dx*equation (lb) can be rewritten as: 

/ , /=/;+—/;*• (7c) 

In the sequel/* will be written a s / f o r notational simplicity. 
The operations (7), when applied to all field variables, lead 

to the following "synthesized" governing field relations: 

(a) Equations of motion 

— <#>,..= pw«$, af = of; (8) <T ( . a ) .+-UJ>. J T 

(b) Constitutive relations 

» . • \^bt/tk+2^e^ ; 

(c) Strain-displacement relations 

e(a.» - -[«tj + "jf ("?/* + </*)]; 
(rf) Interface continuity conditions 

« J , ' = «P>, ffUM". = ffj^j') on 3. 

(9) 

(10) 

(11) 
At this point, the variation of field variables which satisfy the 
periodicity with respect to x* is assumed. According to this 
condition field variables take equal values on opposite sides of 
the cell boundary. The premise allows one to analyze a single 
cell in an effort to determine the distribution of any field 
variable with respect to the microcoordinates xf. The x* 
-periodicity condition is motivated by the Floquet and Block 
theorems (Brillouin, 1946) for harmonic wave in periodic 
structures. Certainly, it eliminates boundary layer effects. 
However, it is expected to provide a good model for the global 
wave phenomena in fibrous composites with periodic 
microstructure. 

For the construction of a mixture model it is convenient to 
cast the field equations in a variational form by using the 
Reissner new mixed variational principle (Reissner, 1984). In 
the Reissner variational principle the variations of displace­
ment, strain with equation (10) as definition and transverse 
stresses, i.e., all stress-components except a^} , are con­
sidered. Thus, it is convenient to rewrite the constitutive rela­
tion (9) in terms of the axial strain effl and the transverse 
stresses: 

„<«) aYl - (X + 2rfWe^ +X<«>(e(g ( . . . ) + * $ ( . . . ) ) 

e ( g ( . . . ) 

e't ( . . . ) 

(X + 2fi)W \ W 

X<<*> (X + 2/*)<a> 

a21 

<*33 

(a) 
• X<a>eft> 

[2e(?> ( . . . ),2e<?j ( . . . ),2e<?> ( . . . ) ] 

.(<*) „(<*) 
.,.<«> 

r (al W ta) -i 
l f f23 > ff31 > a 12 J (12) 

Using the equations of motion (8), Gauss' theorem, and the 
x*-periodicity condition, it can be demonstrated that the 
Reissner mixed variational principle, applied to the synthe­
sized fields by the multivariable representation, takes the 
form: 

1IL [ £ JL°> N a < " + 6 e < g ^ +6e» ^ 
+ 28e (g <J<$ +26e(?J a(?j + 2Se(?l <r(?l 

+ °0 22 (.M2,2 T "2 ,2* e 22 I • • • ) ) 
e 

+ 8 ^ ( « 8 + — < 3 . - e ( g ( • • • ) ) 
e 

+ 5 ^ ' («g + „W + _L „W* + _L „ $ . _ 2eM ( . . . ) ) 

+ 5^1 («« + «ri + — " ( ,1* - 2e(?j ( . . . ) ) 
e 

+^ (r2 («i?2+4:1+4- MU* - 2e<i2 ( • • • ) ) ] ̂ i dx? 

+ ( — {(buf-bu^YTt +b"TKuf> 
J3 e 

dX2 t?^3 - i f P ) ) * * ] ^ , 

a= 1 

( -p ( a ) «g)r fx | tfxfjtfx, cfcc2 dx2 

+ \LT(Z\\AM^Ti*dx!dx!)dA, (13) 

where A^ denotes the x\, x% domain of the cell occupied by 
material a (Fig. 2), affi is used for the approximate transverse 
stress, |,7"jD,) denotes the traction vector on the surface dVT 

where the traction is specified, ds* is an infinitesimal line ele­
ment on 3, and dA is an infinitesimal surface element on the 
boundary of V:dV. In (13) basic variables are the 
displacements wja), the transverse stresses a*?] and the interface 
traction vector T*. The Euler-Lagrange equations of (13) in­
clude (8a), (11a), (126, c), and 

"Tf=a(-fvf) on 3. (14) 

The above variational equation (13) furnishes a tool with 
which a mixture model can be obtained with appropriate trial 
displacement and transverse stress fields. The basic require­
ment for the variables is the x* -periodicity condition on the 
cell boundary dA. The microstructural variation of the trial 
functions can be obtained by the asymptotic procedure 
(Murakami, Maewal, and Hegemier, 1981). 

3 Asymptotic Analysis 

The premise that the composite macrodimension is much 
larger than the microdimension, e « . 1, and the form of scaled 
equations (8) and (10), suggest the expansion of the dependent 
variables in the asymptotic series: 

CO 

{H„a,,)(">(**, Jf,V;e)= £ e"{um,<jm\^{xk,xtt). (15) 
n = 0 

If equation (15) is substituted into equations (8)—(11) and the 
coefficients of different powers of e are equated to zero, a se­
quence of problems defined on the cell is obtained. The first of 
the equations in this sequence furnishes 

» = 0 , J.«). .* = 0. * « / = u i °y/(o),r="- (i6) 
Equation (16a) implies that H ^ is independent of or,* and yields 
with the zero-th order expansion of (11a): 

"$) = Um(xk, t). (17) 

The remaining systems of equations obtained from equations 
(8)-(10)are,for/i>0: 
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e!/(n) • 

r r ( a ) 7(«) . 
V'(n) " 

1 

T(°) - = \<a>5,ye' 

,(<*> 

,(«) 
AT* ( n ) + 2/iWe' 

_(«) 
"«'(«)> 
(«)„(«) 

.» (M/(n), j + uj(n),i + ui(n + 1), j * + My(n + !) , /*) 

W ('0' 

(<*) 

(18) 

(19) 

(20) 

To be added to the foregoing are the interface conditions and 
the x*-periodicity conditions for n > 0: 

, . (D _ , . ( 2 ) (l) (l) (2) (1) a n u 
ui(n)—uHn)'aJHn)pj"ji(n)vj On J , ( Z l j 

.,P) and a .(2) are x* -periodic on dA. (22) 

The first set of microboundary value problems (MBVP's) 
for o$0) and w ^ , called the O(l) MBVP's, is defined by equa­
tions (166), (186), (19), (20), (216), (226) with n = 0, and (21a), 
(22a) with n=\. The O(l) MBVP's are excited by Umj. 
Similarly, a sequence of MBVP's is defined for each n from 
equations (18)-(22). With appropriate integrability and nor­
malization conditions, higher order terms may be computed 
by solving the MBVP's. In particular, the O(l) MBVP's are 
the ones solved for the O(l) homogenization theory proposed 
by Bensoussan, Lions, and Papanicolaou (1978) and Sanchez-
Palencia (1980), and, also, form the basis of the mixture 
theory which may be classified as an O(e) homogenization 
theory. The asymptotic approach yields the microstructures of 
displacement and stress fields after solving a multitude of 
MBVP's which are complicated. 

In order to use the approximate solutions of the MBVP's in 
the course of developing a mixture model, and to ease the 
burden of solving the MBVP's exactly, a variational pro­
cedure was adopted by Murakami (1985) for laminated com­
posites with the help of the Reissner new mixed variational 
principle (Reissner, 1984). A similar approach is adopted here 
for fibrous composites. To obtain the lowest order mixture 
theory by using equation (13), it is necessary to obtain trial 
displacement and transverse stress to O(e). In the sequel, the 
trial functions are obtained for a hexagonal cell with a concen­
tric cylinder approximation as shown in Fig. 2. In Fig. 2, (r, 6) 
are micro-polar coordinates: 

M/Jf) in Appendix A into equation (26) and eliminates Ui(0)j. 
To render the analysis tractable, it is preferable to utilize an 
approximate form of the exact solution for u^. The exact 
solution indicates that the following form of the O(e) displace­
ment yields a good approximation: 

4")(**.*,-•• 0 = s&k- 0g{a)(r)cos6 + St{xk, t)g^(r)sinfl (28a) 

where 

g^r) = ̂ , g < 2 V ) = ̂ r ( - r + 4-). (286) 

Anticipating the 0(e2) difference of the average of u]a) on 
A^a\ equations (17) and (28) yield the following trial displace­
ment field: 

(29) u)a)(xk, Xj*, 0 = lS?\xk, t) + eu%{xk, Xf, 0 

where i/jfy is defined by equations (28). Equations (29) and 
(28) indicate that the mixture displacement variables are U\l\ 
Uf\ 2St and 3S,- with the constraint (27). 

By using equations (29) in (19) with n = 0 and considering 
the 0(e2) differences of the average transverse stresses, the 
O(l) trial stress field may be expressed as: 

ff22(o) 

^33(0) 

^23(0) . 

(a) 

= 

>22(**>0~ 

7-33 (**> 0 

j2ii.Xk,t) 

(a) 

; (**, 0 

cos 26 

cos 20 

0 

+t?kxk,t) 

cos 20 

- cos 26 

sin 26 

+ t<&(xk,f) 

sin 26 

sin 26 

0 

(30a) 

-.^x>+} ta.nd = x^/x2, (23) 

by which r=\ constitutes the cell boundary and r=V«<1), 
denotes the interface 3. The quantities «(a) indicate the volume 
fraction of material a. and satisfy 

ff31(o) 

'mo) 

(a) T3l(Xk,f) 

Tl2(Xk, f) 

(a) boa 

7 ( D + W ( 2 ) = 1 . (24) 

In terms of the polar coordinates the **-periodicity conditions 
for a hexagonal cell with the concentric cylinders approxima­
tion reduce to the form: 

f{x, r, 6, t)=f(xk, r, ir + 0, t) at r= 1. (25) 

4 Trial Displacements and Transverse Stresses 

The 0{\) stress and O(e) displacement fields are obtained by 
solving the O(l) MBVP's which are defined by equations 
(166), (186), (19)-(22) and (25). These MBVP's are excited by 
C/i(0)j. The exact solution of M;^ is furnished in the Appendix. 
For the mixture formulation it is convenient to introduce an 
0(e) displacement variable which represents C/,(0) j + C/j(o) ,• ac­
cording to: 

JS,(xk, t) m-L^ „(»)„(»** = _ L J ^ uftWds* (26) 

where A( = ir) is the area of the cell. Due to the fact that u^ is 
excited by £/,(0)] j + C/,(0)i ,• one obtains 

S2 = 2S3. (27) 

Equation (27) can also be obtained if one substitutes the exact 

'(?2 frk, t) 
sin 26' 

cos 26 
+ ^\(xkJ) 

' cos 26 

— sin 26 
(306) 

In order to define the 0(e) trial stress field it is convenient to 
define the 0(e) stress variable according to 

P£xk, 0 = - ^ - j 9 rfWds'~\g a%)V^ds*. (31) 

If one integrates (8a) over Aia) and utilizes the x*-periodicity 
condition, one obtains the mixture momentum equations: 

n^afj+i- l )K + 1P, = « ( 'Va )";"? ) (32) 

where the average operation is defined by 

SM(-X*' ° = _ ^ T I L«> f '"'̂  x;'t)dxldx* (33) 

From equation (32) it can be seen that P, represents an interac­
tion body force between the two constituents across the inter­
face. Also, the form of equation (32) with Pt defined by (31) 
satisfies the integrability condition adopted by the O(l) 
MBVP's for ffj,™}) which are defined by equations (18)-(20) 
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with appropriate n's and equation (31). As an O(e) trial stress 
field which satisfies (31b) one may use the following approx­
imate fields: 

ff22(l) 

^33(1) 

a-23(1) 

(a) 

P2(xk, t)g(aHr) 

3 cos 8 

cos 8 

sin 8 

+ P3(xk,t)g^(.r) 

sinfl 

3 sin 8 

cos 6 

(34a) 

-"31(1) 

'12(1) 

(a) 

• Pdxk, QgW{r) 
sin I 

cos 

As a result, the trial transverse stresses are expressed as: 

&(4? = W * * > xf, t) + eo%(xk, x*„ t) (35) 

where a ^ and af^ are defined by equations (30) and (34), 
respectively. 

5 Mixture Equations 

By substituting the displacement and transverse stress trial 
functions defined by equations (29) and (35), respectively, into 
the Reissner variational equation (13), one obtains the follow­
ing relations as the Euler-Lagrange equations: 

(a) Equations of motion 

n^0%"] + (- l)«+1.P,. = rt(lVa>t/$, /= 1 -3 , (36) 

MJi, J + — <•<%* ~ ^ + R^ > = ISu< . ' = 1 - 2 , (37a, b) 

t4?2 + ( - l ) a + 1 5 2 / n ( a ) 

+ -K{a)U<Cj [ l 

(7 2 3 

CT31 

- C T 1 2 . 

M 

= 

" r23 " 

1~31 

„ T12 _ 

(a) 

= ' / * 
(a) 

^2,3 + t/3,2 

^3.1 + tfl,3 

t / , 2 + t / , , 

(a) 

( -1 ) ° 

2S2 

3 

2 

s, 

(40) 

(345) P , = ^1[(f7l2)-tA")/e2 + (/!/2)(S1,2-fS2]1 + S3i, + S1,3]] 

P2 = hKU?)-^)Ve2 + ySu+h(3Sv + 2S2:3 + SX2)/4] 

P3 = Pil(U?)-U\[))/e2 + ySul+ti(S2i3 + 2S2i + 3SX3)/4] 

(41) 
where 

0, = l/f E* (a) /(2p (o))]. 

/32 = l33 = l / ^ M a » ( X + 3Al)(«V8(X + / i)( a»], 
a = l 

2 2 

7 = X) A(a)X<a>/2(X + /i)<a>, A= £ /!<«>; 
a=1 a=I 

2 3 2 /, 2 /; 3 h 
M22 = — /*P2,M33 = — P2 ,M1 2 = — P, ,M22 = — P 3 , 

3 3 3 / , 

M 3 3 = — A P 3 , M 3 1 = — P „ 

(42) 

M y / , y + — ( f f 3 / a ) - ^ f l , + ^ ) ) = / V . ' = 1.3. (37c,d) 

1 .3 

~2 

where 

( M A y + My3, j) + —(a<2
3
fl) - a23<" + R™) = /S2,„. (31 e) 

e(MiJ, M,j)=-L £ j j ^ w oWgW^sfl, sin0)rfx2* dx\, (38) 

and 

2 , 
Im 7L,h{a)PM> h([)=—-. 

- 1 
4«<2> ' ' n* 

(6) Constitutive relations 

°22 

ff33 _ 

(ao) T22 

_1"33 . 

(a) 

(39) 

X + 2/t X 

X X + 2/* 

(a) 

2 2 3 3 

M23 = M 3 1 =M 2 3 = M12 = 0 

where it is understood that 
2 2 3 3 

My = Mji,Mij = Mji; 

Rfht?l^^Rf2^^/2 + tf3W^Rf^-tf^\ 

*g» f g v ^ u g s (- 4IV2+42
3y«(i> 

and 
/(22> = - /x<2) I , /*<2> , 4 ? = M<2> S , /«<2>, 

X2)_ ( x + M ) ( 2 ' ( s 2 - s 3) /«< 2 \4 2 )= - ^ 2 > ( s 2 + s3) /« ' „(2) 

423)=-(X + Al)(
2»(2S2)/« (2) 

(43) 

(44) 

(45) 

(46) 

The remaining constitutive relations associated with ofi a r e 

obtained from (12a); the results are 

ff'/f = (X + 2̂ )<«> L^l + X(a)! Vfl + Ufl 
2 3 

"ia+lC.<r. 4- . « . ) / » W | +(-ir+i(s2+s3)/«c 
2 j -

= D /!(a)l(X + 2At)<
a 

(47) 

XW2 n 

( X + /*)<<"> J 

2 

3 
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+ 7 
Pi 

The associated boundary conditions are on d V 

or 5C/(a> = 0 , /= 1,2,3, 
2 

MJiVj = »T, 

(Mj2 + Mfl)vj = l»T2 +
 2>Ti or SS2 = 0. 

or 5S,. = 0 

or 8S, = 0 

, / = l , 2 , 

, (=1,3, 

(48) 

(49) 

(50a) 

(506) 

(50c) 

where 

v jiaP) s _ -W^^dxtdxt, 

e(2T,., 3T,.) = i - E [ ( (a ) '77-)g<«)(cos0, sin0)dfc2* drj(51) 

Equations (36)-(50) and the initial conditions 

[//"»,UW,JSi,JSu at / = 0 on K (52) 

define a well posed initial boundary value problem with 
respect to time t and the macrocoordinates xk. 

6 Harmonic Wave Dispersion Spectra 

In an attempt to test the accuracy of the mixture model, the 
phase velocity and group velocity spectra of the mixture 
theory have been compared with available experimental data 
for time harmonic waves. For the comparison harmonic waves 
which are propagating at an arbitrary angle of incidence in a 
full space of the following form are considered: 

S, /ik, S2/ik,2S2/ik, S, /ik, S3/ik]T 

= exp (ik{x{ cos<t> + ->c2sin$cos0 + x3sin</Jsin0) - iut J U* (53) 

where 

V* = [U\lKty2\U2
l\U2

2\bj\ 

* . . . 2 2 3 3 3 ^ 

U?>,s1,s2,2s2,s1,s3]
T (54) 

and [ ]T denotes the transpose of [ ]. In equation (53) t/}a) and 
•is, are constant amplitudes, k denotes the wave number, to 
represents angular frequency, </> is the azimuth measured from 
the x, axis, and 6 is the longitude; the direction of the wave 
propagation may be best represented by the wave vector k: 

k = £[cos0,sin(/>cos0,sin</>sin0]T, (55) 

Substitution of (53) into equations (36) and (37), which are 
expressed by the displacement variables with equations 
(40)-(48), yields an eigenvalue problem for eco of the form: 

[K]V = {eoi)2[M\h (56) 

where [K] and [M] are 11 x 11 real symmetric matrices, the 
elements of which are functions of the mixture constants and 
the wave vector. Furthermore, [M] is a diagonal matrix. Upon 
calculation of the eigenvalue eco for a given ek, one obtains the 
phase velocity Cp as 

C, = («o)/(e*). (57) 
* 

For each computed eigen pairs (ew, U)y, y '=l,2, . . . 11 the 
group velocity 

„ dco 
C'~W (58) 

A Experiment 
o 

4 6 8 10 12 

FREQUENCY (MHz) 
Fig. 3 Group velocity spectra of waveguide modes for a boron/epoxy 
composite (Tauchert and Guzelsu, 1972) 

Table 1 Material properties of the boron/epoxy composite tested by 
Tauchert and Guzelsu (1972) 

' " B o r o n 

<2)Epoxy 

Volume 

Fraction n^1 

0.54 

0.46 

Young's Modulus 

379.2 GPa 

(55 x 10s psi) 

5.033 GPa 

(0.73 x 106 psi) 

Poisson's Ratio 

0.18 

0.40 

Mass Density 

2682 kg/m 3 

(251 x lOr6 lb sec2/m4) 

1261 kg/m 3 

(118 x i r l ft see3/™4) 

Table 2 Material properties of the tungsten/aluminum composite 
tested by Sutherland and Lingle (1972) 

Tungsten 

Aluminum 

Volume 

Fraction n0*' 

0.022 

0.978 

Young's Modulus 

£fa) 

398 GPa 

71.0 GPa 

Poisson's Ratio 

0.28 

0.34 

Mass Density 

19194 kg/m3 

2700 kg/m3 

can be obtained by taking the derivative of equation (56) with 
respect to ek: 

IK' ]JUJ = (2(eco)Cg [Ml + (e<o)2 [M']\ JVJ . 

For they'th eigenpair equation (59) yields 

(59) 

(Q)y = 
lF{[JT]-(eco)2[M'])U 

(60) 
2(6co)/Ur[iW]U)y 

In the subsequent simulation a typical cell dimension A was 
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5.0 

4.0 

Experiment 

A P-mode -

A ® SH-mode 

A A 
-A A 

FREQUENCY 
Fig. 4 Group velocity spectra of wavereflect modes for a boron/epoxy 
composite (Tauchert and Guzelsu, 1972) 

chosen to be a cell radius by introducing the concentric 
cylinders approximation of the equal area. The reference 
elastic modulus and density used for the scaling are 

£<m>= I > a ) £ < a ) > P(m): £ «<">p<»» (61) 

where ESa) is Young's modulus. The dimensional frequency 
v(Hz) can be computed from eco by 

v = (eco)V£(m)/p(m)/(27rA). (62) 

Numerical results are presented for a boron-epoxy com­
posite, for which experimental results were presented by 
Tauchert and Guzelsu (1972) for a waveguide case </> = 0 deg 
and a wavereflect case <j> = 90 deg. The material properties are 
summarized in Table 1 in which the values for Poisson's ratio 
are estimated. In the simulation A was computed from the 
fiber diameter ( = 2V«<r>A) which was 1.016 x 10"4 m. The 
group velocity spectra for a waveguide case </> = 0 = 0 deg are 
shown in Fig. 3 for two acoustic modes: a "gross" 
longitudinal model and a "gross" shear mode. In the figure 
the same symbols as the reference of Tauchert and Guzelsu are 
used for the experimental data points. It is noted that 
reasonable agreement is achieved for the waveguide case in 
which pronounced dispersion is observed. The group velocity 
spectra for a wavereflect case <f> = 90 deg, 0 = 0 deg in which the 
wave vector is normal to the fiber axis are shown in Fig. 4 with 
the experimental data. The figure includes three acoustic 
modes: a "gross" longitudinal wave (P-mode), a "gross" ver­
tically polarized shear wave (SV-mode), and a "gross" 
horizontally polarized shear wave (SH-mode). The sets of ex­
perimental data correspond to the "gross" P-mode and the 
"gross" SH-mode. It is noted that there are significant devia­
tions from the "gross" SH-mode, but the overall agreement is 

6.2 

6.0 

S5.8 
E 

§5.6 
UJ 

5.4 

1 I | r 

o Experiment 

_L _|_ 
1 2 3 4 

FREQUENCY (MHz) 
Fig. 5 A phase velocity spectrum of a longitudinal wavereflect mode 
for tungsten/aluminum composite (Sutherland and Lingle, 1972) 

Table 3 Comparison of effective moduli of a boron/aluminum unidirec-
tionally fiber-reinforced composite 

Elf 

Elf 

Ejf 

Ejf 

£JT> 

Elf 

Dataa 

2.450 

1.825 

0.779 

0.604 

0.526 

0.566 

Mixture 

Model 

2.551 

1.868 

0.661 

0.578 

0.604 

0.559 

Square Cell" 

Model 

2.480 

1.856 

— 

0.451 

Hexagonal Cell3 

Model 

2.551 

1.872 

0.661 

0.578 

0.606 

0.561 

After Datta and Ledbetler (1983) 

not unsatisfactory if one admits the scarcity of the experimen­
tal data and the difficulties associated with the measurement 
of shear wave velocities. It was reported by Tauchert and 
Guzelsu (1972) that a shear wave exhibited extremely high 
damping of the pulse. A similar observation and the scatter of 
shear wave data were reported by Sachse (1974) who con­
ducted modulus measurements of boron/epoxy composites by 
using pulse-echo techniques. He concluded that "the measure­
ment of the present investigation indicate that shear waves 
propagating along and across fibers in the composite materials 
tested do not always propagate at the same speed." 

Sutherland and Lingle (1972) reported phase velocity 
measurements for tungsten/aluminum composites whose 
material properties are shown in Table 2. The equivalent cell 
radius A was computed from the given fiber spacings which 
yield the area of a typical cell ,4( = 7rA2) 0.579 x 10"6 m2. 
Figure 5 shows the phase velocity versus frequency relation for 
the "gross" longitudinal mode. Reasonable agreement is 
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observed between the experimental data and the theoretical 
prediction. 

7 Effective Moduli 

The O(l) homogenization theory which yields the effective 
moduli of composites can be obtained by taking the limit of 
£—0 and equating the constituents' displacements 

(yf > = c f > = £/,- (63) 

By introducing the above constraints, equations (36) yield 

<%) = P™Ul§ll (64) 
where 

2 2 

o-(£"= X) « ( a )4"". P(m)= I ] «< aVa ) . (65) 
a - 1 a= 1 

Equations (37) yield 

($"> - a^ + R2
2> = 0, / - 1,2,3 (66a) 

ffSJ") - <$"> + /?<$ = 0, / = 1,3. (666) 
By eliminating ; S, by equations (66), equations (65a), (40), and 
(47) with (63) furnish 

a{m) = itfm) ]e(m) (67) 

where 

<7<m> = [ô ff ,o<# ,o<# ,o<$ ,o^> , o W , 

e"»> = [[/,,,,t/2,2,t/3,3,[/2,3 + 1/3,2,1/3,, + C/u,£/ l i2 + UUY, (68) 

and [i?1'")] is the effective modulus matrix with transverse 
isotropy due to the concentric cylinders approximation and is 
defined in Appendix B. 

The formulas for the effective moduli (B2) are assessed by 
comparing the results with the experimental data reported by 
Datta and Ledbetter (1983) for boron/aluminum composites. 
The results are shown in Table 3 in which the moduli com­
puted from the effective stiffness theories for the square cell 
by Achenbach (1976) and for the hexagonal cell by Hlavacek 
(1975) are included by using the formulas reported by Datta 
and Ledbetter (1983). The comparison has revealed that all 
high-order theories yield almost similar results. It can be easily 
shown that the formulas for the effective moduli yield values 
which fall between the upper and the lower bounds obtained 
by Hashin and Rosen (1964) for fiber-reinforced composites. 

8 Concluding Remarks 

An asymptotic mixture theory with multiple scales was ap­
plied to unidirectionally fiber-reinforced elastic composites 
with periodic microstructure. In the model construction, 
Reissner's new mixed variational principle was applied to the 
synthesized fields with multivariable field representations. In 
order to assess the accuracy of the model the mixture disper­
sion spectra were compared with the experimental data obtain­
ed for the boron/epoxy composite by Tauchert and Guzelsu 
(1972) and for the tungsten/aluminum composite by 
Sutherland and Lingle (1972). 

A satisfactory correlation with the experimental data in­
dicates that the proposed mixture model furnishes a basic tool 
by which dynamic responses of the composite structures can 
be investigated. 
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A P P E N D I X A 

Exact wg, of the 0(1) MBVP's 

"ico = Gg(o')(/-){(i71(0),2 + C/2(o),1)cos6l + (<73(0),1 + f/1(o),3)sine|, 

"$()) = b0(Umy2 + Umt3 + \UmA)gW(r)cos8 

+ a^[IgW(/-)cos0 + /cWg^(r)cos3t))(t/2(O),2- C/3(o),3) 

+ !^'(r)sint3 + /c(a»g^(r)sin3c5)(C/2(0),3 + Uma)) 
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+ &£">[{ 3(1 -Kia))gf(r)cos8 + tt 

+ *<B))g$(r)cos3fl) (C/2(0),2 - £/3(0),3) 

+ {3(1-K<a>)g^>(r)sin0 + (1 

+ K(a))g$e)sin30) (C/2(0),3 + £/ m 2 )J , 

"$ ) = *o(^2(o),2 + ^3(o),3 + %Um,i)glaHrysme 

+ a^[lgiaKr)smd-K^g<tfsm3dU- Uma + Um<3) 

+ [g^{r)cosd-K^g^\r)cos3e}(Umi3 + Uma)] 

+ b2
a) [ [ 3(1 - K^)g^(r)smd - (1 

+ KM)gfi}(r)sm38K-U2m + C/3(0),3) 

+ (3(1-K<«>)^>( / - )COS0-(1 

+ K^MJ) (r)cos36) (Uma + t/3(0),2)] (A 1) 

where 

b0 - t(A + ,*)<2>-(X + M)<1»)/(2tf1). 

2 
d i = E (X + /*)(a)/«w + ̂ (2)/(n(1)«(2»), 

2 

G - -(n<»-iiP>)/d3,d3= ^ w / f l W t ^ / t n i ^ P ) ) , 
a = l 

X = (X<»-X<2>)/[(X + /0 ( 1 )-(X + /*)(2)) 

K(«) = (X + 2/i)(«)Va',/c(a) = (l-K ( a )) /( l+K ( a )) W2) 

g^W = g?^) = r\g^(r) = 0 

gf)(r) = - r 3 +/ - ' , £$ [ / • ) = ( - ' •" 1 + r - 3 ) / « ( 2 ) . 

gg}(r) = r3-(l+K<2»)-2{4(l-K(2»+K<2>2)r"3 

- 3 ( 1 - K ( 2 > ) 2 / - ' } - (-43) 

In equations (yll) a2
a) and &2

a) are obtained by solving the 

linear equations for x = [a2
0, b2

l), af, b2
2)]T-

[A] x = B 044) 
4 x 4 4 x 1 4 x 1 

where 

Au = l M 2 i = 0 M 3 i = ^ ( 1 ) / « ( 1 ) , ^ 4 i = 0 

/412 = 3(l-/cm)n<»2M22 = (l+K(1))«(1)2 

-432 = - - 4 4 2 = 3 « < 1 V 1 ) ( 1 - K ( 1 > ) , - 4 , 3 = - 1 , 

A23=-k^>/n^\ 

,433 = At(2)/«(2> {1 - tF>/n<»), y443 = S^V 2 ' / / ? ' " 2 

y414 = -3«<2>(1+/Z<»)(1-K<2>) 

,424 = (l + K ( 2 V , ) 2 - ( 4 - 3 « ( " ) ( l - / c ( 2 ' + /c(2'2) 

/ ( n « ( l + /c(2))) 
.434 = 3iiV>(l-KF>)QiM-iP>/nM) 
A44 = - 3 A I ® ( 1 - « « ) ( « « > + 3KW/HW) 

+ 1 2 ^ ( 1 - K < 2 ) + K(2)2)/(K<1>2(1 + /c<2>)], (.45) 

and 

B} = 5 2 = B4 = 0, 5 3 = - (/*<» - /^f2 ')^. (/16) 

It is interesting to note that for most of practical composites 
b2

a), a= 1,2 are small compared with a2
a\ 

A P P E N D I X B 

The Definition of [EM] in (67) 

" f f l l " 

^22 

^33 

ff23 

cr3 1 

_ f f12„ 

(m) Eu EnEn 0 0 0 

El2 E22 E23 0 0 0 

El2 E23 E22 0 0 0 

0 0 0 £44 0 0 

0 0 0 0 ES5 0 

0 0 0 0 0 £ , 

(m) 

£/, 

t / 2,2 

C/, 3,3 

^2,3 + ^3,2 

^3,1 + t/l .3 

^ . , 2 + ^ 2 , 1 

where 

2 

^ 'n = E "(a)(X + 2A0<"> - (X<» - A<2>)2/d,, 

a = l 

2 

£W = E "(a)X(a) - (X(l) - X<2>) ((X + ,*)<» - (X + /*)<2> I /rf,, 

a = l 

2 

£<£> = J ] n<«)(X + 2p)<«>- !(X + ^)(" 

(51) 

a = l 

- (X+/i)«)) 2/tf, - Gi« - M<2>)2/tf2, 

2 

^ ^ E"(a)x(a)-((x+M)(1) 

a = l 

- (X + /*)<2> } Vrf, + 0 l« - M<2))2/^2, 

£<4"4'=(£l'?-£<
2"3))/2) 

2 

£<»)= E« (ava)-(^ ( l )-^2))2/rf3 , 
a = l 

and where 

2 
rf2= E M(a,//?<a) + (X + ^)<2'/(2«(1)«<2)). 

(52) 

(53) 

Journal of Applied Mechanics DECEMBER 1986, Vol. 53/773 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Huajian Gao 

James R. Rice 

Division of Applied Sciences, 
Harvard University, 

Cambridge, Mass. 02138 

Shear Stress Intensity Factors for 
a Planar Crack With Slightly 
Curved Front 
Recent work (Rice, 1985a) has presented the calculations of the first order variation 
in an elastic displacement field associated with arbitrary incremental planar advance 
of the location of the front of a half-plane crack in a loaded elastic full space. That 
work also indicated the relation of such calculations to a three-dimensional weight 
function theory for crack analysis and derived an expression for the distribution of 
the tensile mode stress intensity factor along a slightly curved crack front, to first 
order accuracy in the deviation of the crack front location from a reference straight 
line. Here we extend the results on stress intensity factors to the shear modes, solving 
to similar first order accuracy for the in-plane [Mode 2) and antiplane (Mode 3) 
shear stress intensity factors along a slightly curved crack front. Implications of 
results for the configurational stability of a straight crack front are discussed. It is 
also shown that the concept of line tension, while qualitatively useful in characteriz­
ing the crack extension force (energy release rate) distribution exerted on a tough 
heterogeneity along a fracture path as the crack front begins to curve around it, does 
not agree with the exact first order effect that is derived here. 

Introduction 
For a half-plane crack lying in an infinite space, the stress 

intensity factors due to point force pairs acting on the crack 
surface have been derived by many authors (Uflyand, 1965; 
Sih and Liebowitz, 1968; Kassir and Sin, 1973; Bueckner, 
1977; Meade and Keer, 1984a; etc) in the case when the crack 
front lies along a straight line. Hence, by integration, the solu­
tion due to arbitrary loading on the crack surface can be 
found. 

Rice (1985a) showed how the knowledge of such solutions 
enables one to calculate the changes in crack surface displace­
ment distribution, exact to the first order in the deviation of 
the crack front position from a reference straight line, when 
the crack front position is altered slightly to lie along a general 
curved arc in the same plane as that of the crack. He gave full 
details for the case of tensile (Mode 1) loading and derived an 
expression for the stress intensity factor Kx along such a 
nonstraight crack front (again, exact to the first order). The 
latter work was motivated by the interesting approach to the 
wavy crack front problem based on asymptotic expansions by 
Meade and Keer (1984b), although it turned out that their 
results required correction. 
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Winter Annual Meeting, Anaheim, CA, December 7-12, 1986, of The American 
Society of Mechanical Engineers. 

Discussion on this paper should be addressed to the Editorial Department, 
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Here we carry through details of the slightly curved crack 
front analysis for general shear loading, deriving the 
analogous expressions for the inplane (Mode 2) and antiplane 
(Mode 3) stress intensity 
nonstraight crack front. 

factors, K2 and K3, along a 

Crack Surface Displacement 
We now present the basic equation for crack surface 

displacements associated with incremental crack growth, 
following Rice (1985a). 

An infinite, homogeneous, isotropic elastic solid contains a 
half-plane crack with a straight crack front and is subjected to 
an "original" load system, consisting of some fixed forces 
and/or imposed boundary displacements, that induces mixed 
modes with distributions K^(z') of stress intensity factors 
along the crack front. Here a = 1, 2, 3 and z' denotes the 
location along the crack front. A Cartesian x, y, z coordinate 
system is attached such that the crack plane lies on y = 0 and 
the z axis lies along the crack front (Fig. 1). 

Now imagine that the original loading is supplemented by a 
set of concentrated force pairs ±Pj, j = x, y, z, acting at x, 
0+ , z and x, 0" , z resulting in opening, inplane shear and an­
tiplane shear relative displacements of the crack surface. Let 
Auj (x, z) be the relative displacements of crack surfaces at the 
load location. (These are unbounded for point forces; see Rice 
(1985a) for a refinement of the argument by distributing the 
forces over finite discs whose radius is later allowed to ap­
proach zero.) Suppose that under the combined load system 
described, the crack front is advanced normal to itself by some 
infinitesimal variable distance ba(z'), where z' is the location 
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Fig. 1 Half-plane crack on y = 0 in an infinite elastic body. Reference 
straight crack front along 2 axis; z' denotes location along front and 
ia(z') denotes advance of crack location in the plane y = 0 

along the front. The change in strain energy [ /plus the poten­
tial energy V0 of the fixed forces of the "original load 
system", associated with incremental crack growth a n d / o r 
variation of the point force amplitudes Pjt is 

HU+ V0) = PJ8[AUJ(X,Z)]- \ G{z')8a(z')dz' 
J —00 

(1) 

(J = x> y< z\ summation implied on repeated j.) 
Here G is the energy release rate per unit crack area of 

elastic fracture mechanics, and by Irwin's relation 

G = (1 - v2)(K\ +K\)/E+ (1 + v)K\/E (2) 

[E = Young's modulus , v = Poisson 's ratio.) 
Since U and V0 can depend only on the Pj (or Auj) and the 

location of the crack front, the right-hand side of equation (1) 
is a perfect differential. Rice (1985a) then showed, using a 
Legendre t ransformation and the reciprocal property of coef­
ficients in perfect differentials, that the variation of surface 
displacemnets due to incremental crack front advance under 
fixed applied forces is 

dG(Pjiz') 

dP, 
8a(z')dz' d[Auj(x,z)]=\+_C

a 

+ K2(PjX') 
dK2{Pj-z') 

dP, 

+ 2-
1 + v w*') dKi7.z))5a(z')dz' (3) 

Here the derivations of G and the Ka with respect to the Pj are 
taken with a fixed position of the crack front. Letting the Pj 
= 0, one has 

Ka(0;z') = K°a(z') 

dKa(0;z')/dPj = kaj(z';x,z) 

(a = 1, 2, 3, j = x, y, z) where K°a (z') is the mode a stress in­
tensity factor induced along the reference straight crack front 
by the original loading while kv- is the mode a stress intensity 
factor induced by a unit force pair at (x, 0 + , z) and (x, 0~ , z) 
in the ±j directions. Thus equation (3) becomes 

2 ( 1 _ " } [ky(z';x,z)K<i(z') 5 [ A « , ( x , z ) ] = j ^ ™ ( -

2(1 + v) 

E 

+ k2J(z';x,z)K°2(.z')] 

ky(z';x,z)K°3(z'))8a(z')dz' (4) 

Equat ion (4) is the first order variation of Auj (x,z) when the 
crack advances by 8a{z') in presence of the original load 

system only. In fact, equation (4) can be regarded as a special 
version of a general three-dimensional relation in Rice's (1972) 
formulation (see Rice 1985 a, b also), based on displacement 
field variations associated with incremental crack growth, of 
the theory of Bueckner 's (1970, 1972, 1977) "weight func­
t i ons" for crack analysis. 

As we stated before, kaJ can be found for the present half-
plane crack configuration from many sources in the literature, 
and they are also listed in the form 

k\x = * iz — k2y = kiy = 0 

( - 2 X / T T 3 ) 1 / 2 

• • - [ 

k-).7 — % — 

[x2 + (z'-z)2} 

2v x2-(z' ~z)2 

2-v x2 + (z'-z)2 

2v x2-{z'-z)2 

2-v x2 + (z'-z)2 

4v x(z'-z) 
k (5) lz "3X 2-v Xi + (Z'-Z)2 

by Rice (1985a). 

Shear M o d e Stress Intensity Factors 

Substituting equations (5) into equation (4), for the shear 
displacements we obtain 

8(1- i ' 2 ) XTA , u 8(1 ~ . 2 ) / n w [ l f + » K°2(z') 

+ (z'-zf 

( ' • 
2v x2 - (z' - z)2 

2-v x2 + (z'-z)2 

2v r + 0 ° K%(z')x(z'-z) 

•\ba(z')dz' 

— a ir(2-v)(l-v) J-•» [x2 + (z'-z)1]2 

5[Auz(X,z)]=—^(-—) [ _ j _ < B - r - ^ 7 -

" <z'-z)2 

8a(z')dz' 

(z'-z)2 

1 
2v 

2-v x2 + (z' -z)2 • 

2v(\-v) (•+» K°2(.z')x(z'-z) 

ba(z')dz' 

5a(z')dz' (6) 
TT(2-V) J-OC [x2 + (z'-z)2]2 

correct to first order in 8a(z'). 
Very near the crack front the stress intensity factors are 

related to the relative displacements by the asymptotic 
formulae 

Aun (x,z) = 

Aut(x,z) = 

8(1 - v2) 

8(1 + v) (i) 

+ 0[(r)3/2] 

K3+0[(r)V2] (7) 

where n and t are the normal and tangential directions along 
the curved crack front (Fig. 2), with n lying in the x, z plane, 
and r is the distance as measured from the crack front in the 
negative normal direction (Fig. 2). Denoting the angle between 
the normal and the x direction (very small) by </>, we find from 
geometric relations that 

-rcos<t>=x—8a(z), tan (f> = d[8a(z)]/dz (8) 

Now consider a particular z at which 8a(z) = 0 but 
d[8a(z)]/dz exists. Then the first of equations (6) becomes, 
when x — 0 ~ , 

8[Aux(x,z)]-
8(1 -v2) (-£) [• - •] 
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^ x 

curved crack front 

Fig. 2 Normal (n) and tangential (f) directions for deviated half-plane 
crack 

where now the bracketed terms of equation (6) have reduced 
to 

1 2 - 3 ? 

2-7T 2 — V 
PV 

\ : 
K°2(z')8a(z') 

• *§<* ) 

(z'-z)2 

d[8a(z)] 

dz' 

(9) 
(2-v)(l-v) J " " dz 

and where the PV'm the first term of equation (9) denotes the 
principal value in the Cauchy sense. 

Equation (9) can be proven as follows. Breaking the {IS in 
the first of equation (6) into ji~„' + \\t\ + JZT,. the [ J r i + 
J++°;] part, when letting x - 0" and then t) - 0, gives the PV 
term in (9) above, whereas the remaining J ^ part of the 
bracketed term in equation (6) becomes 

1 
~2T iz-r, X2 + (Z'-Z)2 L 

2v x2-(z'-z)2 

2v 

2-v x2 + (z'-z)2 

•'+i K°i(z')x(z' -z) 

-]da(z')dz' 

ir(2-v)(l-v) 

Let us now observe that 

rz + r, jq 

Jz-v [X 2 + (z'-z)2]2 8a(z')dz' 

K(z')8a(z')^a(z) ^ ^ (z' -z) + 0[(z' -z)2] 

and that the error term O [(z' - z)2] will have a bound of 
form IO[(z' - z)2]l < B(z' - z)2 onz - ij < z ' < z + 17 
for some finite 5 > 0. Then since the term linear in (z' - z) 
gives zero contribution to the first integral above, i.e., to the 
integral involving K%, we have 

I 1 r*+" lCj(z') [", . 2P x2-(z'-zf -> 

I'STJ*— ^ ^ ' ' - ' ^ 

2*-J 

, x2 + ( z ' - z ) 2 

U ' - z ) 2 

1 + 

Z + 1J 

2 - i / x2 + ( z ' - z ) 2 J 

2v 1 . . 2+v 

8a(z')dz' 

[I+TT]*'-
B 

2% }z-r, X2 + ( Z ' - Z ) 2 

for any x. Hence, letting x - 0~ and then i; - 0, the upper 
bound on the first integral, and therefore the integral itself,. 
vanishes. In the same limit the second integral, involving K%, 
becomes with the substitution z ' - z = —tx 

2v f 

w(2-v)(l-v) J-°° (1+/2)^ 
dtK°3(z) 

d[8a(z)] 

(2-v)(\-v) 
K°i(z) 

dz 

d[5a(z)] 

dz 

We thus have the two contributions noted in equation (9), 
the PKterm from [ f r j + J++™ ] (?? - 0 + ) , which represents 
the influence of the rest of the nonstraight crack front on the 
special point z at which 8a(z) = 0, and the term involving 
K% (z) from fet* which represents the coupling effect due to 
local slope. The sum of these two is given as equation (9). In 
the above argument we have implicitly assumed, in writing the 
error terms as O [(z' - z)2], that K°a (z')8a(z') has a good se­
cond derivative at z. However, the steps leading to equation 
(9) above, and equation (10) below, may be justified under 
weaker assumption that the first derivative of K°a(z')8a(z') 
exists and is merely Holder continuous at z, such that the 
bounded term above may be written as B iz ' - zl1+e where 0 
< e < 1. 

Similary, when x - 0" the second of equation (6) reduces 
to 

1 + v ( x \ 1/2
 r 

8[Auz(x,z)] —{-^) l • -] 

E 

where now 

1 
[• • .]=• 

2+v rv[
+c° K°i(z')8a(z') 

2TT 2-v J - » (z'-z)2 dz' 

dz 
(10) 

in which we can also observe the coupling due to local slope. 
To find 8[Aux (x, z)] and d[Auz (x, z)] near some location z 

along the crack front where 5a(z) * 0, we use the concept 
developed by Rice (1985a) of relocating the reference straight 
crack front by moving it along the x direction an amount equal 
to 8a(z). Then, redefining the origin of the x axis so that x = 
0 along the relocated reference straight crack tip, we have 
8a(z) = 0 at the location z considered and can use the results 
just given above. Note that the reference straight crack loca­
tion is aribtrary, so that we can locate it at will. In other words 
we always choose the reference straight crack as the one that 
when x — 0" we approach simultaneously both the reference 
straight crack and the actual front. This is equivalent to inter­
preting 8a(z') in the above formulae as a(z') - a(z) , where* 
= a(z) is the slightly curved arc describing the crack front 
location relative to any convenient choice of origin for the x 
axis, and interpreting d[8a(z)]/dz as da(z)/dz. In using this 
notation one also needs expressions for the stress intensity fac­
tors induced at location z along the crack front when the front 
is straight but located at a general x coordinate, say, x = a. 
We let the functions K°a[z;a], <* = 1, 2, 3, denote these 
distributions. Then, at a given point x, z on the crack faces, 
equations (9) and (10) become 

8(1 -v2) ra(z)-x-\m 

8[Aux(x,z)]~ „ [ 2v J X 
E 

• 1 2 - 3 ? 

-2ir 2 — v 
PV 

' + - K°2[z';a(z)]la(z')-a(z)] 

(z'-z)2 dz' 

• K°3[z;a(z)] 

and 

8[Auz{x,z)] 

C 1 2 + v 

(2-v)(\-v) 

8(1 + v) Ya(z)-x^ln 

da(zY 

dz -

UTT 2-
PV 

E L 2TT 

-+" K°i[z';a(z)][a(z')-a(z)] 

+ 4L^*o[z;fl(z)] 

(z'-z)2 

da(z)~ 

dz' 

(11) 
(2-v) " ^ ' ^" dz J 

to first order in a(z') - a(z) and in da(z)/dz. These last 
equations are now understood to represent the change in sur-
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face displacement at a point x, z very near crack front in going 
from the hypothetical reference state, in which the crack front 
is everywhere straight and of depth equal to that at z, to the 
actual state in which the crack front is curved. 

Referring to Fig. 2, we can get the relative displacement 
components in the normal and tangential directions along the 
crack front in terms of Auz (x, z) and Aux (x, z), 

Aun(x,z) = Aux(x,z)cos <t> — Auz(x,z)sin (j> 

Aut(x,z) =Aux(x,z)sm<t> + Auz(x,z)cos(j> (12) 

As 4> is small for a small perturbation we have to the first order 

Aun(x,z) =Aux-Auzda(z)/dz 

Au,(x,z)=Auz + Auxda(z)/dz (13) 

In equations (13) we now write Aux as (Aux)° + 8(Aux) and 

the x and y dependence; in fact, just the opposite was found to 
be true in the solution developed (without a priori assumptions 
on scaling) by Rice. Similar remarks apply to the Meade and 
Keer results for Modes 2 and 3. 

The results of equations (15) for Ka {z) can be inserted into 
equation (2) to compute the energy release rate G(z) along the 
slightly curved crack front. When this is done and we retain 
only those terms consistent with first order accuracy in 
a(z')-a(z) and da(z)/dz, we find that the cross terms in-
volvig da{z)dz in equations (15) cancel one another. A 
specific illustration of this is given in the next section. 

It may sometimes prove convenient to rewrite the various 
principal value integrals of equation (15) by the rearrange­
ment, following from integration by parts, 

K°a[z';a(z)][a(z')-a(z)] 
J -a (z'-z)2 dz' 

i +o 

-<x 

K0
a[z';a(z)]da(z')/dz' + [a(z')-a(z)]dK°a[z';a(z)]/dz' 

(z'-z) 
dz' 

Auz as (Auz)° + 8(Auz), where (Aw.,)0 and (Aw.,)0 are the 
near-tip crack face displacements in the reference straight 
crack front configuration and, again, 8(Aux) and 8(Auz) are 
the variations of equation (11) due to the crack front being 
curved, i.e., due to the crack front advancing by ba(z') = 
a(z') - a(z): 

Au„(x,z) = (Aux)° + 8[Aux]-(Auz)°da(z)/dz 

Au,(x,z) = (Auz)° + 8[Auz] + (Aux)°da(z)/dz (14) 

Everything here is exact to first order in 8a(z). Comparing 
these expressions, as evaluated with the help of equations (11), 
to equations (7) (and recognizing that r = a(z) - x to first 
order) we get the stress intensity factors K2 and K3 to first 
order when the crack front deviates from a reference straight 
line. The results, supplemented for completeness with the 
result for the Mode 1 stress intensity factor derived by Rice 
(1985a), are as follows: 

K1(z)=K°l[z;a(z)] 

+ PV 
2ir 

+ 0° K0
l[z';a(z)][a(z')-a(z)] 

(z'-z)1 dz' 

K2(z)=K0
2[z;a(z)]--2—K°3[z;a(z)}da('Z) 

2-v dz 

1 2 - 3 v 

2ir 2-v 
PV\ 

K°2lz';a(z)][a(z')-a(z)] 

(z'-z)2 dz' 

K3(z)=K°3[z;a(z)]+ 1{l V) K°2[z;a(z)) d°{Z) 

1 2+v 
+ PV 

2-v ZL " " dz 

+ ~ K°3[z';a(z)][a(z')-a{z)} 
dz' (15) 

2TT 2-V ' J-oo (z'-z)2 

Equations (15) are not consistent with the stress intensity 
factors presented for this case by Meade and Keer (1984b) as 

Kl(z) = K°1[z;a(z)} 

K2(z)=K°2[z;a(z)]-K°3[z;a(z)]da(z)/dz 

K3 (z) =K°3[z;a(z)] + K°2[z;a(z)]da(z)/dz (16) 

Rice (1985a, just after his equation (65)), explained the 
source of oversight in the Meade and Keer results for Mode 1, 
in that Meade and Keer assumed in their asymptotic analysis a 
double scaling of the z dependence of the solution but not of 

The last term of the second numerator vanishes when, as in the 
next section, we consider loadings which would induce 
uniform Ka along a straight crack front. 

Cosine-Wave Crack Front; Configurational Stability 

Now we apply the results in equations (15) to the case of a 
wavy crack front with the profile 

a(z) =a0 +A cos(2irz/\) (17) 

where A/\ < < 1, a0 is arbitrary and X > 0. It is assumed for 
convenience that the stress intensity factors induced along the 
reference straight crack are uniform along the crack front i.e., 
K°a[z;a] = K°a[a]. Going through some algebraic calculations 
and further assuming that (AdK°/da)/K° << 1, we get the 
results to the first order in A 

Kl(z)=Klla0H[^^--rK^[a0]/\]AcOs(^) 

K2 (z) =K2[a0] + ^—JUL-—— *lQ[a0]/\\Acos ( — J 

47T 

+ ^ ~ V 

K3(z)=Ki[a0] + 

4TT(1 

(y4A)^[a0]sin 
/2i rz \ 

dK°3[a0] 2 + 

dan 

V X / 

- Trt f>0 ] /Xl 
V J 

v4cos •(£) 
•v) 

K°2[a0}(A/\)sm(-^ (18) 

From equations (18) we observe that when both shear 
modes are present the extremal values of a given shear stress 
intensity factor do not occur at the extremal locations of the 
crack front where cos (27rzA) = ± 1 . 

We may also compute the energy release rate G, defined by 
equation (2), along the perturbed crack front from the results 
just given for the Ka. Consistent with the first order accuracy 
in^4, the result is 

G(z) = G°[a0] + {dG°[a0]/da0 - 2irF[a0]/\)^COS(2TTZ/X) 

(19) 

Here 

G°[a0]=^- ((A?[fl0])2 + (JKS[fl0])2+-j^ r (*§[«oD2] 

(20) 

and 
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h v. 2— y 

+ „ 2 * " \ (tfSk,])2] (2D 
( 2 — P ) ( 1 - P ) J 

Note that the extrema of G (z) do coincide with the extrema of 
a(z) since the sine terms of equation (18) have cancelled one 
another. 

We have not been able to find an energetic interpretation 
for F in equation (21) but we can confirm that the result de­
rived for G(z) in equation (19) is not compatible with a string­
like model with a "line tension" effect, as used frequently to 
analyze curved dislocation lines. In particular, G is sometimes 
called the "crack extension force" since it is the generalized 
force, in the sense of equation (1), conjugate to crack growth. 
One might optimistically hope that the effect of curvature on 
the crack extension force would be analogous to the effect of 
curvature on a string under tension. Such would form a useful 
conceptual picture of, e.g., the crack extension force distribu­
tion exerted as a crack front meets and begins to surround a 
localized, hard-to-fracture heterogeneity lying in the path of 
the advancing crack. However, while the string model is 
qualitatively correct in predicting the proper sign of the effect 
of curvature shown in equation (19), it fails quantitatively 
since elementary calculations show that a line tension model 
would require a 1/X2 effect for a cosine wave rather than the 
proper 1/X effect that we have derived. 

Rice (1985a) considered the configurational stability of 
quasi-static tensile mode crack growth (e.g., by fatigue or cor­
rosion) by observing that if the crack growth rate is an increas­
ing function of Kt, then the amplitude of a cosine component 
of a(z) will grow if the maxima of Kl (z) and a(z) are in 
phase but decay if they are out of phase. Thus, from the first 
of equations (18), disturbances of wavelength X in the crack 
front profile will decay in amplitude during crack growth if 

dK°{ [a0]/da0 < -wK^ [a0]/\ (22) 

This is met for all X when dK°{/da0 < 0 and will be met for 
sufficiently small X when dK\/da§ > 0. It generally turns out 
that the critical X values, X„, at which the inequality fails 
(e.g., X„ = 2TTZ, for an edge crack of depth L in a large body 
under remote tensile loading) are sufficiently large that the 
model of a half plane crack in an infinite body is inappropriate 
to analyze perturbations of those wavelengths; the actual 
finite body dimensions must be considered instead for a 
suitable analysis. Thus we conclude that planar crack growth 
should be configurationally stable to perturbations involving 
wavelengths that are small compared to overall body or crack 
dimensions. This seems to be generally in accord with ex­
perience in that cracks, when approximately planar, in sub-
critical growth are generally observed to have fronts that lie 
along smoothly curving arcs at the macroscale and to be 
devoid of structure except for that directly relatable to 
microstructure heterogeneity or large scale plastic flow. See, 
e.g., Colangelo and Heiser (1974, chapter 4). 

The stability issue is less readily addressed under general 
mixed-mode loadings as we have analyzed them here since a 
mixed-mode crack will seldom grow along a plane. One case 
which may meet that condition of planarity involves the tec­
tonic shear crack whose slip surface is channeled by a pre­
existing fault plane. If in that case or others it is approriate to 
describe crack advance under mixed-mode loading by a unique 
(independent of mode combination) increasing relation be­

tween G and the crack growth rate, then it is evident by com­
paring equations (19) to the first of equation (18) that a similar 
stability condition to that for Mode 1 growth will result. In 
particular, crack position a{z) and G(z) will be out of phase, 
thus smoothing out initial irregularities during growth, for 
wavelengths X satisfying 

dG° [a0]/da0 < 2TrF[a0]/\ (23) 

This reduces to equation (22) for pure Mode 1 conditions. 
Meade and Keer (1984b) emphasized that crack front 

segmentation is observed in laboratory study of brittle 
materials under combined Mode 1 and Mode 3 loading. They 
suggest that this may be attributed to the coupling effect be­
tween the shear modes. For example, as is evident from the ex­
act first order results in equations (15), or in equations (18) for 
the cosine wave, and as is also seen in the less complete Meade 
and Keer results reported here as equations (16), Mode 3 
loading induces a Mode 2 stress intensity wherever da(z)/dz 
& 0. This induced K2 reverses sign with the change in sign of 
da(z)/dz in going from one side to the other of a localized 
protrusion. This change in sign of K2 is expected to promote 
deviations from plartarity of opposite sense (up versus down 
relative to the y direction) on the two sides of the protrusions 
during tensile crack growth, so that localized protrusions of 
the crack front grow into nonplanar segments. It is not yet 
clear how to test this proposed mechanism against 
observations. 
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The Effect of Surface Depressions 
on Conformal and Nonconformal 
Contact Pressure Distributions 
This paper presents a numerical method for analyzing the stress concentration 
around one or several shallow longitudinal surface depressions. The modified 
iterative method and modified influence function are used in conjunction with an 
automatic mesh generation technique to avoid solving the ill-condition of the large 
scale linear system and therefore a wide range of contact problems having multiply-
connected regions can be solved. The effect of the blending radius and the pit size on 
the stress concentration for a pitted copper cylinder contacting an elastic half space 
are examined. The conformal pressure distributions for a smooth steel journal con­
tacting a self-lubricated bearing with various radial clearances and material proper­
ties are also determined. The numerical results show that the smaller the blend radii, 
the higher the stress concentration for a given pit size. A large deviation from the 
Hertzian solution is observed for a surface with large pits because of the loss of 
pressure supporting area. The results of the analysis provides a design tool for 
predicting the magnitude and location of the peak stress for the rolling and sliding 
contact elements. 

1 Introduction 
The Hertz contact theory was developed based on the condi­

tions that (1) the contacting surfaces are frictionless, (2) the 
bodies are homogeneous and isotropic, (3) the undeformed 
surface profiles near the point of contact are continuous and 
may each be represented by a second degree polynomial, (4) 
the bodies are isothermal and free of any internal stresses 
caused by plastic strain, and (5) the dimensions of the de­
formed contact area are small compared to the radii of the 
undeformed contact surfaces. Contact problems are classified 
as nonconformal, if condition (3) is violated. If the applied 
load produces a contact area with dimensions nearly equal to 
the radii of curvature of the undeformed surfaces and thus the 
contact patch cannot be approximated by a plane (i.e., condi­
tion (5) is also violated), the problem is classified as a confor­
mal contact problem. Some examples of the conformal con­
tact problem are self-lubricated journal bearings, connecting 
joints in robotic manipulators, pistons sliding in cylinders, 
and worn surface bodies in sliding contact. 

Small surface depressions can cause high stress concentra­
tions and therefore rapid surface fatigue failure. Because of 
the limitations of Hertzian contact theory, contact problems 
involving surface depressions have received little attention in 
the literature. Experimental work (Bayer, 1968; Beagley, 1976; 
Littman and Widner, 1966; Marshek, 1979) has shown that 
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SMOOTH 
CYLINDER 

Fig. 1 Coordinate systems for a smooth cylinder contacting a cylinder 
with a longitudinal surface depression 

repeated stressing beyond the endurance strength in rolling or 
sliding contact can result in the formation of fatigue cracks on 
or near the surface, which will propagate until pieces of the 
surface material break out, leaving pits or spalls. Repeated 
loading might also cause furrow-shape depressions on the 
surface. 

Chiu (1969) analytically solved the problem of an infinitely 
long rigid cylinder having an axial groove in contact with an 
elastic half space. Paul et al. (1975) solved the problem of a 
pitted sphere in contact with a nonpitted elastic sphere with a 
restriction on symmetry and the requirement of a functional 
regularization parameter to make his solution quasi-stable. He 
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Fig. 2 Coordinate systems for a smooth journal contacting a bearing 
with several longitudinal surface defects 

treated the relative approach 5r as an unknown which needed 
to be determined along with the contact pressure. Their 
method was limited in its range of application because of a 
numerical instability encountered in their linear system of 
equations. Since their matrix was not diagonally dominant, 
and had a partial pivoting, the system was ill-conditioned. The 
ill-conditioned phenomenon results from round-off error in 
either the calculation of the inverse of a matrix or in the solu­
tion of the sets of simultaneous linear equations (Young, 
1971). 

In the work to be discussed herein, the modified iterative 
method and modified influence function will be used in con­
junction with an automatic mesh generation technique to 
avoid solving the ill-condition of the large scale linear system. 
By guessing a relative approach instead of treating it as an 
unknown, the matrix becomes strictly diagonally dominant. 
This improves solution efficiency and accuracy and, more im­
portantly, provides stability and convergence. 

In the analysis to be presented, consider the contact of two 
cylinders, one which is smooth and one which contains one or 
several shallow longitudinal surface depressions. In what 
follows, a brief review of a theory for analyzing multiply con­
nected contact problems will be described. Numerical results 
and conclusions will be given. 

2 Formulation of the Profile Function for Multiply 
Connected Region 

Case 1: Smooth Cylinder Contacting a Cylinder With a 
Longitudinal Surface Depression. Consider a cylinder of 
radius /?, , having a shallow surface depression, perfectly 
aligned with a smooth cylinder of radius R2. Let (x, y, z) be a 
coordinate system with origin at point 0 with the z axis along 
the common normal between two contact bodies, and the x 
axis along the axial direction as shown in Fig. 1. The origin of 
the pitted contour OB is arbitrarily located at a distance yB 

from the z axis, with the pit radii rb connected to the cylin­
drical surface at the blending point b. The z coordinate of a 
point on body 1 located at a distance y from the z axis within 
the blended region is given by 

Z\ =Zp + rbcos<t> — rbcosd (1) 

where 

Zp=Rl(l-coSep) 

and 6p=sm~1(yp/R1) 

0 = sin-1[(y f l-^p)//-6] 

e=sin-li(yB-yVrby\ 
and the z coordinate of the candidate contact point on the 

smooth cylinder, located at a distance y ( S yp) from the z axis 
is given by 

z2 = [Ri2 -y2]Vl - (R2cosep• - zp) (2) 
where 

0/=sm-l(yp/R2) 

For points outside the depression (y>yp), the variables Z\ and 
z2 are, respectively, written as 

z^R^lR^-y2]* (3) 

z2 = Zp + [R2
2-y*]"-R2cosBp (4) 

Therefore, the prof He function h (initial separation) for con­
tact of a cylinder having an axial surface defect on a smooth 
cylinder can be determined by combining equation (1) with 
equation (2) and equation (3) with equation (4) leading to 

< i> Inside pitted contour; \y I % yp 

h(rb,yB,yp,y)=Zi-z2 (5) 

= [R22-yP
2XA-[R22-y2Y' 

+ Vb
2 - (yB -yP)2]'A - [rb

2 - (yB -y)2]Vl 

< ii> Outside pitted contour; \y I >yp 

h(yp,y)=zl-z2 

= \Rx2-yP
2\A + [R2

2 -yP
2VA - [Ri2 -y2)'A - [R2

2 -y2VA (6) 

Case 2: Smooth Journal Contacting a Bearing Containing 
Several Longitudinal Surface Defects. Consider a long 
smooth shaft of radius JR1 perfectly aligned with a finite bear­
ing, of length L, and radius R2, having several shallow 
longitudinal surface defects. Let (x, y, z) be a coordinate 
system with origin at point 0, with z axis along the common 
normal between the journal and the bearing, with y axis 
tangent to the smooth shaft at point 0, and with x axis parallel 
to the shaft axis as indicated in Fig. 2. The center of each of 
the pit blending arcs lies along the line joining the center of the 
bearing OA ' and the blended point b,. Let the pitted radii rbi 

connect smoothly to the bearing main surface at each blending 
point. The z coordinate of a point on the journal (or bearing) 
located at a distance y from the z axis within the blended 
region are, respectively, determined as 

z1=Ri-[R1
2-y2]Vi (7) 

Z2=R2-(R2 + rbl)cos6pl + rbicosdi (8) 

where 

0,=sin-1[O'i;/-.y)/>w] 
and 

yBi = (^2 + rbi)smdpi 

and dpi, rbi, y are as defined in Fig. 2. 
Therefore, the profile function in the mean radial direction 

for contact of a rigid unpitted journal on an elastic bearing 
with several longitudinal surface defects can be determined by 
combining equation (7) with equation (8). 

(/) Within the pitted bearing surface 

h{rbh6phy) = (zx- z2)cos* 

= [OR, - R 2 ) + (R2 + rbi)cosdpi-[R{
2 -y2]* -/^cos^cos* (9) 

where • = sin"'0 ' / i?1); (angular contact angle). 
07) Outside the pitted bearing surface for highly conform­

ing contact problems, the profile function in the radial direc­
tion can be approximated by 

h(V) = (R2-Rl)(l-cosV). (10) 

3 Formulation of General Contact Criteria 

Assume that the point Mx on body 1 and point M2 on body 
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Journal or bearing 

-circular contact arc 

Fig. 3 Modified influence function for conformal contact 

2 have an initial separation distance h, and that the points will 
come into contact after deformation. Then the final separa­
tion Sj- (along the common normal direction) of those two can­
didate contact points becomes 

Sf = u^+u^> + h-br (11) 

where 5, is the relative approach along the common normal 
direction and h is the profile function. In general, the normal 
displacement «(1), «(2) can be written in terms of an unknown 
contact pressure p{x,y) and the Fredholm integral equation 
for nonconformal contact problems. The normal displace­
ments can be expressed as 

H ( ( ) (x,y) 

=K^lttp(x,y)(dxdy)/[(x-x)2 + (y-y)2VA 

w h e r e 

A - ' " = 1 • vim '=1,2 (12) 
and Eh vf are the modulus of elasticity and Poisson's ratio of 
body / and Q is the contact area. 

Substituting equation (12) into equation (11) yields 

Sf = Km\Qp{x,y)(dxdy)/[{x-x)2 + (y-y)2]y' +h-8r 

where K,„=K™+K™ 

The boundary conditions require that 

(1) Sf = 0 p(x,y)^0 

(2) Sf>0 p(x,y) = 0 

and the equilibrium condition requires 

(13) 

(14) 

p(x,y)dQA =F (15) 

where F in the applied load along the z direction, and QA is the 
projected pressure area. 

4 Modified Influence Function for Conformal 
Contact 

One of the major difficulties in the solution of the confor­
mal contact problem is the determination of an appropriate in­
fluence function for the surface in contact, since the 
Boussinesq's point force and displacement half-space in-

Ay n,m 
T 

Blanket 
region 

|~» Strip 
(n=1,N) 

uniform pressure p (n,m) 
at strip n, cell m 

Band 1 

Band 2 

Band 3 

expected L node at 
-pressure area str ip k, cell j 

boundary dfl 

Fig. 4 Grid generation for multiply-connected region 

fluence function is no longer suitable for this curved contact 
surface area. It is necessary to generate a modified influence 
function for the conformal contact problem. 

For the case of a highly conformal surface when the relative 
distance rkj of nodal points k andy is larger than the maximum 
dimensions of the arc cell on the shaft, the influence function 
will be approximated by assuming that points k and j on the 
curved surface are the points on the half-space as shown in 
Fig. 3. The radial displacement u{l)

 kj of body / at pointy sub­
ject to a uniform pressure over cell k becomes 

u$ =wjj ) cose (16) 
where 

w#> = * " > / / • # > ? i=l,2 

and e = (<t>k + 4>j)/2 is the angle formed between the direction 
perpendicular to rkj and the radial direction of pointy. Thus, 
the modified influence function for the conformal contact is 
given by 

*#>=.D#>cose i = l , 2 (17) 

where D$ is the influence function for the nonconformal 
contact. 

5 Mesh Generation and Discretization of Integral 
Equation for Multiply-Connected Regions 

A blanket region is chosen to be larger than the upper 
boundary of the multiply-connected contact regions for a 
given rigid body approach 8r as indicated in Fig. 4. The 
estimated axial and lateral contact length within the blanket 
region may be divided into any number of segments along the 
x and y directions, respectively. Each segment is then parti­
tioned into a number of strips and a number of cells. The total 
number of strips along the axial direction is N, and the 
number of cells for each strip is M, Fine grids will be chosen 
near the high stress concentration regions. The discretization 
method of the integral equation will be implemented in con­
junction with the modified Boussinesq point force displace­
ment influence function. By assuming a uniform pressure 
distribution over each cell, equation (13) can be written as 
follows: 

" M k=\,N 
y '=i ,M 

is the modified influence function which 

Ld LJ 8kj,nm"nm~°r -K 
where g^ 
represents the normal deflection of body / at strip k, celly due 
to a uniform pressure Pnm over strip n, cell m. The variable hkj 

is the profile function at strip k, cell j . Equation (18) 
represents a system of linear equations which can be solved to 
determine contact pressure for a given normal relative ap­
proach 5r. The automatic mesh generation technique is im-
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plemented to redefine the pressure area boundary by a 
numerical method of interpolation and extrapolation 
(Hildebrand, 1953). The process is repeated until both the 
boundary conditions and the equilibrium condition are 
satisfied. 

6 Modified Iterative Method 

To avoid having to solve a large linear system of equations, 
the modified interative method (Hartnett, 1980) can be in­
troduced by employing the local and remote influence concept 
combined with the modified influence function to determine a 
solution for a small set of linear algebraic equations. Equation 
(18) can be rearranged in the following form: 

M 

&kj,km*km 

= 8, 'lkj - 6kj,nm*nm\* ' •&kn) (19) k=l,M 
n=l m=l J= l'™ 

where gj^ikm Pkm represents the normal displacement of body i 
at strip k, celly due to a uniform pressure at strip k, cell m and 
8kn is the Kronecker delta. 

To solve for the strip pressure Pkm in equation (19), an in­
itial estimate is made for the pressure distribution outside the 
strip k. Subsequently, this estimated pressure is updated until 
all the strip pressures within the blanket area are found. The 
boundary conditions in equation (14) and equilibrium condi­
tion (15) are applied to determine the iterated applied load 
Fiter. The process is repeated until the change in the iterated 
applied load falls within a chosen limit of accuracy. The latest 
iterated applied load is called the estimated applied load, Fe. 
The automatic mesh generation technique is implemented to 
redefine the new pressure area boundary region from which 
the new mesh grids are generated. The iterating process is 
repeated to solve for all the strip pressures within the pressure 
area boundary, and finally the new estimated applied load is' 
determined. The whole process continues until the change of 
the estimated applied load falls within a second tolerance of 
accuracy. 

7 Presentation and Discussion of Numerical Results 

A wide range of contact problems having multiply con­
nected regions can be solved by using the analysis presented in 
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this paper. The program CONPITS was written to solve for 
either nonconformal or conformal type of contact problems 
involving one or several surface depressions. As a specific ex­
ample, contact of a cylinder containing a shallow longitudinal 
surface depression at the center of the contact zone in contact 
with an elastic half space is considered. The effect of the 
blending radius rb and the pit size yp on the stress concentra­
tion will be discussed. In addition, the effect of clearance and 
material properties on journal bearing contact pressure will be 
presented. 

Example 1: Copper Cylinder of Finite Length L (With an 
Axial Surface Depression) Contacting an Elastic Half Space. 

Ri*=R\/Rm= radius of copper cylinder =1.0 
L* =L/Rm = straight length of cylinder = 0.5 where 

Rm=RlR2/(Rl+R2) 
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£, = 119 GPa, ^ =0.326 
£'2=207GPa, P2 = 0.30 
rb*=rb/Rm= blend radius = 0.06, 0.12, 0.36 
jp*=>'p//?m = pitsize = 0.25xl0-3, 1.0xl0~3, 2.0xl0"3 

For F= 444.8 TV, numerical results were obtained using a 15 x 
21 cell, (i.e., 15 strips along the axial contact length with each 
strip containing 21 cells). Fine grids were chosen near the high 
stress concentration region. The footprint contact area involv­
ing one surface depression was plotted in Fig. 5 for yp* =0.001 
and rb* = 0.\2. For a given pit size^*, the pressure distribu­
tions P* = (RlPL/F) were plotted for various blend radius rb* 
as shown in Fig. 6. The smaller the blend radius rb *, the higher 
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the pressure gradient near the pitted region. In each case, the 
pressure distribution far away from the pit agrees closely with 
that from the Hertzian solution for a smooth cylinder. 

Figure 7 shows the dimensionless quantity C0 =KmParb/yp 
as a function of stress concentration factor (SCF) and inner 
contact radius r, = rj/yp at the center of the axial contact 
length. The SCF is defined as the ratio of the maximum 
pressure at the center of the finite cylinder to the Hertzian 
maximum pressure P0 for the smooth cylinder for the same 
loading conditions. As expected, the smaller the ratio of blend 
radius rb to pit size yp the higher the SCF. When the blend 
radius rb tends to zero, an infinite pressure concentration oc­
curs at the sharp edge of the contact. An increase of C0 will 
make the blend contour conform to the main surface and pro­
duce a smaller inner contact radius r, and therefore a close 
agreement with the Hertzian solution (i.e., SCF approaches 
1.0). For a given blend radius, the increase of the pit size pro­
duces an increase in stress concentration due to the less of load 
supporting area. Due to the nonlinear properties of the con­
tact problem, the SCF is found to decrease with an increase in 
the applied load F*( = KmF/Rm

2) as illustrated in Fig. 8. 

Example 2: Copper Cylinder of Finite Length L (Contain­
ing Several Axial Surface Depressions) Contacting an Elastic 
Half Space. Dimensions and properties are the same as in 
Example 1 except for the blend radius rbi and the pit size ypl 

j ; , = 0.25 x 10-3,0.75 x 10-3,1.0 xlO"3 

/•J, = 0.015 

The numerical solutions for problems involving several small 
pits were obtained using a 15x45 cell. Figure 9 shows the 
pressure distribution at the center of the axial contact length 
for small pits located near the axis of symmetry. A peak 
pressure gradient near the innermost pit and the pressure 
distribution far from the outer pit agrees reasonably well with 
the Hertzian prediction. 

Example 3: Perfectly Aligned Journal Bearing in Contact. 
T?j = radius of the shaft = 19.25mm; T?2 = radius of the bearing 
= -19.30mm; Z = straight length of the bearing = 
16.83mm. 

The effect of clearance and material properties on journal 
bearing conformal pressure are examined and the results are 
compared with the analytical solution of Persson (Persson, 
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1964), thus lending support to the use of the approximate in­
fluence function of Section 4 for this problem. 

The dimensionless quantity EtAR/F is represented in Fig. 
10 as a function ofRiPc/F, where Pc is the maximum contact 
pressure at either the center or the edge_ of the axial contact 
length, AR is the radial clearance and F is the load per unit 
bearing length. There is close agreement with the Persson's 
analytical solution at the center of the axial contact length. 
However, owing to a high stress concentration at the bearing 
edge, the edge pressure distribution will differ significantly 
from the Persson's plane stress analysis. 

8 Conclusion 

A general numerical method has been presented to solve 
contact problems involving multiply connected regions. The 
program CONPITS was written to solve for either conformal 
or nonconformal contact problems containing several surface 
depressions. Numerical results were presented for several ex­
ample problems. The first example was a copper cylinder hav­
ing a shallow axial surface defect aligned with and contacting 
a steel surface. The numerical results show that the smaller the 
blend radii r j , the higher the stress concentration for a given 
pit size. For a given blend radius, the SCF increases with an in­
crease of pit size. A large deviation from the Hertzian solution 
is observed for a surface with large pits because of the loss of 
pressure supporting area. The SCF can also be reduced by in­
creasing the applied load. The second example gives the high 
stress concentration for a cylinder containing several small 
pits. The third example solves for the three dimensional con-
formal contact pressure distribution for various moduli and 
radial clearances. 

The analysis presented in this paper contributes to bearing 
technology by providing an analysis of the effect of surface 
defects on bearing stress and therefore provides a means for 
estimating bearing operating life. 
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In-Plane Indentation and 
Separation of a Fiat, or Rounded 
Rigid Stamp from an Elastic, 
Finite Layer 
This paper describes symmetric, frictionless indentation of a two-dimensional, rec­
tangular, elastic solid, with two parallel edges constrained against displacements, by 
a flat, rigid, or rounded stamp pressed against one of the remaining edges. Com­
parison with the classical problem of indentation of the elastic half-plane by a flat 
rigid stamp reveals new interesting features of the present analysis: 1) For each 
relative stamp length a critical aspect ratio of the indented rectangle exists such that 
for a narrower rectangle the separation of the midsection of the stamp occurs. 2) 
The stress intensity factors at the ends of the stamp are found to depend strongly on 
the relative depth of the "beam"; they also depend, but to a lesser degree, on the 
relative length of the stamp. 3) Unlike in the classical problem here the penetration 
of the stamp is uniquely determined. Numerical results are provided. The numerical 
results obtained for the case of the rounded stamp are compared with the results 
available from earlier studies. 

1 Introduction 

The problem of frictionless indentation of a half-plane by a 
plane, rigid stamp was solved first by Sadowsky (1928) (see 
also Gladwell, 1980, for further references and for a historical 
overview). The solution of this classical problem depicted in 
Fig. 1 revealed that the interface stress has square-root 
singularities at the ends of the stamp. It was also determined 
that the interface stress is negative everywhere under the stamp 
hence there was no question of separation of it from the half-
plane. Furthermore, an important feature of the classical solu­
tion consisted of its inability to determine the penetration of 
the stamp. The present paper attempts to remove the restric­
tions imposed on the solution of the stamp problem by the 
assumption of the infinity of the indented solid. This is 
achieved by replacing the infinite solid by a finite two-
dimensional isotropic elastic solid in the form of a rectangle 
whose vertical edges are prevented from deforming as shown 
in Fig. 2. To simplify the analysis the symmetry with respect to 
x axis is assumed. The state of stress and displacement is 
found by first applying finite double Fourier transformation 
to the two-dimensional Navier equations of elasticity. Subse­
quent application of the inversion formulas and of the bound­
ary conditions expanded into Fourier series with unknown 
coefficients (and with built-in singularities at the ends of the 
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stamp and at the corners of the layer) leads to an infinite 
system of algebraic equations. 

These are then solved numerically for various \j/ = c/b and 
4> = a/b ratios and for fixed material characteristics in an at­
tempt to decide whether and under what circumstances the 
stamp separates (a phenomenon foreseen by Nied and Er-
dogan 1979), how the boundaries affect the stress intensity 

Fig. 1 Indentation of an elastic half-plane 

P 

± »- y ,v 

Fig. 2 Indentation of a finite layer by a flat stamp 
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Fig. 3 Indentation of a finite layer by a rounded stamp 

factors and what is the magnitude of the penetration of the 
stamp for selected dimensions. A simple change in one of the 
boundary conditions makes the present study also applicable 
to the case of a rounded stamp indenting a finite layer with 
two built-in edges (Fig. 3). Here the results were compared 
with the data obtained by Keer and Miller (1983) and confirm­
ed by Sankar and Sun (1983) who used a different method. It 
should be noted that the present method is valid for any aspect 
ratio of the indented layer while the previous results, based on 
combination of simple beam theory and the theory of elastici­
ty, are valid only for relatively thin beams. 

2 Basic Equations - A Flat Stamp 

For the two-dimensional state of strain assumed here the 
equations of equilibrium in the absence of body forces take 
the form: 

darr dar 

dx dy 
= 0 

d°xy 

dx 

day. 

dy 
- = 0 

(1) 

(2) 

The geometric and physical symmetry of the problem suggests 
that only the portion y > 0 of the beam (Fig. 2) must be 
analyzed. The corresponding boundary conditions are: 

(3) 

(4) 

(5) 

(6) 

(7) 

v = 0, axy = 0 at y = 0 

axx = 0, axy = 0 at x = a 

« = 0, v = 0aty = b 

= 0, u = u0 = const at x = 0 , 0<y<c 

axy = 0, oxx = 0 at x= 0, c<y<b 

where u and v are components of the displacement vector 
along Ox and Oy axes, respectively. Substituting stress-strain 
relations for an isotropic, Hookean solid 

T du dvl 

*„=M[(T + 2 ) — + 7—J, (8) 
r du 

dx 

dy 

dv 

•]• 
/ du dv 

dx • 

where 

7 = X//* 

X and \i being Lame's constants, into equations (3) 
results finally in 

y = 0at>> = 0 

(9) 

(10)' 

(11) 

- (7) 

(12) 

7 

7 

dv 

du 

dy 

dv 

ay + 

du 

dy 

u-

v = 

du 

dy 

u = u0 

+ (7 + 

dv 

dx 

(7 + 2)-

dv 

-+ dx 

= 0atj> = 

= 0at.y = 

dv 
+ dx 

a t * = 0 

du 

= 0 at y = = 0 

du 
= 0 a t * 

dx 

= 0 at x--

--b 

-b 

= 0 at x = 

,y<c 

= 0 at x= 

-a 

= 0 

= 0, 

= a 

y>c 
dy 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

Next equations (1) and (2) are subject to finite Fourier 
transformations by multiplying them by cos(rmrx/a) 
cos(niry/b) and sm(mirx/a) s'm(rnry/b), respectively, and then 
integrating over the rectangle xe[0, a], ye[0, b]. This is fol­
lowed by integration by parts of some integrals appearing in 
the transformed equations and by application of the boundary 
conditions (12) -f- (20). The final form the transformed field 
equations include four integrals with the following unknown 
integrands: v(Q, y), v(a, y), axy(x, b), axx(Q, y). The first two in­
tegrands are regular functions and are expanded into Fourier 
series: 

v(0,y) = —- £ GBsm/3„j>, 

v(a,y) = —r- XI H„sin0ny, 
" n = i 

(21) 

(22) 

The third integrand has a singularity of strength/? at x= 0 and 
x = a (see Benthem and Minderhoud, 1972) where p is the solu­
tion of the transcendental equation 

4(1-K) 2 ( 1 - p ) 2 

cos 
pir 

2 3-4P 3-4*> 

It is therefore represented in the following form 

(23.1) 

y0c,b) = -^-
a 

S. 

•0~r)' (T-)' 

+ - £ - [K0 + 2 X) K„ cosanx) (23.2) 

where S{ and S2 are unknown stress intensity factors and 
where 

a„=mr/a, fi„=n-w/b (24) 

The numerical results were obtained for v = 0.3. In this case 
from equation (23.1) we have 

p = 0.28883 

The last of the unknown functions, <rxx(0, y), which equals 
zero for y>c, is square-root singular at y = c. Therefore it is 
represented as: 

ff«(0')=4vr=w 
+ - ^ [F0 + 2 f j F„ COS(KTO>/C)] ] (25) 
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where in addition to the Fourier coefficients F„ also the stress 
intensity factor C is unknown. Solving the transformed field 
equations with respect to the transforms of the displacements 

\ u(x,y) cosa,„x cos(S„y dx dy, m,n-0,1, . . .<» 

(26) 

{ a p b 
\ v(x,y) sinamA: sm$„y dx dy, m,n=\, . . .00 (27) 

o Jo 

one obtains the relation between those transforms and the 
unknown Fourier coefficients appearing in equations 
(21)-(25): 

umo = [P/2lx+Km + Siem 

+ (- l)mS2em] / [(7 + 2)a2,], « = ! , . . . « (28) 

u„ = I (Cor/2) Y„ + (p/2p)lsin(nT+)/(nr+) - ( - 1)"] 

-2LFka„k-Pn(Gn-H„)}/tfn n = l , . . . 0 0 (29) 
* = i J 

« ™ = ( [ a i + ( 2 + 7)/35]^imB 

+ (1 + y)am(3nX2mn} /[(2 + 7)(«J, + ft)*] (30) 

ym„ = [ ( l+Y)a»AXim n 

+ [(2 + 7)a
2

m + 02„]^2m„ ) /[(2 + 7)(a
2

m + /32)2 J (31) 

where 
QO 

Xlmn = (Car/2) Y„ +Psm(mrW(2nmr4,) - 2 £ Fkank 

n = l 

+ (-l)"[tfm + S 1 e m + ( - i r S 2 e m ] 

- / 3 „ [ G „ - ( - i r i y „ ] , m,ii = l 00 
*2™ = a m [ G „ - ( - i m , ] , m,fi=l 00 (32) 

Yn=sin(nir\l/)/(ninl/) = J0(nT\p), n=l, . . .00 (33) 

and 

</> = a/b, \j/ = c/Z> 

a„k = (- l)*«^sin(KTr^)/[7r(«2iA2 - A:2)] (34) 

Here J0(x) is the Bessel function of the first kind of order zero, 
while em represents an integral evaluated numerically: 

1 mir (* ! 1 mir f' 
,= + ( - l ) m ^-"smmirt 

l—p 1-/7 JO 
fitf 

Remaining two Fourier coefficients are determined from the 
global equilibrium equations 

K0 = - P/2tx -Si-S2, F0=- (Ccw/2 + P/2,x) (35) 

Next the inversion formulae are used 
00 00 

u(x,y) = u00 + 2 J^ Mmocosam*+2 ]TJ umcos0„y 
m=1 n= 1 

00 00 

+ 412 Jl umncosamx cos0„y]/ab (36) 

m =1 n = 1 

00 00 

y(*,.y) = K I ] I ] ^mnsinamx s in /V /ab (37) 
L m = l « = 1 J 

Finally the boundary conditions, equations (15), (16), (18), 
and (19), are also subject to finite Fourier transformations 
(the remaining boundary conditions are identically satisfied). 
After numerous manipulations in which the symbolic 

manipulation package muMATH-muSIMP (1981) was very 
useful, the following infinite system of linear algebraic equa­
tions was obtained. 

Ccirwu + 2(x/fl) £ [G t - ( - iyHk]rm - 4 £ Fkrm 
k=l k=l 

+ 2K,wsl + 2[S, + ( - l)'S2]e,w5i + (P/^w^ = 0, 
00 00 

Ccirw2i-(*•/«) £ [Gkwlk-Hkw6k]aki+ £ ^ ' 3 * 

+ 2 L ^ *m + 2 £ [S, + ( - l )^2]e tr2„. 
* r = l A = l 

+ (P//x)w3/ = 0, 

00 

C«rw„ - 8(7r/fl)(l + 7 ) / V ( G ; w m - J7,ww) + 2^Kk rh 
*= 1 

00 

k=l 

OO 

+ 2 I ] Fk aikw7i + (P/n)wnl = 0, 
* = i 

C«rw,2/ - 8(x/a)(l + 7)/2</>2(G,w9/ - / / ,w 1 0 /) 

00 

+ 2 £(-1)^/-,*,-

00 

+ 2J£l(-l)kS1+S2\ekrw 

k = \ 

00 

+ 2 I ] Z7* aikw6i + (P/n)wl3i = 0 

i=l, . . .00 (38) 

where 

wu = L ( - !)" t(2 + T)« V + i2) Y„/Din, 

00 

wu = T,ani Y„B„, 
«=i 

00 

w3i= L a«\Bn sin(«7rW/(«7rW-(-l)"(2 + 7)/(2/z2^2)], 

wAi = [(1 + y)iir\p sinh(/V/0) cosh(»ri/</<£) 

- (1 + 7)/7r cosh(/V/</>) sinh(/V^/$) 

+ 20 sinh(/7r/<£) sinh(r7r^/$)]/[4(2</>^sinh2(f7r/0)], 

W5,- = [ - ( 1 + 7 ) ' ' T 2 

+ (3 + y)<t>ir sinh(2/7r/<A)/2]/[4/02 sinh2(/V/<«], 

w6; = 7r[sinh(/7r</>) + (1 + 7)/7r$ cosh(/7r</>)]/sinh2{iir4>), 

wv = 7r[(l + y)iw<t> + sinh(2/7r<A)/2]/sinh2(/7r</)), 

Wsi = - y,.w7(-/2, 
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w9( = - ir[iir(j) cosh(iirc6) - sinh(/Vc/>)]/[4ic>sinh2(/Trc»], 

wwi = [ - iir<t> + sinh(2/7r</>)/2]/[4/c6 sinh2(/ir$)], 
w\\i = [ - wv4> sin(/7riA) + ( - 1)'(2 + Y)iri/<]/(2/7r<j!>i/<), 

w,2 = - Yw6i/2, 
wm = f - w6i<t> sin(r'Tr^) + ( - 1)'(2 + y)%i/]/{2i-w^), 

'ilk = ( - D^cMT'2 - (2 + Y)£ W A * . 

/2* = ( 1 - 1 ) * ! M - ( 1 + 7 ) M ^ 2 

+ A:2</>2) cosh((V/c/>) sinh(;V^/0) 

+ 2</>[(2 + Y)£2C62 

+ !2i/'2}sinh(i-ir/<#)) sinh(iV^/cf>) + (1 + y)h\j/ 

(i2\j/2 + k2ct>2)smh(iir/(t))cosh(iTr\p/<t>) 
00 

"=' 

5„ = TT[(1 +7)/j7rc6 + (3 + 7)sinh(2rtir0)/2]/[4n0sinh2(mr(/))], 

Dik = (i2+k2<t>2y (39) 

Solution of the infinite system of algebraic equations (38) and 
application of the formulae (35) yield the values of Fourier 
coefficients of the unknown boundary stresses. In particular, 
for the normal stress under the stamp we obtain: 

axx(0,y) = (ji/c) [ CTT[1 - (y/cf\m - CCTT/2 - P/ly. 

• 2 2J Fkcos(kiry/c)} (40) 

Note that since the solutions of equations (38) are propor­
tional to P, therefore oxx(0,y) above is also proportional to P. 

To calculate the displacements we must first find u00. This 
is obtained from the condition that u = 0 at y = b yielding: 

, + 2^(-irum=0 

where uon is substituted from equation (29). 
Now Fourier coefficients in equations (36) and (37) are 

known to any desired degree of accuracy and hence the 
displacements can be evaluated. The penetration u0 is of par­
ticular interest since in the classical problem it has been an 
undeterminable quantity. Presently it is determined from the 
following equation: 

Co 

"o = 2 L H r [sin(A:^)/0br^) - ( - 1)*] 
* - 1 a b 

0 0 CO 

k-l 1=1 ab 
(42) 

This equation resulted by performing transformation on the 
boundary condition (19). It is also worth noting, as pointed 
out by one of the reviewers of this paper, that the slope du/dy 
is infinite at the punch corner (x = 0, y= ±b). That this is so 
results from inspection of formula (36). It follows from it 
that: 

du I 
dy \x=0,y = c 

--T XJ /3„w0„sin«7n/< 

0 3 CO 

ab 
£ L /3„",„„sin«iri£ (43) 

m = 1 n - 1 

Once the expressions (32) and (34) are substituted here it is 

rigid 

Fig. 4 Rigid load on a beam with built-in ends 
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Fig. 5 The threshhold curve <t>cr 

1.0 + 

seen that one of the terms is represented by a divergent series 
of the order 

XJ sm2nir\p/p„. 

Hence in fact expression (43) tends to infinity. 

(41) 3 Basic Equations - A Rounded Stamp 

In this section symmetric indentation by a rounded stamp is 
investigated (Fig. 3). All equations and results from Section 2 
are still valid except that the following changes must be made. 

(1) Boundary condition (6), or (19), reads now: 

u = un r - ^ ^ atx = 0, 0<y<c (44) axy = 0, 
y 
R 

(2) In addition, since the normal stress under the stamp 
vanishes now at the ends of the contact zone, the stress intensi­
ty factor C appearing in equation (25) and in the following 
equations, must be set equal to zero 

C=0 (45) 
(3) Finally an inverse method is used here: the width of the 

contact 2c is assumed to be known and the force needed to 
generate an indentation of such a width is calculated. The con­
dition that the normal stress vanishes at the ends of contact 
zone is also used to eliminate some of the Fourier coefficients. 

4 Numerical Results 

Inspection of the problem of deflection of a beam with both 
ends fixed, subject to a rigid load (Fig. 4), from the point of 
view of elementary theory led to the conclusion, anticipated 
first by Nied and Erdogan (1979), that also here, when <j> = 
a/b is sufficiently small, separation under a portion of the 
rigid load will occur. To test this, one had to solve first the 
system of equations (38) using the method of reduction as 
described by Kantorowitsch and Krylow (1956) and then 
calculate the stresses under that stamp from equation (40). 
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Table 1 Depth of penetration by the flat stamp for 4- = 0.25, >• = 0.30 

Classical Result 

l|/ =0.25 ( lower bound I.060 ) 

ijr = 0.50 ( lower bound 1.096 ) 

0 .5 1.0 1.5 2.0 2.5 3.0 

Fig. 6 The dependence of stress intensity factor on <•> and \fr 

Fig. 7 Example of the deformed shape of the indented rectangle 

|— b — 
P/2 

H^2c —H 

2b 

fc. 

b-c 

Fig. 8 2D stamp problem with two sided constraints modeled as a sim­
ple beam 

The numerical results obtained from the approximate solution 
of this system (reduced to 200 equations) fully confirmed that 
expectation revealing also other interesting properties of this 
modified flat punch problem: 

(1) For each fixed \p = c/b such critical value 4>cr of </> = 
a/b exists that indicates the onset of separation of the stamp 
from the substrate at the midpoint. When </> < <f>cr then the 
separation of the central portion of the stamp occurs. When <f> 
> 4>cn there is no separation ("cushioning" effect). It is to be 
noted that <j>cr does not depend on the magnitude P of the ap­
plied load and that for an isotropic material assumed here it 

* 
U n 

.10 

9 7 . 4 

. 20 

1 6 . 3 

. 30 

6 . 2 3 

. 40 I . 50 

3 . 2 6 1 2 . 0 6 

.60 

1 .47 

. 70 

1.14 

. 80 I . 90 

.945 | . 818 

1.00 j 

.731 1 

1.25 

.607 

1.50 

. 546 

1 .75 

. 512 

2 . 0 0 

. 4 9 3 

3 . 0 0 

. 4 6 5 

5 . 0 0 

.458 

1 0 . 0 0 

. 443 

2 0 . 0 0 

. 4 4 1 

depends only on the Poisson's ratio p. The values of f/>cr 

calculated for v = 0.3 are plotted against \p in Fig. 5. 
(2) The nondimensional stress intensity factor SIF (it is the 

ratio of the actual stress intensity factor to the one obtained 
for the infinite case) at the ends of the flat stamp depends on 
both ip and <f>. Its dependence on 4> is particularly striking: it 
grows considerably with decreasing <£, reaching for instance 
about 23 for r/> = 0.1 and ip = 0.5 (data obtained for the case 
when separation is prevented by two-sided constraints under 
the stamp). For fixed </>, SIF increases very slowly with i/-. The 
dependence of SIF on 4> is shown in Fig. 6 for ^ = 0.25 and i/< 
= 0.5. 

The presence of two-sided constraints in the contact zone is 
assumed here. It is evident that for each fixed \j/, SIF has a 
lower bound > 1. The smaller ip is the closer this lower bound 
is to 1, as can be expected. In Fig. 6 it is shown that this lower 
bound equals 1.096 for I/- = 0.5 and equals 1.060 for i/' = 
0.25. 

(3) For each combination of 4> and </> the displacements at 
any point, including those directly under the stamp, can be 
uniquely determined. Hence the penetration is no longer 
unknown as it is in the classical problem. The typical shape of 
the deformed solid is shown in Fig. 7 for $ = 0.58 and \j/ = 
0.35 (the onset of the separation) and for P/\x = 1. It must be 
noted that the calculated vertical displacement under the edge 
of the stamp differs by about 5 percent from the displacements 
of other points under the stamp. This can be attributed to 
Gibbs phenomenon. For the purpose of illustration the values 
of the penetration u0, by the flat stamp, calculated for i/< = 
0.25, v = 0.30, and P/fi = 1 are listed in Table 1. These 
results suggest that for fixed \p and growing <l>, u0 approaches a 
limiting value. 

(4) If the flat stamp is assumed to be permanently bonded 
to the indented substrate, then the calculated value of the 
displacement under the stamp, uB, matches the one obtained 
from the simple beam theory. The latter is determined in the 
following way: since the deflection is constant under the 
stamp, all its derivatives are zero and the problem is equivalent 
to one represented in Fig. 8. 

Solving the differential equation for bending of a beam 

EIyIV = 0 

and applying the boundary conditions 

y'=0, Ely'" = P/2 a tx = 0 

y = 0, y' =o atx=(l-i/<)Z> 

one obtains maximum deflection at x = 0: 

ymm=P(\-t)lbV24EI 

Using here, as before P = n=E/2(l + v) and / = 
obtains finally 

^max = ( 1 - ^ / 4 ( 1 + ^ 3 

(46) 

(47) 

(48) 

1««V12 one 

(49) 

Fori/' = 0.05 and 4> = 0.10 this yields ymm = 165 as compared 
to u0 = 176. For deeper beam the discrepancy between u0 and 
ymm grows larger due to shear effects among others. For the 
round stamp (Fig. 3) the calculations made by Keer and Miller 
(1983) were duplicated. It should be emphasized that their 
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Table 2 Comparison of the results for a rounded stamp with Keer and 
Miller (KM) (1983) 

c/h 
0.25 
0.50 
1.00 
2.00 
4.00 
0.25 
0.50 
1.00 
2.00 
4.00 
0.25 
0.50 
1.00 
2.00 
4.00 
0.05 
0.25 
0.50 

* 

* 
.0167 
.0333 
.0667 
.1333 
.2667 
.025 
.050 
.100 
.200 
.400 
.05 
.10 
.20 
.40 
.80 
.05 
.25 
.50 

L/h 

15.0 

10.0 

5.0 

1.0 1 

(J> Pres. 

.0667 .0586 
.06620 
.07629 
.1043 
.0574 
.0846 

.1 .1012 
.1259 
.2112 
.0820 
.1517 

.2 .2140 
.3445 

1.513 
.0055 

.0 .1238 
.3972 

er = erratic results 
ps = partial separation 

KM 
.04434 
.0578 
.06634 
.07654 
.1051 
.0578 
.0851 
.1018 
.1271 
.2153 
.0834 
.1548 
.2197 
.3606 
L.887 

Load/d. 
Pres. 

34.92 
39.29 
.44.34 
54.31 
10.30 
15.15 
17.99 
21.38 
28.12 
2.002 
3.662 
5.004 
6.778 
10.55 

.0068 

.1074 

.2739 

ispl. 
KM 
26.31 
34.84 
39.20 
44.26 
54.28 
10.23 
15.02 
17.83 
21.22 
27.92 
1.912 
3.506 
4.807 
6.527 
10.03 

Max. s 
Pres. 

.625 

.564 

.985 
1.98 
.637 
.628 
.560 
.977 

1.97 
.640 
.627 
.567 
.976 

1.98 
.640 
.640 
.627 

stress 
KM 

.622 

.560 

.979 
1.97 
.635 
.622 
.560 
.981 

1.97 
.635 
.622 
.560 
.981 

1.97 

Comments 
er* 

ps* 

ps* 

method, as a combination of the solution for an infinite layer 
and a finite simple beam is applicable to relatively slender 
beams. The present method is: (1) free of this limitation; (2) 
satisfies exactly the boundary conditions at fixed ends (at Keer 
and Miller the ends are allowed to move freely in vertical 
direction what is of no consequence for slender beams, but 
this and disregard of corner singularities may affect the results 
for deeper beams). 

The results of the calculation and the comparison with the 
results of Keer and Miller (1983) are given in Table 2. It seems 
that except for the value of F*R) for c/h = 4.0 and L/h = 5.0 
the correlation of the results is very good. The case of a very 
deep beam (L/h = 1.0) was not calculated by Keer and Miller. 
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One-Dimensional Softening With 
Localization 
The relationship between material softening and structural softening is investigated 
through the use of a model problem in one dimension. If the size of the softening 
zone is large the structural softening response is stable under displacement-
prescribed loading. For a small size, the softening response is unstable and the 
loading regime is sensitive to imperfections in stiffness. A nonlocal constitutive 
equation in which the limit stress is a function of strain and strain gradient is in­
troduced to provide an approach for simulating softening with localization. Implica­
tions for the numerical modeling of softening phenomena are given. 

Introduction 

Numerous computational codes contain numerical 
algorithms for strain-hardening plasticity. To develop a 
capability for predicting large deformations, strain softening 
must be incorporated. Strain softening is associated with 
localization, and if no precautions are taken, the region of 
localization will depend on the size of the mesh used for 
spatial discretization. This mesh-dependence is clearly unac­
ceptable, and therefore an approach that can provide basic 
equations governing the phenomena of softening and localiza­
tion is needed. Several studies concerning the conditions 
necessary for the onset of localization are available (Rudnicki 
and Rice, 1975; Vermeer, 1982; Prevost, 1984), but it is still 
not clear which procedure is optimal for predicting postlimit 
states. 

From a continuum point of view, Bazant (1976) has pointed 
out that the region of localization must condense to what 
might be considered a surface. However, such an idealization 
is rarely observed in experiments. On the other hand, there is 
no doubt that a region of localization exists and may consist of 
a band whose lateral dimension appears to depend on the 
physical characteristic of the materials. Because of the com­
plexity of the problems involving a material instability, a 
numerical technique such as the finite-element method has 
been used to obtain most solutions. Inherent in such a tech­
nique is the problem that a region of localization that is 
smaller than the element size cannot be accurately represented. 
In fact, the predicted response will generally depend on the 
element size in which case the modeling of actual physical 
phenomena is lost. 

Recently, considerable effort has been made to obtain a 
suitable approach to handling strain softening and localiza­
tion. A promising approach (Bazant, 1984b; Pietruszczack 
and Mroz, 1981) involves the assumption that the size of the 
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T 

Fig. 1 One-dimensional model problem 

localization is fixed with the size related to the material being 
studied. Softening characteristics are adjusted to take element 
size into account or to ensure that an appropriate amount of 
energy dissipation is provided. However, Willam (1984) sug­
gests that in order to take into account what appear to be dif­
ferent modes of softening, a composite damage formulation is 
necessary. A motivation for the use of a nonlocal constitutive 
equation is that the aspects discussed by Willam can perhaps 
be synthesized into one theory, although Bazant and Chang 
(1984) point out that certain precautions must be taken. 
Recently, Bazant, Belytschko, and Chang (1984) and Bazant 
(1984b) have introduced the concept of an imbricated con­
tinuum which is a method for capturing nonlocal constitutive 
features. Physically realistic results have been obtained for 
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Fig. 2 Constitutive relation for segments A and S Fig. 3 Composite constitutive relation 

wave propagation in a bar. The arguments of Sandler (1984) 
and Read and Hegemier (1985) that strain softening is not a 
true material property has been circumvented to a certain ex­
tent by the use of nonlocal continuum laws which do involve 
softening. 

Triaritafyllidas and Aifantis (1984) and Aifantis (1984) 
point out the need for an approach to localization that will 
automatically generate in a predictive and natural way solu­
tions with localized deformations. For hyperelastic materials 
they have shown that such a procedure is possible by introduc­
ing higher-order deformation gradients in the constitutive 
equations. The result is a static problem that is well-posed in 
the softening region, and consequently, well-posedness prob­
ably exists for the dynamic problem, especially in light of the 
solution provided by Bazant and Belytschko (1985). 

At least two aspects of strain softening and localization 
have not been addressed. First, the effect of initial imperfec­
tions is unknown; and second, the potential usefulness of a 
nonlocal constitutive relation has not been conclusively 
demonstrated. In this paper, the implications of softening, 
localization, stiffness imperfections, and the assumption that 
stress is a function of both strain and the gradient of strain are 
explored by means of a one-dimensional model problem. It is 
believed that the insight provided can be useful for the con­
struction of more general theories to address the issues that 
have been raised in connection with softening. 

Model Problem 

Willam, Pramono, and Sture (1985) argue that a series ar­
rangement of intact elastic and strain-softening zones is more 
representative of post-critical experiments on concrete than a 
parallel arrangement. Therefore, to simulate the softening 
phenomenon (Crisfield, 1982; Schreyer and Chen, 1984) con­
sider a body of length L = a + b and a unit cross-sectional 
area as shown in Fig. 1. This body can be considered a bar or, 
in a more general sense, a structural member or even a finite 
element of a continuum. The element is considered to be com­
posed of two segments described by similar constitutive equa­
tions, the only difference being that the limit stress for seg­
ment B is slightly less than that for segment A. If the stress on 
the element is such that the strain in region B exceeds the value 
at the limit state, then softening will be exhibited. It is as­
sumed that softening occurs uniformly over a localized 
region B whose dimension is given by the parameter b. It is 
also assumed that the length of the element is greater than that 
of the softening regime, i.e., L > b. 

For simplicity, the constitutive relation for both regions is 
considered to be bilinear. The slopes of the loading and 
softening segments are aE and - /JE, respectively. If 
unloading occurs, a line with slope E is followed so that if a < 
1, the effect of strain hardening can be simulated in an ap­
proximate sense. The limit stress for region A, denoted by <J„, 

is assumed to be infinitesimally larger than the limit stress for 
region B, denoted by a0. These details are sketched in Fig. 2. 

There is a cogent argument that strain softening does not ex­
ist. It is the essence of damage theory (Krajcinovic, 1983) that 
a decrease in apparent stress occurs not by strain softening but 
by a reduction in effective area due to the coalescence of voids 
and microcracks. The viewpoint adopted here is that for an 
engineering approach, the choice of a procedure for providing 
a drop in nominal stress with strain can be based on conve­
nience because a rigorous development of the two methods 
should provide the same results on a macroscopic basis. For 
the current development, the assumption of strain softening 
provides a suitable basis for deriving general results that 
would not change if an alternative approach were used. 

For given values of strain in regions A and B, which are 
denoted by ea and eb, respectively, the corresponding elonga­
tions are 

ba = aea hb = beb (1) 

Then the elongation and the composite strain for the complete 
element are given by 

8 = Sa + 8b e = oVL (2) 

The composite constitutive equation is characterized by the 
relation between stress, a, and strain, e, or equivalently, a P-& 
curve. 

For monotonically increasing stress from zero up to the 
limit stress, the composite constitutive equation is identical to 
the constitutive equation for either segment. However, the 
postlimit response is different. To obtain this part of the 
curve, suppose that eb is given an increment, Aeb. From 
equilibrium in segment B, 

Aff= -/3EAeb (3) 

and the change in strain in segment A is 

Aea=~=~l3Aeb (4) 

It follows from equation (2) that the increment in total strain 
is 

(b-Pa) 
Ae--

L 
Aeh (5) 

The result of substituting equation (3) in equation (5) is 

Aa=-r]EAe (6) 

where 

PL 
n=- (7) 

fc(l+/3)-/3L 

The composite, or smeared, constitutive relation is shown 
schematically in Fig. 3. The case of an infinite value of t\ cor­
responds to a vertical drop in stress, and the stress-strain curve 
displays a decrease in strain with a decrease in stress for 
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Fig. 4 The effect of an initial imperfection on a stable equilibrium state 

negative values of TJ. The parameter a, which characterizes 
strain hardening, does not appear in the expression for r\. As L 
increases, i\ approaches asymptotically the limiting value of 
- 1 . 

Implications 

Experimental data are often obtained with stress-prescribed 
devices, in which case failure occurs when the limit load is 
reached. For some devices, however, displacements are 
prescribed, in which case postlimit data can be obtained unless 
the case corresponding to negative values of -q exists. If the 
model problem represents an element in a continuum, for ex­
ample, then because of the basic indeterminacy of such a 
system, the situation is probably closer to a displacement or 
strain-controlled problem than to one of load or stress 
control. 

If the loading condition can be represented adequately by 
increasing the strain monotonically, and if r\ is negative, then 
it is apparent from Fig. 3 that it is impossible to follow the ac­
tual stress-strain curve. If an increment in load forces e to be 
larger than e0 = o0/aE, the result will be a snapdown to zero 
stress with a corresponding release of energy. Because loss of 
stability is often associated with failure, a condition of 
negative i) is assumed to be undesirable. However, no matter 
how small a value (positive) of /3 is appropriate, equation (7) 
shows that 17 can be made negative for a sufficiently large 
value of L with b fixed. In the context of a structural member, 
the dependence of instability on the size of the structure is a 
manifestation of a size effect that has not been investigated ex­
tensively. For example, fracture can be used to justify the 
argument that strain softening is not observed in metals. 
However, an alternate interpretation for fracture can be given. 
The phenomenon of crack growth occurs in such a small zone 
compared to the length of the specimen that the terms involv­
ing L in equation (7) dominate, and r; is negative. In other 
words, fracture is usually an unstable process because of the 
size of the specimen, not because strain softening does not ex­
ist. In fact, since crack widening has been controlled for con­
crete (Shah and Gopalaratnam, 1984), it would be interesting 
to know whether one could obtain a similar result for metals 
by using sufficiently small specimens. 

An energy interpretation is apparent. Once softening oc­
curs, the energy dissipated in region B must be provided from 
region A and from any work added by an external agency. The 

F 

Co - ea E 

ea E 
1 - a 

Z : ^ ^ _ 

I 
I 
I 
I 
I 

1 + /3 _L_ 

/3 b 

Fig. 5 Failure stress as a function of element length 

situation defined by -q = ±00 is the critical case in which 
region A can provide enough energy to match that dissipated 
in region B with no additional work, a case corresponding to 
Ae = 0. 

In many finite-element codes that use explicit time integra­
tion, the total strain increment is fixed at each time step. Some 
algorithms incorporate the conventional softening identified 
with rj > 0, but almost none incorporate the possibility 
associated with -q < 0. From equation (7), the need for the lat­
ter case can be averted by selecting the element size h, such 
that 

0<h<L*= 
6(1 + 0) 

(8) 

It is assumed, of course, that b is known. 
Willam, Pramono, and Sture (1985) have theoretically 

developed the weak restriction i\ < 1 which must hold for 
uniqueness. If such a condition is invoked, then the maximum 
allowable element size is L*II rather than L* given by equa­
tion (8). The primary problem is that elements larger than L* 
are desirable. In addition to the problem of uniqueness, the 
use of large elements would require a constitutive equation 
that incorporates a negative value of 17. To the authors' 
knowledge, such an algorithm has not been developed. This 
feature may not be difficult to incorporate because plasticity 
algorithms automatically incorporate an elastic unload 
feature. In the postpeak regime, which is not unloading 
because energy is being dissipated, a pseudoelastic behavior 
could be incorporated as a three-dimensional representation 
of the case corresponding to negative JJ. Simultaneously, the 
limit surface must contract to exclude any path that involves 
an increase in stress. With such a constitutive model, the static 
analysis of structures would require a special numerical 
algorithm to predict the possible snap-down and snap-back 
response features. Although the arc-length method holds con­
siderable promise, a general and robust procedure has not 
been demonstrated for applications to strain softening and 
localization. 

Initial Imperfections 

So far, the development for the model problem indicates a 
size effect based on the softening feature of an element, but 
there is no implication that the apparent failure or fracture 
stress varies with the size of the structural member. To show 
that there may be a size effect for the failure stress as well, 
consider the case in which L :s> b, so that i\ is close to (slightly 
less than) - 1. The situation is illustrated in Fig. 4 with i/j < 
i)2 < r)} •<, - 1 . The fact that the pre- and postlimit 
equilibrium states can be close suggests that the response of 
the structural member will be sensitive to initial imperfections 
or loading disturbances. Rather than being geometrical in 
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Fig. 6 Reduction in failure stress for initial imperfections on a spring-
loaded element 
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nature, the imperfections of concern here are those associated 
with variations in stiffness, otE, as the structure is loaded. Sup­
pose such variations are bounded on one side by the dotted 
line in Fig. 4, where the imperfection is characterized by the 
strain parameter, e. Then, for strain-prescribed loading, it is 
possible for a snap-down response to occur at stress values of 
<J1,<J2, and a3 for softening conditions characterized by ri,, TJ2, 
and 7)3, respectively. To be specific, if rj = r/2 and the load in­
creases from point A to point C, then the possibility of 
reaching an alternative equilibrium state exists at a = a2, and 
snap-down from D is feasible. 

The presence of initial imperfections provides the rationale 
for a potential size effect on the limit stress (or limit load) that 
can be exhibited by a structural member. As the size of the ele­
ment increases, the softening parameter approaches — 1, and 
the probability of snap-down at a stress less than the ultimate 
stress becomes greater. 

Geometrical arguments based on Fig. 4 can be used to show 
that the failure stress, in the presence of imperfections, is 

eaE 
aF = °o--7——r n^-i (9) 

1 +a/ i j 
For brittle materials, modeled by a value of a close to unity, 
the failure stress is sensitive to imperfections as exhibited 
through e; whereas for ductile materials, modeled by small 
values of a, the decrease in the failure stress from a0 is not as 
abrupt. The idealized post-peak response, as reflected through 
•r\ in equation (7), does not depend on a, whereas a considera­
tion of initial imperfections shows that strain hardening, as ex­
hibited by values of a less than one, is an important 
characteristic. 

A plot of failure stress as a function of L/b is shown in Fig. 
5. For strain-controlled loading, no reduction in failure stress 
occurs if the structural element is small enough. When L/b 
reaches the critical value of (1 + /3)//3, the failure stress 
decreases sharply. The magnitude of the jump depends on the 
degree of inelasticity in the loading part of the stress-strain 
curve. With a further increase in structural size, or a decrease 
in the size of the region of localization, the failure stress 
asymptotically approaches a limiting value, which also 
depends on the parameter a. In fact, if a is close to one, the 
limiting value can be zero for large values of L/b. 

These results must be ameliorated to a certain extent 
because neither total strain nor a stress-controlled loading 
condition describes a typical problem. Instead, a stable post-
peak response may be the line with a slope of - m, where 0 < 
m < oo, so that an additional regime of instability exists for 
values of 77 between m and 00 as shown in Fig. 6. Except for a 
change in some of the details, the basic concepts outlined 
previously are still valid, and the matter will not be pursued 

Fig. 7 The effect of the parameter a1 on strain-softening 

further except to say that alternate considerations also imply a 
decrease in strength with an increase in the size of a structural 
member. For example, Bazant and Panula (1978) made such a 
claim based on the assumptions that material properties are 
randomly distributed and that a model structure can be 
represented by a set of elements in parallel rather than in 
series. Another size effect due to blunting at a fracture front 
has been described by Bazant (1984a). 

A Nonlocal Constitutive Model 

The existence of a localized region with strains much larger 
than those in the adjacent region implies that the strain gra­
dient must be large. For cases in which softening and localiza­
tion occur, it is not clear whether the region of localization re­
mains fixed in size or changes monotonically with deforma­
tion. One approach is to postulate that a characteristic dimen­
sion of localization depends on the material (Bazant, 1984a) 
while another involves dependence on the post-peak stress 
(Shah and Gopalaratnam, 1984). A disadvantage of these 
assumptions is that a separate procedure for handling soften­
ing must be established for numerical computations. On the 
other hand, an alternate approach involving an assumption on 
the constitutive equation might provide equivalent results, but 
with the advantage that the softening mechanism would be a 
consequence of the loading path. As a result, existing 
numerical algorithms could be used with a minimal degree of 
modification. 

To explore the potential usefulness of a nonlocal con­
stitutive equation, a modified form of the relation shown in 
Fig. 2 is used. The nomenclature of conventional plasticity is 
used to suggest a possible three-dimensional generalization. 
Suppose the yield function is given by 

F=a-H (10) 

where a is the second invariant of the stress deviator normal­
ized such that a = \a\ for uniaxial stress. The strain harden­
ing function is prescribed to be continuous with a continuous 
first derivative as follows: 

H=H0+(HL-H0)sin[-^(-^-y] 0 < 

H=Ha+(HL-Ha)(l+aie*)e-"ie e'>e'L 

with 

e' < e', 

(11) 

(12) 
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Fig. 8 The assumed effect of strain-gradient on stress-strain behavior Fig. 9 Distribution of strain for various levels of stress in the post-peak 
regime 

The inelastic strain invariant, e', is also considered to be scaled 
so that for uniaxial stress, e' is equal to the absolute value of 
the principal inelastic strain. The value of e' at the limit state is 
e'L. Initial and peak values of yield stress are denoted by H0 

and HL, respectively. The parameter n controls the shape of 
the strain hardening part of the stress-strain curve. In the 
strain softening regime, the function H decreases to the 
asymptote Ha. For a Young's modulus of E = 1, and with H0 

= 0.5, HL = 1, Ha = 0.2, e'L = 0.1, and n = 0.5, the effect 
of the parameter ax is shown in Fig. 7. 

Suppose further that an inelastic strain gradient causes a 
decrease in both the limit stress and the inelastic strain at the 
limit state. Although it will be shown that realistic localization 
features are predicted for uniaxial tension, the assumption ap­
pears to be contrary to experimental evidence obtained from 
simple bending tests where both strain gradients and an 
enhancement of the tensile limit stress are exhibited. However, 
the strain field in beams displays different strain gradients in 
two directions which is a topic beyond the scope of this 
investigation. 

A smooth characterization of the assumed effect of the 
strain gradient is given by 

H, 

G =a2 + (\-az)e-

(13) 

"3« 

where g denotes the absolute value of the gradient of the in­
elastic strain invariant normalized to equal the absolute value 
of the inelastic strain gradient under uniaxial stress. For HL0 

= 1, e'L0 = 0.1, a, = 0.5 and a2 = 0.4, the postulated effect 
of strain gradient on the stress-strain curve is shown in Fig. 8. 
The material parameter a3 has the dimension of length and its 
effect can only be exhibited for cases involving nonuniform 
strain. 

To show the effect of g, consider a bar under uniaxial stress 
loaded such that the strain in the softening region is increased 
monotonically. For model parameters listed previously except 
for a, = 0.8, and a} = 0.05, the evolution of strain distribu­
tion for a bar discretized with 20 uniform elements is shown in 
Fig. 9. Initially the strain is uniform. Once the peak stress is 
reached at a point chosen arbitrarily to be x = 0, a portion of 
the bar in the softening zone will continue to elongate, while 
elastic retraction will cause the remainder of the bar to shrink. 
The region of continued extension is the localized softening 
region which develops to a maximum size and thereafter re­
mains fixed. The listed values for stress are less than one 

Fig. 10 The effect of the parameter a3 on the region of localization for 
a = 0.41 

because the structure is in the post-peak regime. The lower the 
value of stress, the more extensive is the strain softening. 

Strain distributions for a fixed value of stress in the post-
peak regime are shown in Fig. 10 for various values of a3. 
When #3 = 0, which corresponds to a conventional con­
stitutive equation with no consideration of strain gradients, 
the softening localizes into a single element as expected. An in­
crease in the value of a3 corresponds to a widening of the 
softening region; thus, if softening is very localized, which oc­
curs with cracking for example, then a small value of a3 

should be used. 
The effect of element size is shown in Fig. 11, in which con­

vergence is displayed. 
For a length of one unit, the stress-deflection relation for 

the bar is shown in Fig. 12 for various values of a3. When a3 

= 0, unstable behavior is predicted for displacement-
prescribed loading whereas larger values of a} yield results 
that are stable. All of the softening curves will be steeper if a 
longer bar is analyzed. 

Shah and Gopalaratnam (1984) performed tensile tests on 
concrete under carefully controlled loading conditions and 
with refined measuring techniques. The response of the con-
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Fig. 11 Effect of element size in which convergence is shown for a 
0.26 (a, = 0.8, a3 = 0.05) 
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Fig. 12 Effect of the parameter a3 on the stress-deflection relation for 
a bar of unit length 

crete specimen was modeled with 20 elements and the follow-
ing material parameters: 

E = 5 x 106 psi 
HL0 = 530 psi 
a, =0.03 
a3 = 60 in. 
e'L0 = 3.8 X10~6 

H0 = 370 psi 
Ha = 53 psi 
a2 = 0.4 
n = 0.5 

The theoretical stress-elongation relation for a gage length of 
3.25 in. is compared with the experimental result in Fig. 13 
which shows that the softening response has been captured 
with a nonlocal plasticity model. However the size of the 
predicted softening zone is 0.16 in. which is considerably 
larger than the measured crack width. This difference between 
theoretical and experimental values may be due to the ex­
istence of a softening region outside the crack zone, or to a 
deficiency in the model. An interesting feature is the small 
value of a, which indicates that very little strain softening is 
required to obtain a reasonable result. This absence of a 
significant amount of strain softening is close in spirit to the 
argument of Read and Hegemier (1984) that experimental 
evidence does not support the concept of strain softening. 

Conclusion 

With the use of an elementary model problem, the 

EXPERIMENT 

THEORY 

0.4 0.8 

S, INCHES 

1.2 (X10~3) 

Fig. 13 Tensile stress-deflection relation for a concrete specimen; ex­
perimental data from Shah and Gopalaratnam (1984) 

significance of both strain softening and the ratio of the size of 
the softening region to the size of the structure has been 
demonstrated. For a given strain softening relation and for 
structural elements that are small enough, the slope of the 
softening part of the load-deflection curve will depend on the 
size of the structural element. This conclusion is in agreement 
with three-dimensional softening data obtained by Van Mier 
(1984) who performed experiments on cubical specimens. The 
experimental results show that the descending branch of the 
stress-strain curve should be considered a structural 
characteristic rather than a material property. Similar implica­
tions follow from the examples given by Read and Hegemier 
(1984). 

If the structural element is large enough, the assumption of 
strain softening implies that unstable equilibrium states exist 
even if the problem is one of displacement-controlled loading. 
The presence of unstable equilibrium states adjacent to stable 
equilibrium states suggests that such a structure is sensitive to 
variations in stiffness. Consequently, the failure load may be 
less than the load associated with the nominal peak stress. The 
possible reduction in dimensionless failure load with an in­
crease in the size of a structural element is a size effect that has 
been noted previously from alternate viewpoints. 

One approach for predicting the various manifestations of 
softening in a continuous medium without being overwhelmed 
with detail is to assume that the constitutive equation incor­
porates strain softening and is nonlocal. If the mesh size used 
for structural discretization is small enough, then structural 
softening and the region of localization are predicted in an 
evolutionary manner. Comparisons between theoretical and 
experimental data associated with the cracking of concrete in­
dicate that the method is useful and that a generalization to 
three dimensions is feasible. 

From a practical viewpoint for numerical calculations, a 
mesh size larger than the region of localization is desirable in 
which case the constitutive equation must be modified to in­
corporate a reversal in strain in the post-peak regime. The 
theoretical and computational issues associated with strain 
reversals must be resolved before softening and localization 
can be routinely handled. 
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Inclined Flat Punch of Arbitrary 
Shape on an Elastic Half-Space 
A new method is proposed for the analysis of elastic contact problems for aflat in­
clined punch of arbitrary planform under the action of a normal noncentrally ap­
plied force. The method is based on an integral representation for the reciprocal 
distance between two points obtained by the author earlier. Some simple yet ac­
curate relationships are established between the tilting moments and the angles of in­
clination of an arbitrary flat punch. Specific formulae are derived for a punch whose 
planform has a shape of a polygon, a triangle, a rectangle, a rhombus, a circular sec­
tor and a circular segment. All the formulae are checked against the solutions known 
in the literature, and their accuracy is confirmed. 

Introduction 
The theory of elastic contact problems for classical domains 

(a circle and an ellipse) is well developed (Galin, 1961). There 
are quite a few publications treating the case of a flat nonellip-
tical punch under the action of a centrally applied force 
(Rvachev and Protsenko, 1977). There are almost no reports 
on the case of a noncentrally applied force and a nonclassical 
domain of contact. We are aware of only one report (Rvachev 
and Protsenko, 1977) considering an inclined circular punch, 
with a zone of separation between the punch and the elastic 
half-space. Slightly better is the situation in Electrical 
Engineering where the mathematically equivalent problem of 
the magnetic polarizabilty coefficients was solved numerically 
for several specific shapes (de Smedt, 1979; De Meulenaere 
and Van Bladel, 1977; Okon and Harrington, 1981). Though 
their results sometimes differ by more than the accuracy they 
claim, we have no other source for verification of the accuracy 
of the formulae to be derived here. 

This paper constitutes the second part of a three-part proj­
ect. In the first part (Fabrikant, 1986) we derived a universal 
formula for the relationship between the punch settlement and 
a centrally applied force which compares favorably with the 
numerical results available for a regular polygon, a rectangle, 
a triangle, a rhombus, a circular sector, and a segment. Here, 
the same method is used for the solution of the problem of an 
inclined punch of arbitrary planform. Some general nelation-
shps are derived between the tilting moments and the angles of 
inclination of the punch. Specific formulae are derived for 
various punch planforms, and their accuracy proves to be 
quite satisfactory when compared with the numerical results 
available. The third part of the project will deal with an ar­
bitrary curved punch. 

Contributed by the Applied Mechanics Division for publication in the JOUR­
NAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME 
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Theory 

It is well known (Galin, 1961) that the problem of an ar­
bitrary punch on an elastic half-space can be reduced to the 
solution of the following integral equation 

ff(Af) 
>(N)=H\\ 

s R(M,N) 
dS (1) 

where S is a two-dimensional domain of contact, R(M,N) 
stands for the distance between the points M and N, w denotes 
the normal displacements under the punch (known function), 
a stands for the normal stress exerted by the punch (unknown 
function), and i/is a constant which in the case of an isotropic 
elastic half-space takes on the value H = (1 - v2)/irE, v and E 
being, respectively, the Poisson coefficient and the elasticity 
modulus. In the case of a transversely isotropic body, the ex­
plicit expression for H can be found in Fabrikant (1971b). 

The presentation in this paper will be made in terms of the 
elastic contact problems but one should keep in mind that all 
the results will be applicable in other branches of engineering 
science. Here we outline the analytical treatment of the elastic 
contact problems which allows to derive simple yet accurate 
formulae for various punch shapes. The approach is based on 
the integral representation for the reciprocal distance 
established in Fabrikant (1971a) 

1 

[ P 2 + Po2 - 2pp0cos((j) - <£0) 

2 f" 
•K J0 

1 1/2 

. , , M ,4>-<i>0)dx 
2 rmm(p0j>) \ ppQ / 

[(p2-x2)(p0
2-x2)] 

where 

X(*,tf)=-
l-k2 

(2) 

(3) 
1 + k2 - 2k cos^ 

Substitution of equation (2) into equation (1) gives, after 
changing the order of integration, 
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2 f 
w(p,<t>) = H\ • 

IT JO 

dx 

(P
2-x2y 

{ 2ir p a 

0 ^ l 

o(*0> 

W o y 

(Po2-*2) 2 \ l / 2 a(Po><t>o)PodPo 

(4) 

Consider a flat-ended punch with a planform S whose 
boundary is given in the polar coordinates as 

p = a(<t>) 

where the function a(4>) is bounded and single-valued. The 
punch is pressed against an elastic half-space by a normal 
force P applied at the point with cartesian coordinates x0 and 
y0. This loading is statically equivalent to a centrally applied 
force P and two tilting moments Mx = Py0 and My = — Px0. 
The case of a centrally applied force was considered in Part 1 
(Fabrikant, 1986). It remains here to consider the punch under 
the action of the tilting moments, and to superpose the results. 
Let the normal displacements under the punch be 

w = axy — a„x (5) 

where ax and ay are the tilting angles about the axes Ox and 
Oy, respectively. It is necessary to relate these angles with the 
tilting moments. 

Let the normal stress distribution under the punch be 
a(4>)p(P\ cos<t> +p2sin<j>) 

a= (6) 

monies of w will be zero if a(4>) contains only the even har­
monics. The first harmonic will take the form 

7T f 2 T 

wi{p,<t>)=—Hp\io cosC^-^oXpjeos^o 

+p2sin</>0M</>0)rf(/>0 

which can be simplified as 

w,(p,0) = — - Hp{(pxJy+p2Jxy)cos4> 

+ (pxJxy +p2Jx)sm4>] (10) 

where the following quantities were introduced 

!

2T <* 2ir 

a (</>) s in 2 <j>d(j>, Jy= \ «(</>)cos2$c?0, 

{ 2?r 

a(<t>)sm<j>cos,<l>d<j> (11) 

These quantities do not seem to have been used before in 
engineering practice so they do not have an accepted name. 
Since their tensor properties are similar to those of the 
moments of inertia, we shall call Jx and Jy the linear moments 
of a two-dimensional domain about the axes Ox and Oy, 
respectively; Jxy will be called the linear product of a two-
dimensional domain about the axes Ox and Oy. 

It is important to note that the third harmonic is equal to 
zero for an arbitrary contour. Here is the expression for the 
fifth harmonic 

[a2(0)-p2] 
W5(p,(/>): 

315 Jo 

2T cos5(0 - <j>o) 

where px andp 2 are yet unknown constants. Make use of the 
condition that the integral of a over S should be equal zero. 
Since p , and p2 are independent, this leads to two equations 

315 """ Jo a2(0o) 

(p,cos</>0+/>2sin<j!>0)G?</>0 

which can be modified as 

64 i lic p 2TT O t 

(tf(4.))3cos<£ d<t> = 0, (a(</.))3sin<M(/> = 0 (7) ws(P<<t>) = ^ y j Hp'i{[{Ac6+Aci)p1 +(As6-As^)p2]cos54> 
One can note that the left-hand side of each equation (7) is 
proportional to the x or y coordinates of the center of gravity. 
This means that the origin of the system of coordinates should 
be located at the center of gravity of the domain of contact. 
The axis orientation will be discussed later. 

The relationships between the tilting moments and the 
parameters px and p2 can be established from the statics 
conditions 

+ [<As6 +AS4)px + (Ac4 -^rt)p2]sin5</>) (12) 

Here, the following geometrical characteristics of the domain 
of contact were introduced 

I 

Mx=Py0 =\\s°y dS> My = ~Pxo = - \\s ox dS 
I 

2T C O S 4 $ d4> 

2 l sin4</> d<f> 

2* c o s 6 0 dcj> 

(a(4>))2 A 

' Jo (a(</>))2 

_ r 2 " sin6tf> d<f> 
s6=)o (a(<j>))2 

which leads to 

Mx =—(pxIXy+p2Ix), My= —j-iPiIy+PiIxy) (8) 

where Ix, Iy, and Ixy are the well known quantities of the 
moments of inertia and the product of inertia, respectively. 
Now it is necessary to relate px and/?2 to the angles ax and ay. 
This can be done by substitution of equation (6) into equation 
(4) which yields after integration with respect to p0 

Investigation of further harmonics shows that their amplitude 
decreases. 

Now consider in more detail the case of a square with the 
side 21. The equation of the boundary in this case is a(<j>) = 
l/cos(j> for — 7r/4 < </> < 7r/4, and the pattern is repeated outside 
this range. We can evaluate the first two nonzero harmonics: 

w, = -wHlp ln(l + V2)(pj cos</> +/?2sin</>), 

128Hp4 

W c = " 
945Z2 -Q^cosS^+j^sinS^) (13) 

'<*•*>=" £ Io(-f) 
I e '«(*-*o)_f (-

Inl x2dx 

(p2-x2y 

3 - I K I 1 
-; l; l 

2 2 a 2 (0 o ) / 
(PiCos<l>0+p2sm<t>0)d4)0 (9) 

Here F stands for the Gauss hypergeometric function. Further 
evaluation of the normal displacements can be done separately 
for each harmonic. Note that the zeroth and all the even har-

Since the amplitude of w5 is significantly less than that of wx, 
it seems natural to assume w « wx, and the remaining har­
monics may be called the solution error. Direct computations 
show that the error is less than 3 percent inside the circle p < /. 
The error is reasonably small outside the circle, reaching about 
20 percent at the apex and decreasing very rapidly with the 
distance from the apex. Taking into consideration that the er­
ror sign fluctuation will result in even smaller error in the in­
tegral characteristics sought, a direct comparison of equations 
(5) and (10) leads to 
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ax=^- H(PlJxy+P2JX)> <Xy= Y~H<-PlJ?+P2Jx^ ( U ) 

The inversion of (14) gives 

2 
Pi = 

Jxyax *" ^xay 

TtH j.jy ~ Jxy
2 Pl = 

£ JyOix ~T Jxy(Xy 

l\ J. A U vt / y w yy 
(15) 

Substitution of (15) into (8) finally gives the required 
relationship 

16 
Mx=-TZn-(mnax + >nl2ay), My=——(m2lax +m22ay) 

16 

3^H 

(16) 

where 

m,,= 

m , , = • 

Jylx JXylxy 

J J -J 2 
JxJy Jxy 

xy y " y xy 
J J — J 2 

** xy*x ^x-'xy 

J J — J 2 

JxJy JXy 

J x* y Jxy*xy 
T J _ / 2 

It is clear that all these results can be rewritten in a matrix or a 
tensor form. One can verify that formulae (16) are invariant 
with respect to an arbitrary rotation of the axes. The same 
property holds for mn + m22 and ml2 - m2{. Strictly speak­
ing, according to the reciprocal theorem, mn should be equal 
m2X, so that formulae (16) generally do not satisfy this 
theorem. But we may state that this theorem is satisfied "ap­
proximately." We mean by this the following property which 
has been verified by several direct computations, namely, 
\m\i ~ m2l\/mn « 1 and \ml2 - m2l\/m22 « 1. This 
theorem will be satisfied exactly for any domain which has at 
least one axis of symmetry because in this case mn = m2l = 0 
provided that the coordinate axes coincide with the central 
principal axes of the domain of contact. Since we have no 
numerical data for nonsymmetrical domains which could be 
used to verify the accuracy of (16), we shall consider further 
only the case when the domain of contact has an axis of sym­
metry. In this case formulae (8), (14), and (16) simplify 
significantly 

Mx=-j-IxP2, 

ax=-~Y HJxPl> 

My = IyP yf\ 

Mr=-
16 

(Xy = — HJyP\ 

16 /„ 

3nH Jr 
My ~3irH Jv 

(17) 

(18) 

(19) 

Returning back to our problem of noncentrally applied 
force and using the results of Part 1 (Fabrikant, 1986), we can 
write the following expression for the stress distribution under 
the punch in terms of the applied force P and the coordinates 
of its point of application x0 and y0 

Pa(<f>) 

2A [«2«>) - p 2 ] 
.[ .+ i .(s+a)] (20) 

where A is the area of the domain S. An expression equivalent 
to equation (20) can be written in terms of the normal 
displacement 5 and the tilting angles ax and ay 

2a(4>) 

•KH [a2 (<£)-/] 1/2 l_7n Jx Jv J 

( 2s-
aWd4> 

o 

The quantity J0 may be called the polar linear moment due to 
the analogy with the moments of inertia and the property J0 = 
Jx + Jy. One can note also that J0 is proportional to the 
average polar radius. Expressions (20) and (21) are exact for 
an ellipse. We expect them to be reasonably accurate in the 
neighborhood of the coordinate origin for an arbitrary punch 
planform with at least one axis of symmetry, while the error 
might become quite significant close to the boundary of the 
domain S. 

Let us rewrite formula (19) in the form 

A3'2 A3/2 

where 

32/v 32/v h = x h = y 

x 3A3/2JX' y 3A3/2JV 

(22) 

(23) 

We introduced the coefficients hx and hy for two reasons: 
since they are dimensionless they characterize the shape of S 
and do not depend on its size; both hx and hy are equal to the 
corresponding coefficients of magnetic polarizability which 
will simplify the comparison of our results with the numerical 
data available. There is an advantage of formulae (22) over the 
equivalent (19): the factors depending on the shape of S are 
separated from those depending on its size. One can draw 
from equations (22) an immediate conclusion that in the case 
when a domain S is magnified so that its linear dimensions 
double, its area quadruples, and the tilting moment should be 
multiplied by 8 in order to produce the same tilting angle. This 
conclusion is not so clear in equations (19). The remaining 
part of the paper will be devoted to the evaluation of the coef­
ficients hx and hy for various punch planforms. 

Applications 

Several punch planforms are considered here. Each con­
figuration is related to its central principal axes and assumed 
to have at least one axis of symmetry coinciding with the axis 
Ox. A high degree of accuracy of formulae (23) is confirmed 
by comparison with available numerical solutions. 

Polygon. Consider a polygon with n sides. The function 
a(4>) describing its boundary is bounded and single-valued. 
The origin of the coordinate system is located at the center of 
gravity, as before. Let us number the polygon sides in a 
counterclockwise direction from 1 to n, ak being the length of 
the kxh side. The apex, at which the sides ak and ak+[ are in­
tersecting, is numbered k+1. It is clear that the value of index 
equal n +1 is understood as 1. Denote bk the distance from the 
center of gravity to the fcth apex; \j/k stands for the angle be­
tween the axis Ox and the perpendicular to the side ak. Let Ak 

be the area of the triangle formed by ak, bk, and bk+l, the 
total area A of the polygon being equal to the sum of Ak. The 
following expressions can be obtained for the moments of 
inertial 

T A 2Ak
3 r . , , 

4At 

sin2i/'A. 

a,4 + 3 (w-v)' 
-cos 

where 

•A 2A 3 r 

t _ 1 Ulr L 

bk+i2~bk 

4A„ 

!**] 

s'm2\pk 

(24) 
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**4 + 3 ( * * + 1
2 - V ) ' 

sinV*J (25) 

The linear moments can be computed in the form 

•^=E-^l-[-(4-+ir-)^-(&*'-6*+i)2]cos2^ 
k=l °k L V 0 A ° < r + l / 

+4Ak{- )sm2ik + 2akln , \ , k + l cos^J 
\bk bk+x/ bk + bk+l-ak J 

(26) 

j-=l "I- L \ B f 0 , . , , / 

- 4 / 1 
/ I 1 \ • , „ bk + bk+, +ak . . , "I 

. ( s i n 2 ^ + 2a J « — — — sin2 ^k 
\b, b^J Vk k b, + b^,~a, k\ 

(27) 

Substitution of equations (24)-(27) into (23) gives the coeffi­
cients hx and hy for an arbitrary polygon. In the case of a 
regular polygon ak = a, bk = b = «/[2sin(7r/«)], \//k = 
2ir(k-l)/n,Ak = [a2cot(7r/«)]/4 = [b2sm(2ir/n)]/2, A = 
nAk, and formulae (24)-(27) simplify to 

na4 7T r . ir 1 1 
/ , = / „ = COt COt2 H 

n L « 3 J 64 

nb4 

~2T 
2vr r 

sm [2 + cos 

2TT 

Jx = Jy=—-~ na cot In 
n 

lirl 

n J 

1 +sin(7r/«) 

l - s i n ( i r / n ) 

1 +sin(7r/«) 

(28) 

1
 h * , = —— «o cos In 

2 « 1 - sin(ir /«) 

Substituting equations (18) and (29) into (23) leads to 

(29) 

h=h„ 
•><? 

16 ( 2 + cos — j 

9 1 / r s m cos J 1 In 
\ « « / 

1 + sin(7r/«) 

1 - s in (7 r /« ) 

(30) 

Consider several particular values of n. For an equilateral 
triangle (n = 3) formula (30) gives hx = hy = 31 / 416/[27/«(2 + 
Vf)] = 0.5922. We did not find any numerical data to compare 
with this result. In the case of a square n = 4, and 
hx = hy=4/[9ln(l+^2)] = 0.5043 which is inside the interval 
from 0.4973 to 0.5162 given by Okon and Harr ington (1981) 
and within 3 percent from the result of de Smedt (1979) 
0.5193. Since formula (30) in the limiting case n^oo gives the 
exact result for a circle hx = hy = 8/(3ir3 /2) = 0.4789, we should 
expect that the error of equation (30) will decrease with n. The 
value of the coefficients for a regular hexagon is 
hx=hy=40\/2/(3,/48lln3) = 0.4830 which differs by 1.4 per­
cent from the result 0.49 due to Okon and Harr ington (1981), 
and it is quite clear that the maximum possible error indeed 
decreases with n. It is noteworthy that the value of the coeffi­

cients does not change significantly in the whole range 
3 < n < o o . 

Isosceles Triangle. In the case of a triangle with the sides 
a{=a2 = l and the angle between them equal to a formulae 
(23)-(27) give 

7V =- r r - /4sina s in 2 (a /2 ) , /„ =—— /4sina cos 2 (a /2 ) , 
12 36 

•[• 
2 a 

Jx = /cos 1 sina + sin(a + y) — 2smY 

a / 27 — a 
+ 2sm:> In ( cot 

2 V 4 
c o t ^ ) + / „ t a n ( - ^ + ^ ) ] , 

2 
—- /cos —-
3 2 

+ smacos 

— sina - sin(a + y) + 2sinY 

a / 2y — a a \~\ 
—— In (cot cot 1 , 

2 V 4 4 / J 

with the result for the coefficients 
3/2 

sina + sin(o: + 7 ) - 2siny hx = 8 ( t a n ( a / 2 ) ) f 3 

„ • 1 a , / 2y — a a 
+ 2sm J In I cot cot 

2 V 4 4 

+/Btan(-f+T-)]r'' 
/2 v =8Vcot(a72)[9 

(3D 

a / 27 —a a 
+ smacos In I cot cot — 

2 V 4 4 

sina — sin(a + 7) + 2sin7 

)]}"' 
where 7 = t a n " ' ( 3 t a n ( a / 2 ) ) . 

The isosceles right triangle was considered by Okon and 
Harrington (1981) who gave the interval between 0.9829 and 
1.021 for only one coefficient which in our notation is hx. Our 
result for hx is 0.9255 which differs less than 10 percent from 
theirs. The second formula (31) gives hy = 0.3995, and there is 
nothing in the literature to compare with this result. 

Rectangle. Consider a punch with a rectangular base, a, and 
a2 being its semiaxes. Introduce the aspect ratio e = a1/al. 
Formulae (24)-(27) in this case reduce to 

Ix = ~fata2\ 

Jx = 4tfisinh~1e, 

and formulae (23) yield 
4e3/2 

Iy=^r-aSa- 3 , 
1 U2> 

9sinh" K 

/ v = 4 a 2 s i n h - 1 ( l / e ) 

4t' 
(32) 

9 s i n h - 1 ( l / e ) 

We have found in the literature some numerical results which 
seem to be more or less accurate. The coefficients of magnetic 
polarizability were computed by de Smedt (1979) for a rec­
tangle with different aspect ratio e. Here, we present his results 
along with those given by equations (32): 

e = 
de Smedt hx = 

Formula (32) hx = 
de Smedt hy = 

Formula (32) hy = 
Discrepancy in hx(Vo) 
Discrepancy in hy(°?o) 

0.1000 
0.1287 
0.1408 
4.1070 
4.6876 

- 9 . 4 
-14 .1 

0.2000 
0.1881 
0.2001 
2.0260 
2.1488 
- 6 . 4 
- 6 . 1 

0.3333 
0.2531 
0.2612 
1.2600 
1.2701 
- 3 . 2 
- 0 . 8 

0.5000 
0.3249 
0.3265 
0.8892 
0.8708 
- 0 . 5 

2.1 

0.7500 
0.4240 
0.4165 
0.6426 
0.6228 

1.8 
3.1 

0.8000 
0.4436 
0.4341 
0.6130 
0.5929 

2.2 
3.3 

1.0000 
0.5193 
0.5043 
0.5193 
0.5043 

2.9 
2.9 
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Our formula (32) seems to perform satisfactorily in a suffi­
ciently wide range of aspect ratio. The approximate expression 
for the stress distribution under the punch according to (20) 
takes the form 

Pa(4>) 

8a ai\a2 W-P2 
v^(^m <»> 

Expression (33) can be used for analyzing the process of move­
ment of the applied force P, say, along the axis Ox. This 
analysis can be done by requiring that the contact traction 
vanish at the edge. One can conclude from equation (20) that 
the boundary at which this occurs will always be a straight 
line. It is clear from equation (33) that the punch will be in 
contact with the half-space as long as Jc0<4a1/9, after which 
the punch will start separating from the half-space. Assuming 
that the new domain of contact is also a rectangle (of course, 
with a different aspect ratio), one can again apply the for­
mulae of this paragraph to analyze the process further. If one 
can denote by c the width of the zone of separation, the 
following relationship holds: 

2 „ 4 
c = — (9x 0 -4a 1 ) , f o r * 0 > — ax 

The last formula states, for example, that when the force P is 
applied at x0 = 13«j/18 only a half of the punch will be in con­
tact with the half-space. Unfortunately, there is no data to 
verify these relationships. Further analysis reveals that the 
core inside which the force can be applied without causing any 
separation is a rhombus with semiaxes 4ax/9 and 4a2/9, 
respectively. As one knows, in the case of a circular punch the 
core is a circle of radius equal to one third of the radius of the 

This is why we are using the word discrepancy rather than the 
word error in the tables throughout the paper. The situation 
becomes even more evident if we compare the same values 
along the axis Oy. One can use a formula similar to (34) 
replacing all x by y and interchanging ax and a2, the value of 
hx was taken to be 0.3265. 

y/a2 = 
de Smedt oH= 
our result uH= 
Discrepancy (%) 

0.1667 
0.1756 
0.1756 

0.0 

0.3333 
0.3663 
0.3673 
- 0 . 3 

0.5000 
0.6011 
0.5998 

0.2 

0.6661 
0.9014 
0.9292 
- 3 . 1 

0.8333 
1.6413 
1.5662 

4.6 

Changing sign in the discrepancy indicates some "noise" in 
the numerical solution by de Smedt. 

Rhombus. Let a be the angle at one of the rhombus apexes, 
and / be its side Formulae (24)-(27) in this case yield 

/ , = -
1 

/4sina sin2 

2 ' y 6 

A ^ s i n a 

/4si sma cos* 

sina c 
a a 

Jr = 21 sma cos — — sin —— 
2 2 

. , a cos(a/2) + sin(a/2) + 1 
+ sm2 In - ——-

2 cos(a:/2) + sin(a/2) - 1 

„, • T a . a 
Jv = 2/ sina - cos h sin 

y L 2 2 
cos(a/2) + sin(a/2) + 1 

+ cos2 In 
2 " cos(a/2) + sin(a/2) - 1 

The coefficients will be defined as 

8sin2 

9(sina)3/2 cos a 

~1 
- + sin2 a , cos(a/2) + sin(a/2) + 1 

In 
2 cos(a/2) + sin(a/2) 

f] 
8cos2 

9(sina)3 ,[ « 
• - c o s 1-sir 
L 2 -+cos^ 

a 

~1~ 
In 

cos(a/2) + sin(a/2) + 1 

cos(a/2) + sin(a/2) - 1 

punch. The results due to equation (33) can be compared with 
the numerical data received in personal communication from 
de Smedt. In order to make the comparison possible, one 
should put in equation (33) P = 0, Mx = 0, replace My with 
equations (22), with the result 

(35) 

The same formulae in terms of the rhombus semiaxes a and b 
and the aspect ratio e = b/a has the form 

K 
2V2e(l+e2) 

oH= 

4a i 

9-fta(4>)hyx 

a2(4>)-P2 

9 1-e-t- In 
1 + e + U+e 2 ) 1 

(34) 

hy=-

( l+e 2 ) 1 / 2 l + e - ( l + e 2 ) 1 / 2 

2V2(l+e2) 

Computations due to equation (34) were made for e = 0.5^ 
along the axis Ox, the value hy was taken 0.8708 (see the table 
above). Here are the results compared to those communicated 
by de Smedt: 

9 e3/2 [- 1+-
1 

( 1 + 6 2 ) 1 
•In 

l + e + ( l+6 2 ) ' 

l + e - O + e 2 ) 1 ' 

(36) 

x/ax 0.0833 0.1667 0.2500 0.3333 
de Smedt <r//= 0.1143 0.2303 0.3501 0.4759 

Formula (34) oH= 0.1159 0.2342 0.3577 0.4898 
Discrepancy (%) - 1 . 3 - 1 . 7 - 2 . 2 - 2 . 9 

0.4167 
0.6093 
0.6350 
- 4 . 2 

0.5000 
0.7523 
0.7999 
- 6 . 3 

0.5833 
0.9367 
0.9950 
- 6 . 2 

0.6667 
1.1460 
1.2392 
- 8 . 1 

0.7500 
1.4304 
1.5709 
- 9 . 8 

0.8333 0.9167 
1.8303 2.8182 
2.0886 3.1777 
-14.1 -12.8 

One should expect the error of equation (34) to be" 
monotonous (or to have one extremum). This expectation is 
not met around x/ax =0.5 and x/ax = 0.9 which most probably 
indicates some computational errors in the data by de Smedt. 

We did not find in mechanics literature any result related to a 
punch with a rhombus planform. In electrical sciences, the 
mathematically equivalent problem of the coefficients of 
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Fig. 1 Coefficients hx and hy for a circular segment 

magnetic polarizability of a diamond was solved numerically 
by de Smedt (1979). Here, we present his results compared to 
those given by formula (36): 

e = 
de Smedt hx = 

Formula (36) hx = 
de Smedt hy = 

Formula (36) hy = 
Discrepancy of hx{%) 
Discrepancy of hy(%) 

0.1000 
0.1181 
0.1078 
6.1820 
4.5987 

8.7 
25.6 

0.2000 
0.1729 
0.1627 
2.7060 
2.1982 

5.9 
18.8 

0.3333 
0.2341 
0.2258 
1.5240 
1.3254 

3.6 
13.0 

0.5000 
0.3052 
0.2986 
0.9946 
0.9095 

2.2 
8.6 

The deterioration of the accuracy of (36) for small values of e 
is the result of erroneous assumption of a square root 
singularity in equation (6) which is grossly incorrect for do­
mains with sharp angles. 

The stress distribution under the punch can be expressed ac­
cording to equation (20) 

Pa(<$>) 

2A [a2W~P2] 
1/2 h-r&m 

Further analysis of the last expression reveals that the core in­
side which the force can be applied without causing any 
separation is a rectangle with semiaxes 2a/9 and 26/9, respec­
tively. In the case of e = 1 the rhombus transforms into a 
square, and all the results are in agreement with those of the 
previous paragraph. 

Circular Segment. Let the radius r and the angle 2a be the 
segment parameters. The location of its center of gravity is 
defined by xc = kr, where 

/_,, = — Ar2{\ + lkcosa-4k2), 

Jx =——- A — &sin3Y + ( l - Ar2sin2y)1 / 2sinycosy 

1-A:2 

k2 •F(tr-y,k) 

2k2-1 

k2 • E(TC — y,k) + 3(k-cosa) - s iny ) [ - s i r 

J»=-rr 

+ h-(T+T)l) 
siny &sin2y — 3cosa — (1 — £2sin2y)1/2cosy 

\-k2 

k2 • F(ir — y,k) + 
l+k2 •) 

0.7500 0.8000 1.0000 
0.4101 0.4323 0.5193 
0.4026 0.4230 0.5043 
0.6703 0.6323 0.5193 
0.6388 0.6052 0.5043 

1.8 2.1 2.9 
4.7 4.3 2.9 

where y = tan ' (sino;/(£ - cosa)). Substituting in (23) leads 
to 

4 ( l -£cosa ) (-
hr= -£s in 3 y + (l 

2 C [.-. 1 
sin2a 

1-k2 

-£2sin2y)1/2sinycosy-| —— F(w — y,k) 
k2 

2k2 ~\ 

k2 E(-K — y,k) + 3(k-QOsa) - s iny 

4(l + 3£cosa-4£2) 

[ a - — s i n 2 « J 

1 siny ksm2y - 3cosa - (1 - &2sin2y) 1/2cosy 

2 sin3 a 

1-A:2 1+A:2 

—p-Fir-y,k)+—p- v — y,k) E(ir-

k = -

\(a-

(37) 

sin 2a 

The equation of the segment boundary with respect to its 
center of gravity takes the form 

A plot of hx (solid line) and hy (broken line) against the ratio 
a/ir is given in Fig. 1. We are unaware of any data to verify 
the accuracy of (39). 

One can now investigate the case of a circular punch under 
the action of a normal force P applied at jc 0>r/3. From the 
classical theory we know that there should be a separation be-

«(*) = 

— kcos<t> + ( 1 — k2sin2<t>) for 0 < </> < IT — y or ir + y<4><2ir 

(38) 

for ir — y < ^ < i r + y 
A: —cosa 

cos(7r — 4>) 

Computation of the moments (24)-(27) yields 

A=r2(a—— sin2aj, Ix =—— Ar2{\ -kcosa), 

tween the punch and the half-space. Assuming that the do­
main of contact after separation is a circular segment, one can 
get the following relationship between the coordinate x0 and 
the size of the segment characterized by the angle a 
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(l-fc)(l+4fc) 
*0 = /• —TT, r~ (40) 

3(&-cosa) 
The last expression is exact in two limiting cases: the complete 
circle a = 7r gives x0 = r/3, and a -~ 0 results in x0 = r. The prob­
lem of an inclined circular punch was considered numerically 
in the book by Rvachev and Protsenko (1977). Here, we com­
pare the results 

a(deg) = 
Rvachev et al. x0 = 
Formula (40) x0 = 
Discrepancy (%) 

158.4 
0.3583 
0.3543 

1.1 

108.1 
0.5833 
0.5418 

7.1 

102.0 
0.6250 
0.5750 

8.0 

The agreement should be considered as surprisingly good, 
especially taken into consideration that Rvachev et al. con­
sidered the domain of contact not in the form of a segment but 
having a more complicated shape. 

Circular Sector. Repetition of the procedure, described in 
the previous paragraph, leads to the following results for a cir­
cular sector with the angle 2a: 

A=r2a, Ir 
1 

W o : sin2aj , 

ly=* 
9a2 + 9asinacosa - 16sin2a 

36a 

2 ( 1 — k2 

Jx = r\ — A:sin37 —(1 -/r2sin27)1/2sin7COS7H J-J— F(y,k) 
k2 

2k2-I r 
H - j — E(y,k) +3£sina cosa + cos(a + 7) 

+ sin2a In (cot —— cot —-—J ! 

2 r 
Jy = r j /csin7(sin27 - 3) + (1 - £2sin27)1/2sin7COS7 

\-k2 

l+k2 

F(y,k) 

i + k r 
H ^— F(y,k) + 3&sina — cosa-cos(a + 7) 

+ cos2a In (cot — - cot —-—j | 

Here, k = 2sina/(3a), and7 = tan^1 (sina/(coso: — k)). The 
coefficients sought are expressed as follows 

h 
1 .20 1 
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Fig. 2 Coefficients hx and hy for a circular sector 

\—k2 

+ (l-£2sin27)1/2sin7COS7 -r— F(y,k) 
k2 

l + k2 

c2.r 

E(y,k) + 3/tsina - c o s a - c o s ( a + 7) 

-)]) (41) , / a y~~ 
+ cosza In cot cot 

V 2 2 
Formulae (41) are exact for a complete circle (a = 7r), and give 
the same results as (39) for a half-circle (a = ir/2). The plot of 
hx (solid line) and hy (broken line) against the ratio a/7r is 
given in Fig. 2. We did not find in the literature anything to 
compare with these results. 

Cross. Consider a punch configuration obtained by an or­
thogonal intersection of two equal rectangles with sides 2a and 
2b. Introduce the aspect ratio as e = b/a. The area and the 
moments will take the form 

A=4a2e(2-e), Ix =Iy = — - aAe(\ +e2 - e 3 ) 

Jx = Jy= 4a !n(e + {l+e2Y/2) + eln 
l + ( l + 6 2 ) 1 

(1+V2)e 
The coefficients will be defined as 

^ = ̂ =i9^)3#[ /n(e + (1+e2)1/2) 

+ e In 
l + (l + e2) 211/2 

(42) 
(1+V2)e 

The comparison between the results due to (42) and those 
given by de Smedt (1979) are presented below: 

de Smedt hx = hy = 
Formula (42)hx = hy = 

Discrepancy (%) 

0.1000 0.2000 
1.5910 0.8720 
1.7382 0.8758 
- 9 . 3 - 0 . 4 

0.3333 
0.6255 
0.6006 

4.0 

0.4000 
0.5725 
0.5465 

4.5 

0.5000 
0.5267 
0.5049 

4.1 

0.6000 
0.5069 
0.4890 

3.5 

0.7500 
0.4985 
0.4893 

1.9 

0.8000 1.0000 
0.4997 0.5193 
0.4926 0.5043 

1.4 2.9 

/ ! x =2a" 3 / 2 (2a-s in2a) l — ksin3y-(l -£2sin27)1/2sin7C0S7 

l-k2 

F(y,k) + - k2 

2k2-i r 
H z— E(y,k) + 3&sina cosa + cos(a + 7) 

k1 L 

a/„(cot_f_cotzz^)]] ' 

1 Arsin7(sin27 - 3) 

+ sin 

hy = 
4(9a2 + 9asinacosa - 16sin2a) 

9 a 5 / 2 

Taking into consideration the shape complexity, we should 
consider the results agreement as surprisingly good, not only 
quantitatively but qualitatively as well: both data display a 
relatively flat minimum around e = 0.75. 

Discussion 

It is noteworthy that the change of the order of integration 
which led to equation (4) is valid inside the circle 
p<min{«(<£)) only. Nevertheless, one can obtain from equa­
tion (4) an exact solution for an ellipse and sufficiently ac­
curate formulae for various punch planforms as it was 
demonstrated in the previous Section. 
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The accuracy of formulae (23) can be improved by taking 
into consideration the fifth harmonic (12) in combination with 
the variational approach (Noble, 1960). The following func­
tional assumes its maximum value at the exact solution of (1) 

Since expression (44) is approximate, there is no guarantee 
that equations (46) will be more accurate than (23). We per­
formed the necessary computations for a rectangle. Here are 
the results compared to those by de Smedt (1979): 

0.1000 0.2000 0.3333 0.5000 0.7500 0.8000 1.0000 
de Smedt hx = 

Formula (46) hx = 
de Smedt hy = 

Formula (46) hy = 
Discrepancy in hx(°7o) 
Discrepancy in hyC?o) 

0.1287 
0.1405 
4.1070 
4.5856 

- 9 . 2 
-11.7 

0.1881 
0.1988 
2.0260 
2.0985 
- 5 . 7 
- 3 . 6 

0.2531 
0.2577 
1.2600 
1.2479 
- 1 . 8 

1.0 

0.3249 
0.3207 
0.8892 
0.8714 

1.3 
2.0 

0.4240 
0.4165 
0.6426 
0.6463 

1.8 
- 0 . 6 

0.4436 
0.4376 
0.6130 
0.6190 

1.3 
- 1 . 0 

0.5193 
0.5331 
0.5193 
0.5331 
-2 .7 
- 2 . 7 

I(o)=—\j\jsa{M)w(M)dSM 

(43) 

de Smedt hx = 
Formula (46) hx = 

de Smedt hy = 
Formula (46) hy = 

Discrepancy of hx(°7o) 
Discrepancy of hy(°7o) 

Taking 

J Js R 
a(N) 

dSN~w, + w, 

/ = j (fl(0))4^(/?1cosc/)+p2sin0) 
3Z7 

(axsin4> 

-aycos(j>)—--(piJy+p2Jxy)cos<t> 

T 4 
^ ( / ? i ^ + / V * ) s i n 0 - — ( « W ) 3 ( [ P i U c 6 + . 4 ( . 4 ) 

i 63 

+ P2(As6-As4)]COS5<f> + \pMsb +AS4) 

+PI(^C4 -.4c6)]sin5</>)JjG?</> 

K = 
32/v 

K = -
32/„ 

3AV2Jx(.l+nx)' " ' 3A3/2Jy(l+ny) 

where the correction terms 

(Bc4~Bc6)(Aci-Ac6) 
Vx = 

and 

42irIxJx 
Vy=-

(Bc4+Bc6XAc4+Ac6) 

42wIyJy 

Bc6=[T (a(<t>))7cos6<t>d<l>, Bc4=\* (fl(<£))7cos4<£ d<t> 
Jo Jo 

Journal of Applied Mechanics 

Comparison with similar data computed on the basis of for­
mula (32) shows that the correction terms -qx and -r\y in this par­
ticular case resulted in decreasing the value of discrepancy, 
positive as well as negative. We caution again that there is no 
guarantee that this will be valid for an arbitrary domain. For 
example, here are the data computed for a rhombus: 

0.1000 0.2000 0.3333 0.5000 0.7500 0.8000 1.0000 
0.1181 0.1729 0.2341 0.3052 0.4101 0.4323 0.5193 
0.2268 
6.1820 
8.5600 
-92 .0 
-38.5 

(46) 

(47) 

0.1860 
2.7060 
2.5916 
-7.6 
4.2 

0.2351 
1.5240 
1.4196 
-0.4 

0.3031 
0.9946 
0.9408 
0.7 
5.4 

0.4058 
0.6703 
0.6490 
1.0 
3.2 

0.4264 
0.6323 
0.6138 
1.4 
2.9 

0.5091 
0.5193 
0.5091 
2.0 
2.0 

1{M,N) "~rl ' ' J (44) 

and substituting equations (6), (10), (12), and (44) into (43), 
one gets after integration with respect to p 

•2w 

(45) 

Considering now the functional / as a function of px and/J2> 
the extremum conditions 

dl dl 

dp, dp2 

give two linear algebraic equations with respect to the 
unknowns px and/>2. The complete solution is pretty cumber­
some. Here, we present the final result for the coefficients hx 

and hy which are valid only for domains having at least one 
axis of symmetry, and the central principal axes taken as the 
coordinate axes 

Comparison with the data computed due to equation (36) in­
dicates that the discrepancy decreased for e>0.2 while for 
6 = 0.1 it has jumped in the opposite direction to - 92 percent. 
The main reason for this is a jump in the value of the coeffi­
cients t]x and i\y when e is very small. The following rule of 
thumb may be suggested for the user wishing to improve the 
accuracy: when the value of the correction coefficients TJX and 
t\y does not exceed a small percentage of unity, this generally 
means an improvement in accuracy, otherwise one should not 
use formulae (46). 

It is worthwhile to give the solution due to (45) for the case 
when the domain of contact has no axis of symmetry, and only 
the first harmonic of the displacements wx is taken into con­
sideration. The result is 

Pi'-

ax (C2ilxy -cnIx)+ay(cnIxy- c22Iy) 
C 11 C 22 ~~ C\2 

^x{CnIX-CnI )+Ol {Ci2I ~CnI ) 
(48) 

C11C22 c12 

where 

wH. 
~ \ •>yly + Jxy*xy ) ' c22 _ ^ V Jx*x "*" •'xy^xy ) > 

C\2 =^~(Jxy Vx+Iy) +IXy (Jx + Jy)) 

Formulae (48) look different from the equivalent set (15) 
derived earlier. In the absence of any numerical data related to 
a general domain, it is impossible to say whether formulae (48) 
are more accurate than (15), but they are definitely more com­
plicated. It is noteworthy that in the case of a domain with an 
axis of symmetry both (48) and (15) simplify to the same equa­
tions (18). 

Conclusion 

Formulae (22)-(23) give a simple and effective solution to 
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the problem of a flat inclined punch of arbitrary planform on 
an elastic half-space. Their high accuracy is confirmed by 
numerous examples. One can notice a certain similarity be­
tween the formulae derived and those related to the Saint-
Venant theory of bending. This similarity will become more 
evident if, for example, we rewrite equation (20) in the form 

a(4>) 

t[«2W-p2] 

P 3 3 / Myx Mxy\ 
4 V /„ i ) 

We think that this similarity is not a pure coincidence since the 
method used in this paper can also be called semi-inverse. The 
method can be developed further into a complete Saint-
Venant type theory of elastic contact problems which will 
combine the simplicity and the accuracy sufficient for a prac­
tical engineer. The case of a curved punch will be considered in 
the third part of this project. Results of this paper are useful 
for the solution of mathematically similar problems in the 
other branches of engineering science (Electrostatics, Fluid 
Mechanics, Acoustics, Heat Transfer, etc.) 
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The Poisson Function of Finite 
Elasticity 
The Poisson function is introduced to study in a simple tension test the lateral con­
tractive response of compressible and incompressible, isotropic elastic materials in 
finite strain. The relation of the Poisson function to the classical Poisson's ratio and 
its behavior for certain constrained materials are discussed. Some experimental 
results for several elastomers, including two natural rubber compounds of the same 
kind studied in earlier basic experiments by Rivlin and Saunders, are compared with 
the derived relations. A special class of compressible materials is also considered. It 
is proved that the only class of compressible hyperelastic materials whose response 
functions depend on only the third principal invariant of the deformation tensor is 
the class first introduced in experiments by Blatz and Ko. Poisson functions for the 
Blatz-Ko polyurethane elastomers are derived; and our experimental data are 
reviewed in relation to a volume constraint equation used in their experiments. 

1 Introduction 

Isotropic, linear elasticity theory is characterized by two im­
portant physical constants: Young's modulus and Poisson's 
ratio. It is well-known that their definitions are based upon the 
simple tension test'; and, for a specific homogeneous, 
isotropic and linearly elastic material, both may be found 
from this experiment (Love, 1927). We recall that Poisson's 
ratio is determined from kinematical measurements alone, and 
when the material is known to be incompressible it has the 
value of 1/2. 

In isotropic, nonlinear elasticity theory, the traditional 
material constants play a less important role, but their use in 
characterization of the mechanical properties of highly elastic 
materials certainly is of no lesser importance. However, in this 
case, the material response generally is not described by con­
stants; rather, it is represented by three scalar-valued func­
tions J3r = |8r (/,, I2, 73) of the three principal invariants Ik of 
the Cauchy-Green deformation tensor B so that the principal 
Cauchy stress components tk are determined by 

f*=/30 + l8iXi+|8-iXt £ = 1 , 2 , 3 , (1.1) 

(Truesdell and Noll, 1965). Herein X2., the squared principal 
stretches, are the principal values of B; and r = — 1, 0, 1. For 
an incompressible material, every deformation must satisfy 
the constant volume constraint relation 

This does not preclude the use of other testing methods for the determina­
tion of these basic moduli. However, the Poisson ratio is defined in terms of 
strains in a simple extension produced by simple tensile loading. Although the 
same thing may be done in a simple compression experiment, a compression test 
usually is avoided because of eccentric loading and stability problems. Of 
course, compression data sometimes may be obtained by other means (See 
Rivlin and Saunders, 1951, p. 270). 
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/> / 2 = 1; (1.2) 

and the constitutive relation (1.1) is replaced by 

4 = - p + /31X| + )3_,XA-2, £ = 1 , 2 , 3 , (1.3) 

in which p is an unknown hydrostatic stress, and the two 
response functions /?r =/3 r (/[, I2) depend on the invariants in­
dicated. The determination of the response functions for par­
ticular materials is a principal problem in experimental 
mechanics. Of course, it is reasonable to expect that the 
response functions, or combinations of them, ought to be 
related in some limited sense to the classical moduli of the 
linearized theory; and it is natural to ask how the usual 
physical parameters may be characterized in the general 
theory. The connection of the response functions with the 
Lame constants is made in Truesdell and Noll (1965). This 
note concerns the definition of the Poisson function and its 
relation to the classical modulus known as Poisson's ratio. 

The Poisson function is defined in Section 2; and its connec­
tion with the simple tension experiment and its behavior under 
certain constraints are described there. Some experimental 
results are then presented for demonstration in Section 3. Ex­
perimental data for a urethane elastomer, a certain blend of 
natural and synthetic rubbers, and two natural rubber com­
pounds of the same kind used in early experiments by Rivlin 
and Saunders (1951) are compared with the universal Poisson 
function obtained for incompressible materials. Although 
every incompressible material has the universal constant, 
natural state limit value 1/2, the converse is shown generally 
to be false. A specific application to compressible materials is 
illustrated. 

It is proved in Section 4 that the only class of compressible 
hyperelastic materials whose response functions depend on 
only the third principal invariant of the deformation tensor is 
the class first studied in experiments by Blatz and Ko (1962). 
Their constitutive equation for foamed, polyurethane rubber 
is shown to be related to the micro-structural theory of 

Journal of Applied Mechanics DECEMBER 1986, Vol. 53/807 

Copyright © 1986 by ASME
Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



foamed rubbers due to Gent and Thomas (1959) and to the 
well-known controversial, classical molecular theory of 
elasticity (Todhunter and Pearson, 1960). Poisson functions 
are derived for the Blatz-Ko polyurethane materials and our 
demonstration data are reviewed in relation to an ad hoc 
Blatz-Ko constitutive equation of volume control in simple 
tension. It is shown that the natural state Poisson's ratio for 
every Blatz-Ko material is simply the ratio of the true lateral 
contractive strain to the true extensional strain for finite 
deformations and hence may be readily evaluated from 
measurements of corresponding stretches over the entire range 
of elastic extensibility of the material in a simple tension ex­
periment. Discussion of some additional related literature is 
reserved for the end. 

2 The Poisson Function 

It is easy to show from the constitutive equation for 
isotropic, linearly elastic solids that a simple tension produces 
a simple extension provided that the shear modulus fx0 ^ 0 nor 
oo, and Poisson's ratio u0^ - 1 nor oo. In fact, on physical 
grounds, one usually requires oo > ix,0 > 0 and 1 / 2 > v0 > 0; and, 
in any case, v0 > — 1 is necessary for material stability (Love, 
1927). The corresponding result for isotropic, nonlinearly 
elastic solids is not as transparent. Therefore, to begin, it is 
necessary to recall Batra's theorem (Batra, 1976) that for every 
isotropic, compressible or incompressible elastic material, a 
simple tensile loading 

t3 = T, r,=f2 = 0 (2.1) 

produces a corresponding extensional deformation 

X3=X, \ , = x 2 , (2.2) 

provided that the empirical inequalities 

j8,>0, /3„,<0 (2.3) 

hold (Truesdell and Noll, 1965). Actually, the same result is 
obtained under the weaker condition that the Baker-Ericksen 
inequalities hold. 

With Batra's result in hand, let us assume that a compressi­
ble material characterized by equations (1.1) and (2.3) is sub­
jected to a simple tension (2.1). Then the familiar Young's 
modulus is defined as the slope of the axial stress/axial stretch 
function T=t}(\) evaluated at X = 1. However, its determina­
tion involves the further assumption that either of the identical 
transverse stress equations (2.1)2 3 may be solved uniquely for 
the lateral stretch as a function of the axial stretch. In other 
words, (2.1)2 may be interpreted in a simple tension test as a 
restriction on the response functions that defines a relation 
between the longitudinal extension X>1 and the lateral con­
tractions Xt = X2 < 1. Hence, their ratio, 

« < X ) - - ^ , (2.4) 
A 

defines one kind of lateral contraction function that derives 
from (2.1)2 and (1.1). Subtraction of the second equation 
from the first in (LI) and use of (2.3) shows that in simple ten­
sion 0 < a ( A ) < l . There exists the possibility that for some 
response functions the same equations may exhibit several 
solutions for X^X). We consider only those elastic materials 
for which X^X) may be determined uniquely. When this is so, 
we say that the extension is simple. Thus, if the empirical ine­
qualities are met, it is in this sense that a simple tension pro­
duces a simple extension in every compressible, homogeneous, 
and isotropic elastic solid. In linear elasticity theory (Love, 
1927), for example, the null relations (2.1)2 3 yield a unique ex­
pression for the ratio of the principal transverse contractive 
and longitudinal engineering strains in terms of the Lame con­
stants; and this classical squeeze-stretch ratio is commonly 
known as Poisson's ratio (Love, 1927; Todhunter and Pear­
son, 1960). 

Recalling that the three principal engineering strains ek are 
related to the principal stretches by ek = \k - 1, we may define 
the Poisson function v(\) as the ratio of the lateral contrac­
tive strain to the extensional strain measured in a simple ten­
sion experiment; that is, 

wherein equations (2.2) and (2.4) have been used in the last 
relation. Then, for general homogeneous and isotropic elastic 
solids, Poisson's ratio v0 is defined as the value of this func­
tion in the undistorted, natural state where X= 1: 

v0slimit v(\) = —— , (2.6) 
x-i d\ lx=i 

wherein the last of equation (2.6) follows from (2.5)2 provided 
X,( l )=l . 

It follows similarly by Batra's theorem that for the incom­
pressible material (1.3) a simple tension produces an extension 
(2.2); and the constraint (1.2) determines uniquely the 
function 

X,(X) = X~1/2. (2.7) 

Thus, a simple tension produces a simple extension in every in­
compressible, homogeneous and isotropic elastic solid, pro­
vided the empirical inequalities (2.3) hold. We have seen that 
the condition (2.1)2 is essential to the determination of the 
Poisson function (2.5) for an isotropic and compressible 
elastic material. On the other hand, in view of equation (2.7) 
and the arbitrariness of the stress p in equation (1.3), the con­
dition (2.1)2 in the case of an incompressible material is ir­
relative to the determination of the Poisson function, which 
may be found from the kinematics alone. By use of equation 
(2.7) in (2.5)2, we obtain for every incompressible, 
homogeneous and isotropic material the universal Poisson 
function2 

' < * > = X T W (2'8) 

Hence, we may conclude by (2.6) that for every incompressi­
ble, isotropic material Poisson's ratio has the unique value 
v0 = 1/2. The converse, however, is false, as we shall see in a 
moment. It may be mentioned that the lateral contraction 
function (2.4) for the incompressible case becomes 
a(X) = X~3/2; hence, a ( l )= 1 in the natural state. 

The value of Poisson's ratio v0 is defined by equation (2.6); 
hence, clearly, v0 = 1/2 does not imply that the isotropic 
elastic material need be incompressible. We shall illustrate this 
by a counterexample of a compressible, isotropic material 
whose Poisson function has the constant value v0 — \/2. For 
this purpose it is useful to recall the results of experiments by 
Bell (1983) for certain homogeneous and isotropic metals in 
finite (plastic) strain. These data support the following con­
straint in a variety of deformations: 

frB1/2 = X ,+X 2 +X 3 =3 . (2.9) 

A similar constraint trB = 3 has been investigated recently by 
Ericksen (1985) in a study of a constitutive theory for elastic 
crystals. Details of these applications need not concern us 
here. Rather, let us consider a homogeneous, isotropic elastic 
material for which the constraint (2.9) may hold; and let it be 
subjected to a simple tension to effect, under suitable restric­
tions on the response functions, an extensional deformation 

The function (2.8) and its limit value have been described in different ways 
by others (Claxton, 1958; Lindley, 1957; Posfalvi, 1982). However, of these, on­
ly P6sfalvi derived them in the context of the simple tension test for general in­
compressible, homogeneous, and isotropic hyperelastic materials; but Posfalvi 
does nothing with the results. We thank Dr. Joseph D. Walter, Assistant Direc­
tor of the Firestone Central Research Laboratories, for bringing to our attention 
the papers by Claxton and Posfalvi. 
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Fig. 1 Comparison of extension data for two elastomers with the 
Poisson function (2.8) for an incompressible material in a simple tension 
test 

(2.2). Then use of equation (2.2) in (2.9) yields the unique sim­
ple extension relation 2X, (X) = 3 - X > 0 , which also implies 
1<X<3. It thus follows by (2.5)2 and (2.6) that the Poisson 
function for this special class of constrained, compressible, 
homogeneous and isotropic elastic materials is a constant: 

x ( A ) = — = v0 (2.10) 

for all Xe[l, 3). If, additionally, the material were assumed in­
compressible so that equation (1.2) must also hold for every 
admissible deformation, it may be seen that only the trivial 
deformation X, = X2 = X3 = 1 would be possible. For sufficient­
ly small deformations, however, the constraint (2.9) approx­
imates the incompressibility constraint; hence, for small 
strains, the material behaves initially like an incompressible, 
isotropic elastic solid. 

It is interesting to observe that in every extension (2.2), 
whatever may be the tractions required for its control in an in­
compressible material, the Poisson function (2.8) is indepen­
dent of the elastic response and is valid whether the material 
be isotropic or not. However, this fact must be viewed with 
caution. Control of the deformation (2.2) plainly depends on 
the nature of the constitutive equation for the stress; and if the 
homogeneous deformation (2.2) is assigned, this stress 
distribution may be readily determined. But if the stress is 
given, conditions needed to assure that the deformation (2.2) 
is possible, as demonstrated above, must follow from careful 
examination of the constitutive equation for the prescribed 
loading situation. In particular, in a simple tension (or com­
pression) test, the kinematic condition (2.2)2 plainly cannot be 
expected to hold for arbitrary directions in an incompressible, 
anisotropic material. In such a material, even equal biaxial 
loading may not produce (2.2). For an isotropic material, we 
are assured by Batra's theorem that simple tensile loading will 
effect the deformation (2.2). Therefore, the formula (2.8), 
though universal for the deformation (2.2), must be viewed in­
directly with regard for the nature of the material and of the 
loading needed to control the deformation. Parallel remarks 
apply to the Bell constraint (2.9) and the associated value 
(2.10) for the Poisson function valid in every equi-biaxial 
deformation (2.2). 

On the other hand, contraction functions certainly may be 
defined in terms of other experiments; and, for distinction, 
these may be named apparent Poisson functions v„. For an in-

o.io 
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ARIVLIN-SAUNDERS DATA: COMPOUND A 
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Fig. 2 Comparison of extension data for two rubber compounds with 
the Poisson function (2.8) for an incompressible material in a simple ten­
sion test. Data by Rivlin and Saunders (1951) for compound A also is 
shown. 

compressible material, the apparent Poisson function will be 
the same as equation (2.8) in any experiment for which equa­
tion (2.2) holds; but the loading needed to control the defor­
mation will be determined by the particular constitutive equa­
tion for the material. In equal triaxial extension of a cube of 
any incompressible material, the only solution is the trivial 
solution X]=X2=X3 = 1; hence, for this case equation (2.8) 
yields the apparent value va (X) = v0 = 1/2. We are reminded, 
however, that nonuniqueness of a pure homogeneous defor­
mation is possible in all around tension of an incompressible 
material. Rivlin (1974) has shown, for example, that for a 
uniform tension T> 0 on all faces of a cube of neo-Hookean 
material for which (31=/x0 is constant and /3„,=0, seven 
possible states exist. The trivial state X: = X2 = X3 = 1 is always 
a solution for which va = 1/2. This state is stable provided that 
T//x0<2, The state X! =X2, 0<X3 =X< T/fiot and two others 
obtained by cyclic permutation of the XA's, are stable 
equilibrium solutions; and the apparent Poisson function is 
also the same as (2.8). The remaining three solutions are 
unstable. Although each solution has the same apparent 
Poisson function (2.8), it cannot be measured in these unstable 
states. Other examples may be easily constructed. 

3 Some Experimental Results 

Experimental data obtained from at least two specimens of 
each of three considerably different elastomers are presented 
here. One is a polyether, polyurethane elastomer. Another is a 
carbon-black reinforced, sulfur-cured blend of natural and 
synthetic rubbers. A third variety is a natural gum rubber. The 
procedure for obtaining the axial and transverse stretch data is 
straightforward. Specimens having straight sides of length 42 
mm and width of 6 mm were die stamped from thin sheets of 
uniform thickness of 1 to 3 mm. Each sample was 
quasistatically elongated in a tensile loading frame. The test 
was stopped periodically to allow measurement of the 
specimen width to the nearest 0.01 mm with a Gaertner tra­
versing microscope equipped with a digital readout. At that 
time, the elongation was measured to the nearest 0.1 mm with 
a linear variable differential transformer fastened to the 
loading actuator. These techniques permitted reasonably ac­
curate determination of the transverse and axial stretches 
suitable for demonstration purposes here. For the sake of 
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Fig. 3 Comparison of stretch data for two elastomers with the incom­
pressibility condition Xf•• 
(2.7)) 

in a simple tension test (see equation 

clarity in diagrams presented below, not all the data values 
collected will be shown. 

It is seen that the Poisson function (2.8) for an incompressi­
ble material is a monotonically decreasing function for which 
0< p(A) < 1/2 in simple tension. The graph of equation (2.8) is 
shown in Figs. 1 and 2 together with tensile test stretch data 
for the three kinds of elastomers described above. It is seen 
that the urethane follows the universal function very nicely, 
particularly for axial stretches X>1.5, roughly. Although the 
data for the carbon-black reinforced blend of natural and syn­
thetic rubbers, as shown in Fig. 1, follows the trend of the 
universal graph, its deviation at the larger deformations is evi­
dent. Two compounds of natural gum rubber of the same3 

kind used in the basic experiments by Rivlin and Saunders 
(1951) were fabricated from their recipes (see p. 285) provided 
for compounds described as A and B. Figure 2 shows that our 
compound A is exceptional in its comparison with the 
kinematical relation (2.8), while our compound B, though 
well-behaved, falls below and virtually parallel to the master 
curve. The scatter in the data for small deformations was 
typical for all the samples; and we feel no need to provide an 
explanation for it. The dotted curves shown in Figs. 1 and 2 
have an analytical basis which will be explained in the next sec­
tion; it suffices to mention here that these curves approximate 
the best fit for the data. The extension data obtained by Rivlin 
and Saunders for their compound^ also is shown in Fig. 2. It 
is found that these data, for the same reason noted later, fit 
the universal relation (2.8). Our data for the same material is 
essentially coincident with theirs, except at small deforma­
tions, as noted before. 

The same data may be viewed differently in Figs. 3 and 4, 
which emphasize the incompressibility relation (2.7) in simple 
tension. The data are to be compared with the line whose 
slope is one. The response appears to be about the same as 
described for Figs. 1 and 2, except that the small amount of 
scatter evident for the smaller stretches appears diminished in 
Figs. 3 and 4. It is quite clear from both graphs that the data 
for the urethane and the natural gum compound A fall 
reasonably close to the kinematical function described; 

3There was a minor difference; the antioxidant nonox used by Rivlin and 
Saunders (1951) was replaced by another hindered phenol type antioxidant, 
tradename American Cyanamid A02246. 
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Fig. 4 Comparison of stretch data for two rubber compounds with the 
incompressibility condition xf = X ~ 1 in a simple tension test (see equa­
tion (2.7)). Data by Rivlin and Saunders (1951) for compound A is also 
shown. 

therefore, these materials are virtually incompressible. The 
special rubber blend and the natural rubber compound B ex­
hibit almost incompressible response that we shall examine 
again further on. The data for the Rivlin-Saunders compound 
A is also shown in Fig. 4. However, it must be mentioned that 
Rivlin and Saunders (1951) did not confirm by any tests 
described in their paper that the incompressibility constraint 
actually was obeyed by either compound they studied. Since 
the incompressibility condition was used to compute from 
measured values of X alone the values for I2 provided in their 
Table 6, it is not surprising that our calculation of values of \ 
corresponding to their tabulated values for X and I2 results in 
their data falling smack on the line in Fig. 4. The same applies 
to Fig. 2. The representation of our stretch data in the univer­
sal plot in Fig. 2, however, is a genuine experimental result 
that demonstrates the incompressibility of the natural rubber 
compound A. The response of compound B is another matter 
that will be discussed later. 

4 Example for Compressible Rubbers 

Let us consider a class of compressible, isotropic hyper-
elastic materials with strain energy function W= W(J{, J2, /3) 
per unit undeformed volume, and whose response functions in 
equation (1.1) depend on / 3 alone: (3 r=/3 r( /3) . Herein we 
have introduced the invariants 

Jl=Il=tf», J2=I2/I3 = trR-1, / 3 = / 3
/ 2 = d e t F . (4.1) 

Then the following relations will be obtained for this 
hyperelastic material (Truesdell and Noll, 1965): 

dW „ . . . 2 dW 
» « ) = • dJ, /W3) = 

0- i ( / 3 ) = 

dJ, 

2 dW 
(4.2) 

Bearing in mind the assumed functional dependence, it may be 
seen that these relations will hold if and only if 23 W/dJx = a 
and 2dW/dJ2=fi are constants. Thus, introducing these in 
equation (4.2) and writing dW/dJ3 = W3(J3), we obtain the 
response functions 

Po=Wi(J3), j8,= 0 (4.3) 
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It is known that ^ ( l ) —j3_1(l) = a + /3 = ji0, the usual con­
stant shear modulus in the undistorted, natural state of the 
material (Truesdell and Noll, 1965). Thus, upon introducing 
a^Hof and (3 = /x0(l-,/), where / is another constant, and 
substituting equation (4.3) into (1.1), we reach the general 
form of the constitutive equation for our compressible, 
hyperelastic material: 

T = ^ 3 ( 7 3 ) l + i ^ B - ^ ° ( 1 ~ y ) B - 1 . (4.4) 
Jj Jy 

This equation was first introduced in an altogether different 
way by Blatz and Ko (1962). It may be seen from equation 
(4.3) that the empirical inequalities (2.3) are satisfied for the 
Blatz-Ko material if and only if /J.0 > 0 and 0 < / < 1. These 
conditions were not noted by Blatz and Ko (1962); however, 
they are essential in the biaxial deformation problems de­
scribed there. In order that the stress (4.4) may vanish in the 
undeformed state where B = l , it is necessary and sufficient 
that W3(l) + po(2f-l) = 0. Hence, by (4.3),, -M o</30(1) 
<ix0. 

Experiments by Blatz and Ko (1962) on a certain compressi­
ble, foamed, polyurethane rubber revealed the specific 
response functions 

j80=/to, 0 < | 8 1 < < 1 , P-^-Ho/Ji, (4.5) 

where /3, was considered negligible so t h a t / = 0 , very nearly, 
and WJ=jx0 = 'i2 psi. Thus, in general terms, equation (4.4) 
reduces to the following constitutive equation for the Blatz-Ko 
foamed, polyurethane rubber: 

T = A l o [ l - / 3 - 1 B - 1 ] . (4.6) 

For the simple tension (2.1), (2.2) holds and / 3 = X,X. It 
follows that equation (4.6) yields 

r = / , 0 ( l - X f 2 X - 3 ) , X,(X) = X"1/4. (4.7) 

The extension, therefore, is simple. Application of equation 
(2.5) delivers the Poisson function 

i - x - 1 / 4 

" ( X ) = x - 1 • (4.8) 

We thus find by equation (2.6) that the foamed, polyurethane 
rubber (4.6) has a Poisson ratio v0 = 1/4, which is, in fact, the 
experimental value found by Blatz and Ko. However, they 
made no connection of their data with equation (4.8); rather, 
they used a clever ad hoc rule described below to determine vD. 

The linearized form of equation (4.6) will be considered 
next. First we note that E0 = 5/x0/2 is the usual Young's 
modulus for this model, and for a sufficiently small engineer­
ing strain 6, it can be easily shown that 

B = l + 2e, J=l+6, (4.9) 

in which 6 = tre describes the small change in volume per unit 
initial volume. Then, to the first order in e, equation (4.6) 
becomes 

IE 
T = °-[61 + 2t], (4.10) 

We thus recover the linearized, uni-constant equation for 
general isotropic, foamed elastic materials derived by Gent 
and Thomas (1959) from a simple microstructural model con­
sisting of a network of thin extensible rubber cords connected 
by rigid joints. It may be noted that equation (4.10) is-the same 
equation obtained from linear, isotropic elasticity theory with 
v0 = 1/4, i.e., with equal Lame constants X0 =ix0; it is the con­
stitutive equation of the controversial 19th century rari-
constant elasticity model that evolved from molecular theories 
of elasticity due by Poisson and Cauchy (Todhunter and Pear­
son, 1960; Bell, 1973). On the contrary side, we are reminded 
of Wertheim's many experiments on metals for which he 
claimed a universal average value v0 = 1/3. The rari-constant 

theorists and experimentists were careful always to exclude 
from the uniconstant theory unusual materials that they 
believed ought not to be treated as elastic; caoutchouc was an 
example often cited (Todhunter and Pearson, 1960). It is 
strangely coincidental that Gent and Thomas (1959) found in 
their experiments on foamed natural rubber the average value 
v0 = 1/3, as compared with their predicted universal value of 
1/4. 

There is a third empirical condition, |80<0, that also should 
be considered (Truesdell and Noll, 1965). Hence, ,60(1)<0 
with fj.o>0 holds if and only if / > ( l / 2 ) , in which case 
- / i o <j8 0 ( l )<0 for ( l / 2 ) < / < l . We see from (4.5), that the 
Blatz-Ko foamed, polyurethane rubber model fails to satisfy it 
(Beatty, 1984). It is possible, of course, that this results from 
the fact that a foamed rubber is not a homogeneous, material­
ly uniform and isotropic continuum. Nonetheless, the test 
data share good agreement with this model. It should be em­
phasized also that the data for the Blatz-Ko compressible, 
solid polyurethane rubber material described below support 
all of the empirical inequalities. 

It is also interesting, though apparently not well-known, 
that in the construction of their more general constitutive 
equation (4.4), which essentially is designed to reduce to the 
Mooney-Rivlin model when v0= 1/2, Blatz and Ko (1962) in­
voked the following additional ad hoc constitutive assumption 
of volume control in a simple tension: 

J3=X1-2 'o (4.11) 

It follows by Batra's theorem that X, = X2 in the simple ten­
sion; hence, equation (4.11) yields the unique relation 

X,(X) = X-"o. (4.12) 

Therefore, the extension is indeed simple. This must hold in a 
simple tension of every Blatz-Ko material (4.4) for which (2.3) 
holds. Thus, the Poisson function for every such material is 
given by 

>(*)= x - 1 • (4.13) 

It is readily seen that for small strains equation (4.12) may 
be linearized to e, = — c0e3; hence, the constant exponent v0 in 
equations (4.11) to (4.13) is the classical Poisson ratio for the 
material. Of course, the same thing derives from equation 
(2.6). Thus, the occurrence of Poisson's ratio v0 = 1/4 in equa­
tion (4.7)2 and (4.8) is not coincidental. Notice also that for 
this case the value v0 = 1/2 reduces equation (4.11) to the in-
compressibility condition (1.2) in simple tension. 

A material whose response in a simple tension test fails to 
obey the rule (4.12) cannot be a candidate for the Blatz-Ko 
model. Therefore, when attempting to model the constitutive 
behavior of an elastomer, the experimenter may find it helpful 
to first confirm the volume control relation (4.12) by plotting 
a graph of log(l/X,) against log X, which is a straight line of 
slope v0. For illustration, the tensile test data for the 
elastomers considered earlier are plotted accordingly in Figs. 5 
and 6. A least squares fit of the data with straight lines 
through the origin shows in Fig. 5 that the urethane has a 
Poisson ratio v0 = 0.493, while the rubber blend satisfies 
v0 = 0.468. Similar tests on a second urethane and a second 
rubber blend, which differed from the others only slightly in 
their formulation and processing, yielded the same basic 
response with the respective values v0 = 0.463 and v0 = 0.459. 

The data for the Rivlin-Saunders natural rubber compound 
A are shown in Fig. 6. However, as noted earlier, because they 
measured only X and, in effect, used the incompressibility con­
dition to compute X,, one should expect, as seen in Fig. 6, that 
their converted data should follow perfectly the ideal line for 
which »o = 0.5. It is seen, however, that our corresponding 
data for the natural rubber compound A also enjoys excellent 
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Fig. 5 Best fit comparison of tensile test data for two elastomers with 
the Slatz-Ko volume control relation (4.12), and evaluation of Poisson's 
ratio for the materials 

correlation with the volume control relation for incompressi­
ble materials. The compound A yielded, among all the 
elastomers we studied, the best fit correlation with v0 = 0.499. 
The natural rubber compound B, on the other hand, produced 
in our tests and best fit v0 = 0.466. The values of vD found in 
this manner were then used in equation (4.13), and the cor­
responding best fit graphs of their Poisson functions v{\) 
were plotted in Figs. 1 and 2. Of course, the curves for the 
urethane and the rubber compound A lay so close to the 
master curve that we let this curve represent their behavior, as 
shown therein. Although the elastomers for which v0?±Q.5, 
approximately, may thus be viewed as candidates for a Blatz-
Ko constitutive model, considerable further evaluation would 
be necessary to establish this. 

Based upon their volume control relation (4.11), Blatz and 
Ko graphed the straight line of log / 3 against log A and from 
its slope l~2v0 determined for their foamed, polyurethane 
rubber the value v0 = 0.25; but they apparently were unable to 
apply the same method to their solid, polyurethane rubber. By 
an altogether different and unrelated argument, they arrived 
at the value v0 = 0.463. We encountered no serious difficulties 
in our graphical evaluations of ratios of similar value for other 
varieties of rubber based upon equation (4.12). Evaluation by 
Blatz and Ko (1962) of the tension data for their solid, 
polyurethane showed that / = 1 and ix0 = 34 psi. Thus, in 
general terms, the reduced form of the Blatz-Ko constitutive 
relation (4.4) for their solid polyurethane rubber may be writ­
ten as 

T = W 3 ) 1 + f*o B, (4.14) 

subject to the further empirical inequality /30 = W^(J-t)<Q. 
Finally, it may be observed that the true strain ek in any 

direction k is defined by ek = log \ k . Consequently, the volume 
control relation (4.12) may be rewritten as 

? „ = - — , (4.15) 

which reveals that in finite strain Poisson's ratio for every 
Blatz-Ko model is the ratio of the true lateral contractive 
strain to the true extensional strain. Therefore, Figs. 5 and 6 
actually are plots of the true transverse strain ex versus the true 
axial strain e3 in a simple tension test. This simple fact has ap­
parently gone unnoticed by others. 

e3=log X 

Fig. 6 Best fit comparison of tensile test data for two rubber com­
pounds with the Blatz-Ko volume control relation (4.12), and evaluation 
of Poisson's ratio for the materials. Data by Rivlin and Saunders (1951) 
for compound A also is shown. 

5 Conclusion 

The tensile test possibly is the most important among all 
simple experiments used to characterize the phenomenological 
behavior of solid materials; and its application to rubbery 
materials provides an excellent opportunity for instruction in 
some interesting aspects of nonlinear elasticity. With this ob­
jective in mind, some data for the so-called Poisson's ratio 
(sic) as a function of engineering strain for an unspecified rub­
ber material was illustrated by Coakman, Eastwood and 
Evans (1966); however, they provided no explanation or 
discussion of the phenomenon. This almost casual indication 
of a substantial variation in the lateral contraction ratio for 
rubber in finite strain prompted, we feel, an inaccurate criti­
que by Lindley (1967) a year later. 

Lindley observed correctly that Poisson's ratio is a material 
constant, hence independent of the strain from the natural 
state. But his subsequent remark that its definition is valid on­
ly for small strains, so that its use is inappropriate at large 
strains, is imprecise. He naturally assumes that regardless of 
the nonlinear constitutive description of the material, the 
transverse strains in a simple tension test must be equal; and 
based upon this assertion and the incompressibility of rubber, 
which he justifies in terms of the bulk modulus rather than the 
volume constraint for infinitesimal strains, he provides an 
equation in terms of (possibly) finite engineering strains that 
characterizes reasonably the data shown by Coakham et al. 
(1966). We agree with Lindley that the experiment in 
Coakham et al. and in our own Figs. 1 and 2 above, is an inap­
propriate method for evaluation of Poisson's ratio for natural 
rubber, though it may be an excellent demonstration in sup­
port of its incompressibility. However, since Poisson's ratio 
f0 = l /2 for every incompressible, isotropic elastic material, 
these data obviously are not intended for this evaluation in the 
first place. 

The fact that one can indeed define a Poisson function, or 
some other lateral contraction function, that accurately 
demonstrates the variation in the lateral contractive response 
of elastomers over a wide range of deformation in a simple 
tension test, as shown in Figs. 1 and 2, apparently is unap­
preciated by Lindley (1967) and ignored by Coakham, 
Eastwood and Evans (1966). Of course, not every elastomer 
need be incompressible; and based upon the Blatz-Ko volume 
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control relation (4.11), it is seen in Figs. 5 and 6 that in special 
circumstances the kinematical data for finite deformations 
may be plotted in a manner that does allow for easy evaluation 
of their Poisson's ratio in the natural state. In fact, our equa­
tion (4.15), demonstrated by rough experiments, refutes 
Lindley's remark that use of Poisson's ratio is appropriate on­
ly for small strains. Moreover, Anand (1979) has found that 
equation (4.15) arises naturally in a linear theory of isotropic 
elasticity that uses the true strain e = logB1/2 as a deformation 
measure for moderately large strains. He showed that 
Hencky's constitutive equation for the Kirchhoff stress shares 
good agreement with a variety of experimental data for 
moderately large deformations defined by stretches of roughly 
1.3 to 1.4. Although it may be tempting to adopt equation 
(4.15) as the definition of Poisson's ratio for large deforma­
tions, we caution that this rule applies only to the class of 
materials for which equation (4.12) holds in a simple tension 
test. The Blatz-Ko material (4.6), in view of equation (4.7)2, 
the linear Hencky model (Anand, 1979), by definition, and all 
others for which equation (4.12) may be valid, belong to this 
class. The definition (2.5), on the other hand, extends to all 
isotropic elastic materials that respect the empirical 
inequalities. 

Finally, we are reminded that in numerical work involving 
elastomeric materials which often are assumed ideally incom­
pressible, a value of v0 close to 0.5 commonly is used to avoid 
computational difficulties. But it may be useful to first 
evaluate the actual lateral contractive response for the special 
elastomeric material of interest. Indeed, it may happen that a 
plot of the kind used in Figs. 5 and 6 may provide useful data 
for a more appropriate and realistic estimate of Poisson's 
ratio for elastomers studied in numerical work. 
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Longitudinal Shear Problem for an 
Elastic Body with Two Fixed 
Edges 
A semi-infinite elastic body with an arbitrary shape and an infinite one with a hole 
under uniform longitudinal shear load are investigated. These bodies have a boun­
dary with two fixed parts. The respective complex stress functions are obtained in 
closed form by using a conformal mapping function. Doubly connected elastic 
bodies with symmetry can also be treated. Examples of the stress distribution and 
expressions for the stress intensity factor are shown. 

Introduction 

The longitudinal shear problem is characterized by a single 
displacement component normal to the x-y plane, and in­
dependent of the coordinate perpendicular to this plane. The 
nonvanishing stress components are the shear stresses in the 
x-y plane. In this paper we consider a semi-infinite elastic body 
with an arbitrary shape and an infinite elastic body with a hole 
under uniform longitudinal shear load. These bodies have a 
boundary on which displacements are fixed at two parts. It is 
assumed here that the material of these bodies is homogeneous 
and isotropic. The exact solution of this mixed boundary value 
problem can be obtained in closed form. In the analysis, the 
complex stress function and a conformal mapping function 
which maps these shapes into the inside or outside of a unit 
circle are used. 

The stress function for boundary condition of one fixed 
part can be obtained in closed form, but for that of two fixed 
parts the stress function contains an integral term which is dif­
ficult to integrate. However, the first derivative of this term 
can be obtained in closed form which does not contain an in­
tegral term. Finally, the complex stress function is obtained in 
its first derivative form. 

Examples of stress distribution are shown for a doubly con­
nected shape with symmetry. As examples of a crack problem, 
expressions for stress intensity factor are also shown. 

Method of Analysis 

A) Analysis of Semi-Infinite Elastic Body. A stress func­
tion is derived for a semi-infinite elastic body with an arbitrary 
shape. The body has two parts of the boundary on which 
displacements are given. Figure 1 shows the semi-infinite 
region in the z plane and the unit circle in the f plane. The 
parts of the boundary on which displacements are given are 
designated by Ml and M2 , and the sum by M = Mx + M2. . 
Similarly L = Lx + L2 designates the parts on which external 
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forces are given. T designates M + L. ZA and ZB are end-
points of M, and Zc and ZD are those of M2 . 

A conformal mapping function which maps the semi-
infinite region into the unit circle is used (see Fig. 1). The ra­
tional mapping function is expressed as follows (Hasebe, 
1979; Hasebe and Inohara, 1980) 

« = « ( $ • ) = • 

E„ 

1-f r*-r 
- + E_ (1) 

in which Eh is imaginary if the semi-infinite region coincides 
with the lower half of the z plane, and t;k is a point outside of 
the unit circle, f = 1 corresponds to infinity. The boundary of 
the unit circle is denoted by T. a, 13, y, and 6" correspond to 
%A > Zgt Zc, and ZD. 

Next, we show several basic expressions for the longitudinal 
shear problem. Stresses TX, and ryt, the displacement w, and a 
complex function $(z) which is regular in the region obey the 
following relations (Benthem and Koiter, 1973) 

dw 

dx 

Tr, - nv 

Ty,=G-
dw 

= G$ ' (z ) , w = [ * U ) + * ( z ) ] / 2 , (2) 

where G is the shear modulous, the prime indicates differen­
tiation and the bar indicates a conjugate term. The displace­
ment w is a solution of Laplace equation to satisfy the 

Fixed parts 

V 
B/ 

- l ( 

L2V 

1 

0 

-i Y 

a 

V1 

\ l 

/s 
/ « 2 

Z-plane C-Plane 
Fig. 1 A semi-infinite elastic body with an arbitrary shape and the unit 
circle 
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equilibrium equation. The following expression is obtained 
from the equilibrium of external forces: 

G[*($) - .*(€) ] =2i{\Tr,ds+C0}, (3) 

in which J is a point on the boundary; rr, is the longitudinal 
shear stress on the boundary; 5 is the length along the boun­
dary, and the sense of 5 is positive when the region lies to the 
left. 

Introducing the mapping function co(f), and putting *(z) 
= $ («(£) ) = <£(f), the following expressions are obtained: 

" ( S ) 

G[</>(<j)-J(V)] = 2i{STrlds+C0}, (4) 

in which cr is a point on the unit circle. If stresses rrl and ret are 
components for the curvilinear coordinates expressed by the 
mapping function, the relations among rrl, T„,, TX„ and Tyt are, 

r«'(f) •iTBt=e«'(Txt-W ,), e'"=-
l f « ' ( f ) l ' 

(5) 

The boundary condition is expressed from equation (4) as 
follows: 

<Mff)+S(ff)tf>(ff)-<Mff)=/(<7), (6) 

where 

5(a) = 
0 onL 

-2 o n M 
, f{°) 

2i[\Trlds+C0}/G onL 

- 2w on M. 

When equation (6) is multiplied by da/[2-wi(a— f)] and in­
tegrated along F, the following expression is obtained: 

1 f <t>(a) 

m JM 
i ( f ) ~ [ 

717 J A 

M(f) = 
1 

2ir/ 
/ ( a ) 

rfff = M(f)+</»(0), 

Jr a - f 
6?ff. (7) 

The solution of equation (7) is obtained as follows (Mikhlin, 
1964): 

X(f) f M(a) 
<Mf)=M(f) 

where 

7i7 JM X(O)(°-£) 
do+PMxtf), (8) 

*(r) = (r-a)1 / 2(f-/3)1 / 2(?-Y)1 / 2(r-o) i / 2 , 
x(D (sT-0-

x(D is a Plemelj function chosen so that displacements are 
continuous at a, /3, 7, and 5. P( f )x (f) is a homogeneous solu­
tion of equation (7). Equation (8) is a general solution when 
arbitrary displacements and external forces are given. 

When two parts of the boundary are fixed under uniform 
longitudinal shear load as shown in Fig. 1, the stress function 
<£(f) is obtained as follows: 

<Mf)=<Mf)+0i ( r ) - (9) 

<Ao(£") is the stress function which determines the uniform 
stress state at infinity, and from equation (4) 

*o<r) =-£-«(f). 
Boundary conditions are, 

/ ( f f ) = 0 

/(a)=2i-§-
( j 

on/ , , , / (<r)=0 onM, 

onL 2 , / ( f f )=0 onMj 

(10) 

(11) 

C,, is a resultant force on Ml. In equation (11), we can also 

take /(cr) =2iCh/G on Z,, and / ( a ) = 0 on L2, and then Q 
represents a resultant force on M2 . If we substitute equations 
(9), (10), and (11) into equation (6), </>,(f) can be obtained 
from equation (8). Then </> (f) is obtained from equation (9) as 
follows: 

* ( $ • ) = • 

i"o 

G 1 - f xd) 
x(f) , Q 

+ - ^ — F( I) + Const, 

^ ( n = i o g 7 - f x ( f ) 

G7T 

log 
7 — <7 

0 - f x/ Jjtfx ( f f ) ( f f_ f ) 
•da. (12) 

<£ (f) has to satisfy TXI — T0 as f — 1, and the resultant force on 
M has to be equal to zero. Therefore, P({) in equation (8) 
equals zero, and the constant term in equation (12) is deter­
mined from the condition on displacement. The integral in 
-F(f) of equation (12) looks difficult, but the first derivative 
</>' (f) of the stress function c/> (f) can be obtained by the 
following procedure. Looking at equation (12), <6(f) does not 
contain Ek and lk except Eh in equation (1). Hence c/>(f) for a 
semi-infinite elastic body with perfectly flat plane and for that 
with an arbitrary shape are the same; however, Eh, i.e., the 
coefficient of 1/(1 - 0, for each shape has to be used in </>(£)• 
First we find <t>'(z) for a semi-infinite elastic body with a 
perfectly flat plane. Then </>'(f) for a semi-infinite elastic 
body with an arbitrary shape can be obtained from * ' ( z ) , and 
F' (f) can also be obtained. 

The semi-infinite elastic body is in the region of the lower 
half of the z plane, so the boundary is on the x axis. The 
uniform longitudinal shear j x t = T0 acts at infinity. Boundary 
conditions are expressed by using equation (2) and analytic 
continuation for stress-free boundary, 

* ' + ( ? ) + * ' ~ ( ? ) = 2 
dw 

o n M 

* ' + ( £ ) - * ' - ( £ ) = - 2 / - ^ onL (13) 

where J is a point on the x axis. The solution to the Riemann-
Hilbert problem of equation (13) is 

* ' ( z ) ; 
Y(z) H /(£) 
2m Jr Y(i)d-z) 

d!t + Q(z)Y{z), 

(14) 

Y{z) = {z-zArl'\z-zB)'xn{z-zc)-
ul(z-zDrxn, 

in which / ( £ ) equals 2(dw/dx) on M, and -2hyt/G on L. 
Y(z) is a Plemelj function which is chosen so that the stresses 
are discontinuous at zA, zB, zc and zD, and the branch is 
chosen so that z 2 F ( z ) ~ l as z—-°°. Q(z)Y(z) is a 
homogeneous solution of equation (13). 

The desired stress function is expressed by f>' (z) = $ 0 ' (z) 
+ $ ! ' (z) where $ 0 ' (z) gives a uniform stress state at in­
finity, and $ 0 ' (z) = T0/G by equation (2). 

Substituting the boundary condition / ( £ ) = 0 into equation 
(13), the boundary condition for $ , ' (z) is given and <&[' (z) is 
given by equation (14). Q(z) is a polynomial expression of se­
cond order, since the stress is T0 at infinity. Consequently 
$ ' (z) has the following form: 

*'(z) = [~G~*2 + 6lZ + * ° ] F ( z ) ' (15) 

in which b{ and b0 are coefficients chosen to satisfy the condi­
tion of resultant force at infinity and relative displacement of 
parts Ml and M2. <j>' (f) can be obtained from equation (15) 
as follows: the mapping function which maps the region in the 
lower half of the z plane into a unit circle is expressed by 

Journal of Applied Mechanics DECEMBER 1986, Vol. 53/815 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Z-Dlane 
5-plane 

Fig. 2 An infinite elastic body with a hole and the unit circle 

Z = C0(f): 
1-f 

(16) 

Substituting equation (16) into equation (15), </>' (f) can be 
obtained from * ' ( z ) = </>'(f)Ao'(f): 

*''»-^£4(I^r+T?T^-3- >(f) (17) 
( i - n 2 • i - r u-> Mi) ' 

where 

j ( n = (f-c*r1 / 2(r-j3)- i / 2(f-7)-1 / 2(r-s)- I / 2-
For convenience (r0/G)Eh is put before the bracket, as 

shown in equation (17). D0, Dlt and D2 are obtained by the 
following procedure: D2 = 1 is obtained from 0 ' ( l ) / o ' ( l ) = 
T0/G, since the stress is T0 at infinity. 2?, can be obtained from 
[(1 —f)2#'(f)]f=i = 0 since the resultant force is equal to zero 
at infinity: 

D, ( X l I I 

(3 1 - 7 1-5 • ) • 

(18) 

D0 can be obtained from the condition that the relative 
displacement of two fixed parts Mx and M2 is equal to zero 
and the part 7,, is a free boundary. From this condition and 
equation (4), the following expression is obtained: 

*(7)-*(|S)=[V(ff)<fr = 0. 
J/3 

(19) 

We can take another part between a and 8 instead of /3 and 
7. Equation (19) is integrated along the arc on the unit circle. 
This integration is transformed into a real integral by using the 
transformation £ = E0/(l -a) — (E0/2) in which E0 is an ar­
bitrary imaginary number. Hence D0 is expressed as follows: 

_ 7(2)+ g 0 ( l+A)/(D 1 A , , „ 
D° - MW) 4 2~ ' ( 2 0 ) 

where 1(2), 1(1), and 1(0), are real integrals: 

7(2)= ( C?Y*(Z)dt, 7(1)= \iCZY*(i)dt, 
•>£B •'is 

7(0)= [ CY*tt)dZ, 

in which 

>"(£) = ( £ - ^ ) - 1 / 2 ( £ - £ s ) - 1 / 2 ( £ - S c ) - 1 / 2 a - £ D ) - 1 / 2 

^ ^ ( T ^ T T " ) ' * * = J B ° ( T T ~ ~ 2 ~ ) 

^ ^ ( 1 3 7 - 2 - ) ' ^= £°("TT-y-)-

To avoid complication, the derivations of 7(2), 7(1), and 7(0) 
are omitted, but these contain elliptic integrals in general. In a 
practical calculation, it is necessary to pay attention that the 
modulus of elliptic integral k2 does not exceed 1. When the 
region and the fixed parts are symmetric to they axis, i.e., £D 

= ~ZA> £c = ~£B> then D0 is simplified as follows: 

Da=-
V l - a 2 / L K(k) J 

1 
(21) 

in which 

k2-- [ 
( l + | 3 ) ( l - a ) r ( l - / 3 ) ( l + a ) 

K(k) and E(k) are complete elliptic integrals of the first and 
second kind. Of course we may derive the expression by using 
y and 5 instead of a and /?. 

Thus </>'(f) is obtained as follows: 

*>tn T° *• f 1 J / 1 l l 

ik)lh+D°} 

1-

y(t) 

i-

1 - 5 / i - r UJ y(i) 

where 7?0 is given by equation (20), or by equation (21) for the 
symmetric case. Equation (22) is the solution for the semi-
infinite elastic body with an arbitrary shape. As mentioned 
previously, Eh must be given by the coefficient of the term 
1/(1 - I") in the mapping function for each shape. 

When the first derivative w' (f) of the mapping function is 
given for the desired shape, stresses can be obtained by the 
first expression of equation (4). In this case the mapping func­
tion need not be a rational one. When the shape is polygonal, 
01' (f) is easily obtained from the Schwarz-Christoffel 
transformation. 

Next F' (f) is obtained as follows: because equation (22) is 
equal to the first derivative of equation (12), F ' ( f ) can be 
obtained, 

t2—— (a + (3 + 7 + 5 ) f + — - (a + l3 + 7 + 5 ) - l F'($)=B 

+ Z ? 0 ( l - a ) ( l - / S ) ( l - 7 ) ( l - 8 ) ytf), (23) 

in which B = irT0Ehy (l)/Ch, but B is not related to the shape 
and loading condition because F(£) is not related to the shape 
and loading condition (see equation (12)). 

b) Analysis of Infinite Elastic Body. A stress function is 
derived for an infinite elastic body with a hole of arbitrary 
shape as shown in Fig. 2. The body has two fixed parts on the 
boundary. A rational mapping function which maps the 
physical region into the outside of the unit circle is expressed 
as follows (Hasebe and Ueda, 1980; Hasebe et al., 1984): 

Et z = «(f)=£cf+ D —-* - + £ 
k=l !>k S 

in which $k is a point inside the unit circle. The uniform 
longitudinal shear load in the direction X is considered. We 
assume the desired stress function 0(f) = 0 o(f) + 4>i (f) in 
the same way as for the semi-infinite body. Then </>o(f) = 
T0e~'x<w(f)/G, and the boundary conditions are f(a) = 
2iCc/G on L2 and f(a) = 0 on the other parts. Cc represents 
the resultant force on Mx. Using these expressions and equa­
tion (24), 4>i (f) is obtained from equations (6) and (8). Hence 
0(f) is 

</>({-)=• 
TO Ec x(f) 

F(f)+Const , (25) 
f X(0) GTT 

in which F(f) is the second term of equation (12). Equation 
(25) also does not involve Ek and £k. 0 ' ( f ) is given by 
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Fig. 3 Examples of analysis for a semi-infinite elastic body 

Z-plane £-plane 

Fig. 4 An infinite elastic body with a crack on a rim of a circular hole 
and the unit circle 

substituting equation (23) into the first derivative of equation 
(25). In this case, undetermined constant BCC/G% is deter­
mined by the stress condition at infinity, </>' (GO)/UI' (OO) = 
e~ 

1 1 1 
1 

(3 

-/x T0/G. Finally 4>' (f) leads to 

•'<n~-g--4[-H-(-T 7 

-i)-B .ym 

G 

r^ xo) 

{e-iKEc-e
ikEcy{Q)}'\—-(a + P + ~t + S)-\ 

- / > o ( l - « ) ( l - / 3 ) ( l - 7 ) ( l - 8 ) ] j ' ( f ) - (26) 

The constant D0 which contains elliptic integrals is given by 
equation (20), or equation (21) for the symmetric case. Equa­
tion (26) is the solution for the infinite elastic body with a hole 
of arbitrary shape. The stress components can be obtained by 
using the first expression of equation (4). The first derivative 
of the mapping function a' (f) and Ec of the shape to be 
analyzed have to be used. An irrational mapping function 
could also be used. 

Examples of Analysis 

Examples are shown for the analysis of a semi-infinite 
elastic body and an infinite one. First example is the semi-
infinite elastic body with a crack of depth c as shown in Fig 3. 
Figure 3(a) shows that two parts on the crack sides are fixed. 

Fig. 5 Examples of a stress distribution of the infinite elastic body 
with a circular hole and a detouched crack: (a) clb = 2, d/b = 1, e/b = 0.5; 
(b)c/b = 2, d/b = 1, e/b = 0 

The stress function 0 ' (f) is given by equation (22) and the 
mapping function isw(f) = -V2/W1 + r2 / ( l - f) with Eh = 
- lie. This shape is symmetric to the v axis and the loading is 
antisymmetric. When the fixed parts are symmetric, i.e., zD -
zA and zc = zB, this problem is one of a doubly-connected 
region as shown in Fig. 3(b). According to the position of the 
fixed parts the problem also becomes one for Figs. 3(c) or 
3(d). In these cases & = a and y = $ and D0 of equation (21) 
are used in equation (22) because of symmetry. 

In Fig. 3(b) the stress intensity factor Km at the crack tip 
ZA(=ZD) is given by using the singularity of the fixed edge 

K ,,i =s1me m-ay/2<i>'(m f = c 

Vco' (a) 

Similarly the stress intensity factor at the point zc ( = zB) is 

(27) 

Km=^2irie * G 

and at the point C 

— -K 

Ku,=Swie 4 'G 

[(r-7)' / 2^'(r)] f=T 

Vo>'(7J 

V « " ( - l ) 

(28) 

(29) 

where f = — 1 corresponds to the point C on the z plane. 
Further the problem of Figs. 3(b) or 3(c) are the same one as 
symmetric two or three cracks arranged on a straight line in 
the infinite elastic body. Sih's solution (Sih, 1964) for the in­
finite elastic body concides with one of this paper. 

Next an example is shown for an infinite elastic body with a 
circular hole having a crack in the radial direction. The 
mapping function which maps this shape into the outside of 
the unit circle is given as follows (Bowie, 1956): 

-+ 1 +cos2/c 
2sin,!/c C 

+ (l+ Vf 2 + 2rcos2K+l)1 / 2 j , (30) 

c/b = -
2COSK 

1 - COSK 
Er=-
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where c is the crack length and b is the radius of the circular 
hole. The loading direction is along they axis, i.e., X = 7r/2 in 
equation (26) (see Fig. 5). When parts of the sides of the crack 
are fixed at symmetric positions as shown in Fig. 4, i.e., zD = 
zA and Zc — zB, the problem is that of a doubly connected 
region as shown in Fig. 5. When the fixed part extends to the 
circular boundary, the problem becomes one of an infinite 
body which has a detouched crack for the circular rigid inclu­
sion with debonding. And if /? = y, the problem becomes one 
without debonding, with one fixed part. Also 5 = a and y = /3 
due to the symmetry and D0 in equation (26) is given by equa­
tion (21). Figure 5(a) shows the stress distribution for a crack 
on a rim of a circular hole and a detouched crack. Figure 5(b) 
shows a circular hole and a detouched crack. Stress analysis 
for an arbitrary loading direction X can be obtained by super­
posing the previous solution X = 7r/2 on the solution of a 
semi-infinite body with a semi-circular notch under uniform 
shear (X = 0). 

Stress intensity factors are given by the following expres­
sions for each crack tip in Fig. 5: 

Km=&iG r , a t C , (31) 
Vco (1) 

where f = 1 corresponds to the point C. Using the singularity 
of the fixed edge 

Km = - V2TTG , s — at D, (32) 

Vu (a) 
and 

Km=\l2'KiG , ' T at E. (33) 
V C O ' ( Y ) 

When the crack length e = 0 (see Fig. 5), i.e., only a de-
touched crack, the stress intensity factors at C and D have 
been shown in a figure by Yamada (1972). These values coin-
side with the values of equations (31) and (32). 

Conclusion 

The stress functions </>' (f) are given by equations (22) or 
(26) under the uniform longitudinal shear load for semi-
infinite or infinite elastic bodies with two fixed parts on the 

boundary. These functions are for arbitrary shapes. Eh and Ec 

in respective solutions are those of the shape to be analyzed. 
An irrational mapping function could also be used. Hence if 
the first derivative of the mapping function to' (f) is given for 
desired shape, stresses can be calculated by equation (4) with 
equations (22) or (26). Putting (3 = 7, equations (22) and (26) 
become the solutions of the problem for one fixed part. The 
first derivative F' (f) of the second term in equation (12) is 
given in the form of equation (23) containing undetermined 
constants. 

Examples for the doubly connected region with symmetry 
were shown and the stress distributions were also shown. Fur­
thermore by using symmetry, solutions of a semi-infinite or an 
infinite elastic body with a rigid inclusion, cracks, and de-
bonding can also be obtained. 

Problems of heat conduction (temperature- heat flow) and 
potential flow (potential-velocity) are mathematically 
equivalent to the longitudinal shear problem (displacement-
stress) and so these mixed boundary value problems can be 
analyzed in the same way as in this paper. 
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1 Introduction 

Finite Elastic Deformation 
Governed by Linear Equations 
// is observed that the equations of motion governing finite elastic deformation are 
linear if and only if the Piola-Kirchhoff stress tensor is linear in the deformation gra­
dient. Then the three components of displacement satisfy uncoupled linear equa­
tions. These equations are used to solve some problems of finite deformation. 

Finite elastic deformations, both static and dynamic, are 
governed by equations which are usually nonlinear. However, 
there is a particular material for which they are linear. For it 
the equations governing the three Cartesian components of 
displacement are uncoupled. The stress in this material is 
linear in the deformation gradient, so the natural or stress-free 
length of any element of it is zero. Therefore, it can represent 
only a real material which has been stretched to several times 
its stress-free size. Nevertheless for this material one can ob­
tain exact solutions of problems in finite elasticity. They can 
be used, for example, to test numerical methods and other 
approximations. 

The present considerations extend to two and three dimen­
sions our previous analysis of the finite amplitude motion of 
strings (Keller, 1959). 

In Section 2 we present the equations of motion, con­
stitutive equation and boundary conditions for the particular 
material. Then in sections 3 and 4 we solve some simple 
problems for it. 

2 Equations of Motion 

Let x(p,0 be the position at time t of the material point p 
and let p(p) be the density at p when the body is in its reference 
configuration x = p. Then the equation of motion satisfied by 
xis 

P(P)-
a2x 
li2 -=vs+f(P , /) . (2.1) 

Here f is the external force per unit volume in the reference 
configuration and S is the Piola-Kirchhoff stress tensor. In an 
elastic material S is a function of the deformation gradient 
Vx, of the form (Gurtin, 1981, p. 181, equation (15)). 

S=(Vx)S[(Vx) r(Vx),p]. (2.2) 

The tensor S is symmetric so that S,-, = S,v. 
Now (2.1) will be linear in x if and only if S is linear in Vx, 

so S = S(p) must be independent of (V x) r ( V x): 

S=(Vx)S(p). (2.3) 
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In the reference configuration Vx = I, so (2.3) shows that the 
residual stress is S(p). In component form (2.3) is 

S^idXi/dp^St/p). 

Then (2.1) becomes 

92x 
P(P> dt2 

or in component form 

= V[(Vx)S(p)] + f(p,0, 

P(P)-
d2x, 

dt2 

d 

dpj 

bX; 

dPk 
>kj +//(P,0. 

(2.3') 

(2.4) 

(2.4') 

We observe that (2.4) is linear and the /th equation involves 
only xh so the three equations of motion are linear and un­
coupled. If we had required that the equations be uncoupled, 
rather than that they be linear, we would have been led to the 
same results (2.3)-(2.4') in view of the form of S in (2.2). 

For a homogeneous material S and p are constants so (2.4) 
and (2.4') have constant coefficients1 If the material is also 
isotropic S = 2/J.I, or in components SkJ = 2ixbkj, where fi is a 
constant. Then (2.4) becomes 

p~^-2l,Ax = f(p,t). (2.5) 

This is just the wave equation with propagation speed 
c=(2/z/p)1/2 and forcing term f, which is satisfied by each 
component of x. 

There is a strain-energy density <j(Vx,p) corresponding to 
(2.3), so the material is hyperelastic: 

dxk 
" ( V x , p ) = — S,y(p)—^- —— 

2 dpi dpj 
(2.6) 

For a homogeneous isotropic material this becomes a sum of 
squares: 

' dxk <x(Vx): •'(-£) (2.7) 

The traction t,(p,t) at a point on the surface of a body with 
unit normal «,• in the reference configuration, is from (2.3'), 

* * ' — (2.8) t,(P,0=(-^-)slu(p)nj. 
dp, 

When the material is isotropic, (2.8) reduces to 

dX: 
ti(p„0-- 2*(-£r)n- (2.9) 

The right side of (2.9) is just 2fi times the normal derivative of 
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Xj. We see that in (2.8) and (2.9) only one component x-, occurs 
in each equation. Thus if the /,- are prescribed, (2.8) or (2.9) 
become boundary conditions on the x,- and these conditions 
are uncoupled, just like the equations of motion are. 

If the position of all or part of the body surface is a given 
function xf^ (p,0 then on that surface x, must satisfy the 
boundary condition 

*,(p,0 = *P(p,/). (2.10) 
Again the conditions (2.10) for the different x,- are uncoupled. 

3 Static Solutions for Cylindrical and Spherical Holes 

Consider a circular hole cut out of a circular sheet of 
homogeneous isotropic material, so that an annulus remains. 
Let the inner and outer radii of the annulus be a and b > a, 
respectively, in the reference state. Suppose that the outer 
boundary is held fixed, while the inner boundary is stress-free. 
We shall find the equilibrium configuration of this annulus. 
The result applies equally well to a three dimensional cylinder 
with a concentric cylindrical hole. We shal write R = Ipl and 
/•= Ixl. 

When./} = 0 and d2xi/dt2 = Q the equation of motion (2.5) 
becomes Laplace's equation 

AXi = 0,a<R<b,i=l,2. (3.1) 

The inner boundary condition (2.9) becomes, with t, = 0, 

-~- = 0atR = a,i=l,2. (3.2) 

dR 

The outer boundary condition (2.10) becomes 

x, = b cos 0, x2 = b sin 0 at R = b. (3.3) 
The solution of (3.1)—(3.3) for xx and x2 is readily found to 

be (jc, ,x2) = r(R)(cos 8, sin 8) where r{R) is given by 
r(R) = (l+a2/b2)-l(R + a2/R) (3.4) 

By setting R = a in (3.4), we find that the equilibrium radiuis 
of the hole is r(a) = 2a(\ +a2/b2)~[. Thus r(a)>a and it in­
creases from a when b/a = 1 to 2a as b/a tends to infinity. 

Let us next consider a sphere of material with a concentric 
spherical hole in it. The formulation is the same as that above 
with i = 1,2,3 and with (3.3) replaced by 

x = ba,R = b. (3.5) 

Here u = p/R is a unit vector. The solution of (3.1), (3.2), and 
(3.5)isx = r(i?)ojwith 

r(R) = {l + ai/2bi)~\R + ai/2R2). (3.6) 

The equilibrium radius of the hole is r(a) = 3a/2 
(1 +a3/2b3)~1. Again it exceeds a and increases from a when 
b/a= 1 to 3o/2 as b/a tends to infinity. 

For a balloon the boundary condition is tt = —pn, at R = a 
and t\ = 0 at R = b, wherep is the pressure in the balloon. The 
solutions for cylindrical and spherical balloons are as above 
with r(R) given by 

pR (1 + b2/R2) paR 
r(R)-

r(R) = 

2/i (b2/a2-\) 2n(b-a)' 

pR (\+b3/2R3) paR 

(3.7) 

(3.8) 
2^ ( d 3 / « 3 - l ) Ap,{b-a)' 

The second forms apply when the wall of the balloon is thin 
compared to its radius, i.e., b — a<<a. They show that then 
the spherical balloon has half the radius of the cylindrical 
balloon for the same internal pressure. 

4 Expansion of a Spherical Hole 

We shall now consider the dynamic problem of the expan­

sion of a spherical hole in an unbounded homogeneous 
isotropic medium. At t = 0 the medium is at rest and a hole of 
radius a is created, or the surface of a preexisting hole is 
released. We wish to find the subsequent motion of the 
medium, and especially the radius of the hole as a function of 
time. As t increases, the radius should tend to the static value 
3a/2 given in Section 3. With f^O, (2.5) becomes the 
homogeneous wave equation 

1 d2x. 
Ax, - - r ^ r - = 0. 

dt2 

Initially we have 

*/(P.0) = 
a*,(p,Q) 

1 dt 
• 0,R>a. 

At the surface of the hole t, = 0 and (2.9) becomes 

dXj 

dR 
= 0, R = a. 

(4.1) 

(4.2) 

(4.3) 

To solve this problem we choose the polar axis along p{ and 
set Pi = R cos 6 and *,• =f(R,t) cos 6. Then from (4.1) it follows 
that r is of the form 

r(R,t) = R + 
J)_rf(R-ct) 

dR L R ]• (4.4) 

Here/is arbitrary and we have omitted the incoming solution, 
since the initial conditions (4.2) require it to vanish. We see 
that (4.2) will be satisfied if 

f(R-ct) = 0 for R-ct>a. (4.5) 

Upon using (4.4) in (4.3) we get 

1 
-f"(a-ct) r / ' ( O - c 0 + - r / ( a - c 0 = - l . (4.6) 

The solution of (4.6) must satisfy (4.5) and also make r(R,t) 
continuous, which requires that / ' (a) = 0. The unique solution 
satisfying these conditions is 

f(z) -T[-
p(z - a)/a 

COS7T/4 

and/(z) = 0 for z>a. 
Now (4.4) yields 

a3 c3 

r(R,t) = R + aD 

2R2 ,1/2 

fz-a w \ 

s(R-ct-a)/a 

R 

- 1 ,z<a, (4.7) 

dR 

' R-ct-a 

f)]- *• ct-a<0 (4.8) 

r(R,t) = R, R-ct-a>Q. 

Then x(p,t) = r(R,t)<io. We see from (4.8) that as t increases, 
r(R,t) tends to R + a3/2R2. This is the solution of the static 
problem, given by (3.6) with b/a=<x>. The radial coordinate r 
of each particle, including the surface of the hole, tends to its 
limit via a damped oscillation. 
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Two-Dimensional Strain Cycling in 
Plasticity 
Detailed calculations are presented for strain cycling in a homogeneous deformation 
that can be sustained by a biaxial state of stress in thin-walled specimens of OFHC 
copper. These calculations are made with a set of relatively simple constitutive equa­
tions within the framework of the strain-space formulation of plasticity. The 
predicted theoretical calculations, carried out in the context of small deformation, 
are in good agreement with corresponding available experimental results for satura­
tion hardening and erasure of memory in two-dimensional strain cycling. Also, with 
the use of the calculated results, a scalar quantity that characterizes strain-hardening 
is plotted as a function of plastic strains. Such plots are likely to be useful for com­
putational purposes. 

1 Introduction 

In an interesting series of experiments pertaining to two-
dimensional strain cycling in plasticity that can be sustained by 
a biaxial state of stress resulting from combined tension-
compression and torsion in thin-walled specimens of OFHC 
copper,1 Lamba and Sidebottom (1978a,b) observed the 
following three phenomena: 

(a) The occurrence of saturation hardening after loading 
from an undeformed state and cycling along a strain 
path which is essentially an ellipse in the normal strain-
shear strain plane; 

(b) the erasure of memory after the material has reached a 
state of saturation; and 

(c) the nature of the post-saturation stress response for 
cycling in a relatively "complex" nonproportional 
strain path. 

With reference to the above two-dimensional strain cycling ex­
periments, our main objective is to examine the predictive 
capability of a (rate-independent) theory of plasticity for­
mulated in a strain space setting with the use of special con­
stitutive equations employed previously by Naghdi and Nikkei 
(1984). Also, by employing the strain-hardening characteriza­
tion which arises in the strain-space formulation of plasticity 
(Casey and Naghdi, 1981, 1983, 1984a) and which is 
represented by a scalar function $, we calculate (over the do­
main of interest) the values of $ for the material used in the 
experiments of Lamba and Sidebottom (1978a,b) and plot this 
as a function of plastic strains. As in the experiments of Lam­
ba and Sidebottom (1978a,b), our calculations are carried out 
in the context of small deformation. 

In a previous paper (Naghdi and Nikkei, 1984) comparisons 

The abbreviation OFHC stands for "oxygen-free high conductivity." 
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were made between the predictions of uniaxial stress and 
strain cycling in plasticity and corresponding available ex­
periments. The previous calculations (Naghdi and Nikkei, 
1984) were carried out in a strain space setting by means of 
special constitutive equations obtained on the basis of a theory 
first formulated relative to stress space by Green and Naghdi 
(1965, 1966) and subsequently reformulated relative to strain 
space by Naghdi and Trapp (1975a), along with some addi­
tional developments pertaining to loading criteria and harden­
ing characterization by Casey and Naghdi (1984a,b). 

Description of the Strain Cycling Problem. As in the ex­
periments of Lamba and Sidebottom (1978a,b), we consider 
the combined tension-compression and torsion of a thin-
walled circular cylinder whose axis is in the xx direction. As 
usual, we neglect the variation of stress and strain in the radial 
coordinate direction so that the stress and strain components 
referred to cylindrical polar coordinates are then independent 
of position. We denote the axial stress and axial strain, respec­
tively, by sn and e n ; and similarly denote the shear stress and 
shear strain, respectively, by sl2 and el2. 

The analysis in Section 3 and the procedure for calculations 
in Section 4 require a reduction of the general loading criteria 
since not all components of strain (and strain rate) are known 
a priori in the context of the particular experiment considered. 
This reduction is discussed in Appendix A and the results are 
employed in all calculations of Section 4. Our calculations do 
not include those appropriate for two-dimensional stress cycl­
ing, even though it is relatively easier to calculate such cycles 
for materials exhibiting hardening behavior.2 

In the remainder of this section, we discuss in some detail 
the main features of the calculated results. A summary of the 
calculations can be arranged in three groups corresponding to 

This is because for materials exhibiting hardening behavior the loading 
criteria in stress space may be used (Casey and Naghdi, 1984b), and for two-
dimensional stress cycling all of the components of stress are prescribed in con­
trast to two-dimensional strain cycling where some of the components of strain 
are not known a priori. 
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Fig. 1(a) Comparison of the stress trajectory in s 1 2 - s 1 2 plane 
(measured in MPa) between the theoretical prediction ( ) and the 
experimental data (—) from Lamba and Sidebottom (1978a) for OFHC 
copper; the numerical calculation of the theoretical trajectory was ef­
fected with the use of equations (3.4), (3.15), (3.16), and the constants 
(4.1). The prescribed strain path in the e ^ - e12 plane is shown in the in­
set. After initial elongation from the undeformed state to point Q, the 
nearly elliptical path QRSTQ is repeatedly traversed. Whie the path in 
the e-|-| = e1 2 plane is cyclic, the remaining nonzero components of 
strain do not necessarily return to the same values at the end of each cy­
cle. Comparison with the experimental data is shown for the first few 
cycles only since the portion of the trajectory for additional cycles 
would crowd the figure. 

the nonproportional strain cycling experiments of Lamba and 
Sidebottom (1978a,b) as listed in the opening paragraph of 
this section. The first experiment pertains to saturation 
hardening after loading from an undeformed state, and the se­
cond two concern the behavior after the material has reached a 
state of saturation. In each case, the strain path in the eu - e12 

plane is the input to the problem, and the stress response (sn 

and sl2) is calculated from the relevant constitutive equations. 
A graphical presentation of the calculated stress trajectory in 
the su —s12 plane alone does not give all the relevant informa­
tion, unless a knowledge of the correspondence between all 
points of the stress trajectory and all points of the input strain 
path in the e n - e 1 2 plane is also known. It is, therefore, 
necessary to also plot the calculated results in either the 
sn-eu or the sl2-en plane. For clarity's sake, we have 
presented the calculated results in both the sn—eu and 
sl2 — e12 planes. 

Saturation Hardening. For two-dimensional saturation 
hardening, we prescribe en and en parametrically as func­
tions of time such that in the en -en plane the strain path is 
as depicted in the inset of Fig. 1(a). This corresponds to uniax­
ial tensile loading from the undeformed state until the axial 
strain reaches the value 0.00635 (point Q in Fig. 1(a)) followed 
by combined tension-compression and torsion controlled in 
such a way that en and e12 cycle in a counterclockwise direc­
tion around the nearly elliptical path in the inset of Fig. 1(a).3 

The actual experimental strain path in Fig. 3(a) of Lamba and Sidebottom 
(1978a) is not perfectly elliptical. In the present calculations the portion of the 
path in the upper half of the eu ~ei2 plane is specified to be the upper half of 
an ellipse with vertices on the en axis at -0.00623 and 0.00635 and a semiaxis 
of 0.00531 in the e[2 direction. The portion of the path in the lower half of the 
ell _ e l 2 plane is specified to be the lower half of an ellipse with the same ver­
tices on the ej] axis, but with a semiaxis of 0.00588 in the e^2 direction. 
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Fig. 1(b) Comparison of the theoretical ( ) axial stress 
response, measured in MPa, with the corresponding experimental data 
(—) of Lamba and Sidebottom (1978a) for OFHC copper according to 
the prescribed strain path in the inset of Fig. 1(a). Comparison with the 
experimental data is shown for the first few cycles only, since the por­
tion of the curve for additional cycles would crowd the figure. 
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Fig. 1(c) Comparison of the theoretical (- —) shear stress 
response, measured in MPa, with the corresponding experimental data 
(—) of Lamba and Sidebottom (1978a) for OFHC copper according to 
the prescribed strain path in the inset of Fig. 1(a). Comparison with the 
experimental data is shown for the first few cycles only, since the por­
tion of the curve for additional cycles would crowd the figure. 

The strain components en and en were parametrically 
specified to be sinusoidal differing by a 90 deg phase shift. The 
calculated results for stresses are shown in Figs, l(a-c) along 
with the experimental curves for the first few cycles only, since 
the portion of the trajectory for additional cycles would crowd 
the figure. Figure 1(a) represents the stress trajectory and Figs. 
1(6,c) are alternative representations of the calculations in the 
su—en ands 1 2 - e 1 2 planes. Points corresponding to Q,R,S,T 
on the prescribed strain path in the inset of Fig. 1(a) have been 
labeled in Figs, l(a-c) only for the portion of the path which 
represents a cycle at saturation and not for prior cycles. These 
results are in good qualitative agreement with the experimental 
results of Lamba and Sidebottom (1978a). In agreement with 
the experimental results, the theory predicts that saturation 
occurs after about four cycles. The main differences between 
the theoretical predictions and the experimental results are 
that the predicted maximum shear stress at saturation (point R 
in Figs. l(a,c)) is slightly greater than the corresponding ex­
perimental value while the predicted maximum axial stress at 
saturation (point Tin Figs. \(a,b)) is slightly less than the cor­
responding experimental value. The reasons for these dif­
ferences are discussed in Section 5. One further point may be 
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mentioned with respect to Figs. l(b,c). When some of the con­
stitutive response functions are linear in the variables (such as 
generalized Hooke's law for the linear elastic range), in a plot 
associated with uniaxial loading the response exhibits a sharp 
corner. This is exemplified by the beginning portion of Fig. 
1(b) which corresponds to the strain path from the origin to 
point Q in the inset of Fig. 1(a). On the other hand, corre­
sponding to the portion of the strain path QRS in the first cy­
cle (along which plastic deformation also occurs), because of 
the presence of two components of stress the response is no 
longer uniaxial and the beginning portion of the plot of the 
response in the sl2 — en plane in Fig. 1(c) exhibits a smooth 
transition between a rising portion and a portion which is fair­
ly level. 

Erasure of Memory. Consider next the erasure of memory 
property observed by Lamba and Sidebottom (1978a) in the 
case of OFHC copper. The phenomenon occurs when the 
material has reached a state of saturation after strain cycling 
along an elliptical path in the eu — ei2 plane. If subsequent 
linear strain paths lie within the elliptical strain path (which 
was originally used to reach the state of saturation), then cor­
responding to a given linear path in the en - el2 plane there is 
a particular limiting stress cycle response in the su —sl2 plane. 
This process is repeated as the material is cycled again along 
the strain path. Lamba and Sidebottom (1978a) observed that 
a larger cycle (not necessarily along a linear path) in the 
e n ~en plane essentially erases the effect of any previously 
traversed smaller cycles and returns the material to a state in 
which the limiting stress cycle response corresponds to that of 
the larger cycle. With the use of the linear strain paths BDB 
and BFB (as the larger and smaller cycles) indicated in the in­
set of Fig. 2(a), a calculation leading to a state of saturation 
was arrived at by first cycling in shear along B'D'B' for four 
cycles followed by cyling along B'CD'EB' for an additional 
four cycles. Then, the effect of erasure of memory was 

0 

).OI 

cl 

-̂"-"I 

*"---£_ 

B' 

NT 
\ 

D' 

\ F \ 

)E 

1 0 0 -

- 1 0 0 -

Fig. 2(a) The theoretical stress trajectory in s ^ - s1 2 plane (measured 
in MPa) calculated from equations (3.4), (3.15), and (3.16) for OFHC cop­
per using the constants (4.1). The prescribed strain path in the e1 1 - e1 2 

plane is shown in the inset. Calculation for a state of saturation was ob­
tained by first cycling in shear along B'D'B' in the e-,-, -e12 plane for four 
cycles followed by cycling along the elliptical path B'CD'EB' for four 
cycles. After this saturation was attained, the smaller path BDBFB was 
repeatedly traversed. Only the portion of the stress trajectory which cor­
responds to the (post saturation) strain path BDBFB is shown. 

calculated by further cycling which alternates along BDB and 
BFB. The results of calculations are shown in Figs. 2(a-c) 
along with the experimental curves from Lamba and Sidebot­
tom (1978a, Figs. 5(b,c)), where for clarity only the portion of 
the response corresponding to cycling which alternates along 
BDB and BFB are indicated.4 The erasure of memory 
phenomenon is best seen in Fig. 2(c), where along the seg­
ment of path BD the effect of the path BFB has become 
undetectable by the time the trajectory has reached point D. 
Thus, the larger cycle BDB erases the material's memory of 
the previously traversed smaller cycle BFB. In addition, the 
overall response is in qualitative agreement with the ex­
perimental results of Lamba and Sidebottom (1978a), while 
the predicted shear stress is again higher than the corre­
sponding experimental results (Fig. 2(c)) and the predicted 
compressive axial stress has a larger absolute value than the 
corresponding experimental results (Fig. 2(b)). Also, the 

4In Lamba and Sidebottom (1978a), at the point we've labeled D, the value of 
the shear strain shown in Fig. 5(a) (the strain path in the axial strain-shear strain 
plane) is somewhat different from its value shown in Fig. 5(b) (the experimental 
results shown in the shear stress-shear strain plane). In prescribing the strain 
path for our calculations, in order to compare with the experimental results we 
specified the value of the shear strain at point D to be that indicated in Fig. 5(b) 
of Lamba and Sidbottom (1978a). 

200r-

1 0 0 -

= 0 
CO 

- 1 0 0 -

-200. 

Fig. 2(b) Comparison stress 
response, measured in MPa, with the corresponding experimental data 
(—) of Lamba and Sidebottom (1978a) for OFHC copper according to 
the prescribed strain path in the inset of Fig. 2(a). Only the portion of the 
stress response which corresponds to the (post saturation) strain path 
BDBFB is shown. 
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Fig. 2(c) Comparison of the theoretical (- —) shear stress 
response, measured in MPa, with the corresponding experimental data 
(—) of Lamba and Sidebottom (1978a) for OFHC copper according to 
the prescribed strain path in the inset of Fig. 2(a). Only the portion of the 
stress response which corresponds to the (post saturation) strain path 
BDBFB is shown. 

Strain Hardening Behavior—The Function <t>. In view of the 
fundamental role played by a scalar function * that 
characterizes strain-hardening behavior of the material (Casey 
and Naghdi, 1984a), we represent $ as a surface which exhibits 
the nature of strain-hardening at any elastic-plastic state with 
fixed values of the total strain components6 en and en. The 
surface in Fig. 4 is a plot of $ (defined in equation (2.10)) as a 
function of the plastic strains ef, and ef2 for fixed values of 
the total strains en and en prescribed in the course of calcula­
tions; in the plot of Fig. 4 the prescribed total strains are 
specified to be en = e12 =0 . For different values of en and en, 
the surface represented by $ merely translates parallel to the 
plane of eft -ef2- A choice of the total strains, say (en,el2), 
specifies a particular surface and elastic-plastic states reached 
by different strain paths ending at (en )e,2) will in general 
correspond to different points on the surface *. The outer 
boundary of this surface (which has the smallest value of $) 
corresponds to the state of saturation, while the inner boun­
dary corresponds to the largest value that $ can take in the do­
main of interest. A further discussion of how the surface was 
calculated is found at the end of Section 4. As is evident from 
the plot in Fig. 4, * is always positive; and hence, in view of 
the conditions for strain-hardening characterization (see for 
example the conditions (8) in Naghdi and Nikkei, 1984), the 
material always exhibits hardening behavior.7 It also shows 
how $ decreases with additional plastic deformation, taking 
its largest value at initial yield and its smallest value at satura­
tion. The value of * is constant at both initial yield and 
saturation. 

slope of the calculated sxl-en curve in Fig. 2(c) during 
loading along FB is different than on the corresponding ex­
perimental curve. Again, these differences are discussed in 
some detail in Section 5. 

Complex Nonproportional Strain-Path. Now, with 
reference to the third experiment of Lamba and Sidebottom 
(1978b), consider the predicted response for a "complex" 
nonporportional strain path (using the terminology of Lamba 
and Sidebottom) applied after the material has reached a state 
of saturation. The state of saturation is attained in the same 
way as discussed earlier in the preceding paragraph, namely by 
cycling first in shear followed by cycling along an elliptical 
path in the en —en plane. After this, a path was prescribed 
which returned en and e12 to the origin of the en — e12 plane 
(point 0 in Fig. 3(a)) while at the same time the plastic strains 
were returned to the value zero.5 Next let en and e,2 be 
prescribed parametrically as functions of time such that in the 
eu~en Plane the strain path is represented by the linear 
segments 0-1, 1-2, 2-3, . . . ,7-8 in the inset of Fig. 3(a). The 
calculated results for stresses are shown in Fig. 3(a-c) which 
qualitatively agree well with the experimental results of Lamba 
and Sidebottom (1978b), Figs. 2{a-d)). Moreover, the theory 
again predicts the erasure of memory effect since as the path 
0-1, . . . ,7-8 in the inset of Fig. 3(a) is traversed a second 
time, the stress path becomes indistinguishable from the first 
time the path was traversed. Thus, the larger path 6-7-8 erases 
the effect of the previously traversed smaller portion of the 
path 1-6. 

2 General Background and Special Constitutive 
Equations 

With reference to a strain-space formulation of plasticity 
and for the special constitutive equations used previously 
(Naghdi and Nikkei 1984), we include here a brief summary of 
the relevant equations of the purely mechanical theory con­
tained in the papers of Green and Naghdi (1965, 1966), 
Naghdi and Trapp (1975a), and Casey and Naghdi (1981, 
1983).8 

In the context of infinitesimal deformation, we recall that 
the main ingredients of the rate-type theory of plasticity, in 
addition to the total strain eKL, are plastic strain ep

KL and a 
measure of work-hardening K. Also, no distinction needs to be 
made between various measures of stress which we denote by 
sKL. As usual, it is convenient to express the various con­
stitutive response functions in terms of the components of 
deviatoric stress rKL and deviatoric strain yKL, namely 

= sK "* °KL< TKK-®< 
(2.1) 

with a similar definition for the deviatoric plastic strain yp
KL, 

where s, e, and eP denote the mean normal stress, mean nor­
mal strain, and mean normal plastic strain, respectively. For 
materials which are isotropic in reference configuration and in 
the presence of plastic incompressibility (ep=G), we specify 
the stress response by generalized Hooke's law and the loading 

This calculation was performed by prescribing a path unloading from the 
elliptical path at a point such as B' in the insert of Fig. 2(a) on which e^ =0and 
allowing reverse loading to take place until such a point where ef2 = 0. At this 
point ef i has also become essentially zero which is again indicative of erasure of 
memory. Reversing the direction along this path until point 0 in Fig. 3(a) is 
reached results in only elastic behavior. 

A topographical representation of this kind was used recently in a different 
context by Casey and Lin (1983). 

It should be emphasized that even though one component of the stress may 
be decreasing during loading while the corresponding strain component is in­
creasing (e.g., as in Fig. 2(b)) the material is not exhibiting softening behavior 
in two-dimensional cycling. 

A more expanded summary is contained in Sections 2 and 3 of Naghdi and 
Nikkei (1984). 
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Fig. 3(b) Comparison of the theoretical ( ) axial stress 
response, measured in MPa, with the corresponding experimental data 
(-—) of Lamba and Sidebottom (1978b) for OFHC copper according to 
the prescribed strain path in the inset of Fig. 3(a). Only the portion of the 
stress response which corresponds to the (post saturation) strain path 
0-8 is shown. 

2 0 0 

Fig. 3(a) Comparison of the stress trajectory in s ^ - s 1 2 plane 
(measured in MPa) between the theoretical prediction ( ) an the 
experimental data (—) from Lamba and Sidebottom (1978b) for OFHC 
copper; the numerical calculation of the theoretical trajectory was ef­
fected with the use of equations (3.4), (3.15), (3.16), and the constants 
(4.1). The prescribed strain path in the e^ - e 1 2 plane is shown in the 
inset. Calculation for a state of saturation was obtained in a similar man­
ner to that in Fig. 2(a). After the saturation was attained, the complex 
path 0 - 1 , 1 - 2 , . . . ,7-8 was repeatedly traversed. Only the portion of the 
stress trajectory which corresponds to the (post saturation) strain path 
0-8 is shown. 

functions g a n d / i n strain space and stress space, respectively, 
by9 

«-v[*-(.^)*][-r=-(.+-^-)*]-. 

with 

d , - & ( f c ) _ ( « o - « t ) « + t y c 0 - t t o « s 
(2.3) 

In equations (2.2) and (2.3) the coefficients aB, as, K„, KS are 
constants and n is the elastic shear modulus. The constants a0 

and as are so chosen that &(K) takes the value a0 when K = KQ 

and takes the value as when K = KS. 
We adopt the loading criteria of strain space as primary. 

Then, after invoking the work assumption of Naghdi and 
Trapp (1975b), the constitutive equations for the rate of 
plastic strain e"KL and the rate of work-hardening parameter k 
may be expressed as (see the development among equations 
(36)-(42) in Casey and Naghdi 1981): 

"0, when g < 0 , or when g = 0 and g < 0 , 

ePKL=yPKL= \ 

g 

r+A 
(2TKL -&YKL)» when g = 0 and g>0 

(2.4a,b) 

The loading functions in (2.2) with a being regarded as constant (rather than 
a function of K) were used in the paper of Caulk and Naghdi (1978) and, with a 
as a function of K, are the same as those used by Naghdi and Nikkei (1984). 

-100 

-0.0075 

Fig. 3(c) Comparison of the theoretical ( ) shear stress 
response, measured in MPa, with the corresponding experimental data 
(—) of Lamba and Sidebottom (1978b) for OFHC copper according to 
the prescribed strain path in the inset of Fig, 3(a). Only the portion of the 
stress response which corresponds to the (post saturation) strain path 
0-8 is shown. 

and 

k=WU)TKL+fi(K)yPKL)ePKL. (2.5) 

In equations (2.4) and (2.5), the quantities j3,r) are defined by 

/ M w = (-^^k^=iHK) = ( - ^ ^ , (2.6) 
\K0-KS/ \K0-KS/ 

I6,J/ are constants, 

1 = 4 ^ \TKL 2 ~ &yPKL) 1KL. 
deKL ** r \ ^ 2 

and on the yield surface g = 0, 

A = S > K > 0 , 

r = 2fiK + 2[l + ( ""_"' ) (rKL ~ yh)yPKL] CfrMN 

+ yy%tN) [TMN — 2 ~ yifNj • 

The yield function/in (2.2) is of the von Mises type: it is 
quadratic in the deviatoric stresses and allows for translation 
and change in size of the yield surface. The amount of transla-

(2.7) 

(2.8) 

(2.9) 
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Fig. 4 A geometrical representation of the function * (which 
characterizes strain-hardening) as a surface exhibiting its dependence 
on the plastic strain components e?-, and e?2, plotted for fixed values of 
the total strains (in this figure taken to be e11 = e 1 2 =0) for OFHC cop­
per having the material constants specified in equation (4.1). For dif­
ferent values of e n and e1 2 , the surface merely translates parallel to the 
plane of ( e^ , e^2) but does not change its shape. An example of how the 
value of 'I' may be determined from this plot is also indicated: At a 
typical point on the surface, the values of the plastic strains eft , e?2 are 
known (the coordinate curves on the surface are drawn at plastic strain 
intervals of 0.0002) and the corresponding point in the e ^ - e<f2 plane is 
located. Then, the value of * is measured by comparing the vertical 
distance between the point on the plane and the point on the surface 
with the scale on the * axis. 

tion of the yield surface is linear in the deviatoric plastic strain 
and is also linear in K through the coefficient a defined by 
(2.3). Also, the coefficient functions /3(K) and »J(K) which oc­
cur in (2.5) are linear in K, they assume the respective values 13 
and J7 at initial yield when K = K0, and both vanish at satura­
tion, i.e., when K = KS, k = 0. 

We also recall here that the strain-hardening behavior may 
be characterized by means of a rate-independent scalar quanti­
ty denoted here by * (Casey and Naghdi, 1981, 1983).10 Dur ; 

ing loading the quantity <i> has the same value as f/g, where / 
= (df/dsKL)sKL and g is defined by (2.7),. With the particular 
constitutive equations (i.e., generalized Hooke's law) used 
here and the work assumption of Naghdi and Trapp (1975b), 
* can be expressed as 

and in fact since T + A > 0, T alone may be used to 
characterize the strain-hardening behavior (Casey and Naghdi 
1984b, equations (4.50) and (4.51)). 

3 Equations for a Two-Dimensional State of Stress 

Consider now the homogeneous deformation of an elastic-
plastic material sustained by a biaxial state of stress (one nor­
mal component and one shearing component) in which the 
corresponding two components of strain are prescribed func­
tions of time. Lamba and Sidebottom (1978a,b) modelled this 
experimentally by performing a strain-controlled combined 

10It was demonstrated recently by Casey and Naghdi (1984a, equation (3.8)) 
that the quantity * is equal to the determinant of a certain rate-independent 
fourth-order tensor which plays a fundamental role in the theory of plasticity 
and which arises naturally in relating the time rate of stress to the time rate of 
strain. 

tension-torsion test of a thin-walled circular cylinder in which 
the axial strain and the shear strain were prescribed functions 
of time. With the notation sn(t) for the axial stress and sn ( 0 
for the shear stress, the two-dimensional state of stress can be 
represented in matrix notation as 

^TKJ=— sn\\bKJ+sniaKL\\, s = — su, (3.1) 

where the constant matrices aKL and bKL defined by 

0 1 0 

1 0 0 

0 0 0 

,11^11 = 

2 

0 

0 

0 0 

- 1 0 

0 - 1 

are introduced for convenience. 
The intended calculations require prescribing eu and e12 

parametrically as particular functions of time (which specify a 
path in the e u - e12 plane), while the other two components of 
normal strain (e22 and e33) remain so far unspecified and hence 
unknowns. Since ef2 = ef3 = - 1/2 ep

n and ep
n = e§3 = 0 by 

equations (2.4) and (3.1), it follows that the plastic strain ten­
sor can be expressed in the form 

lefc.II = hpKL II = ~ ef, I&H. II + e»l2\\aKL II, (3.3) 

where eft and ef2 depend only on time. From the stress 
response (generalized Hooke's law) we have 

su=E(en-ePn),sn = 2n(en-e12), (3.4) 

where E is Young's modulus. From the inverted form of the 
stress response, as well as (3.3) and (3.4)1; and after adopting 
the notation er = e22 = e33 we obtain 

en 

ei2 

0 

ei2 

er 

0 

0 

0 

er 

where 

er = ~ sn - — ef, = -ven -—(\-2v)e"n (3.6) 

and where v = {E—2n)/2ix, is Poisson's ratio. Equation (3.6) 
relates the unspecified components of strain to the axial strain 
(which is known) and the axial component of plastic strain. 
But er is still unknown, inasmuch as ef, remains unknown un­
til all of the constitutive equations pertaining to a particular 
two-dimensional strain path have been integrated. 

In order to simplify some of the expressions that follow, we 
introduce the abbreviations 

3 1 
^ = * n --j- &(K)e11,N=sl2-— &(K)e12. (3.7) 

Then, with the use of equations (3.1) to (3.6), the loading 
functions in (2.2) now assume the simplified forms 

+ 8^[e12-(l+A)ef2]2_K, 

f^—Mt + lNi-K. (3.8) 
3 

For the two-dimensional state of stress defined by equation 
(3.1), A is still given by equation (2.8); but, on the yield sur­
face, T in equation (2.9) now assumes the special form 
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r = 2a« + - ^ - [ l + ( " " _ " ' ) (Mef, + 2Afef2)] [M($SU 

+ ^ - * J e ? l ) + 3 J v ( ^ 1 2 + i ) e f 2 ) ] . (3.9) 

In view of equations (3.1), (3.3), and (3.5), from (2.7) the 
quantity g occurring in the loading criteria in strain space is 
given by 

— nMen + $nNel2 —— pMe, 

(3.10a,ft) 

= — EMen+S,xNel2+—Ofi-E)MePn, 

and the corresponding quantity / in stress space is 

. 4 
f=—Msn+4Nsi2, (3.11) 

where in obtaining (3.106) the time derivative of equation 
(3.6) has been used. It should be noted that g depends on the 
unspecified strain rate er (or the unknown axial plastic strain 
rate ef,); and hence the determination of whether the state of 
strain at an elastic-plastic state is undergoing loading, neutral 
loading, or unloading cannot in general be ascertained directly 
from (3.10). 

Since during loading the constitutive equation (2,4ft) for the 
plastic strain rate contains g on its right-hand side, in view of 
equation (3.10ft) it is at once obvious that e'f, occurs on both 
sides of the equation in the case of axial plastic strain rate. 
After solving this equation, a new form of the constitutive 
equation results which dependes only on the specified strain 
rates e'u and e12. This equation then enables the constitutive 
equations for the other components of plastic strain rate to be 
expressed in terms of only en and e12 also. This procedure 
along with equations (3.1) and (3.3) leads to the following ex­
pressions for the nonzero plastic strain rates during loading 
(g = 0 , | > 0 ) 

4 M . . IN _ . . 1 .„ 
efi = - 3 - -Q- S, ef2 = — g, ef2 = e$3 = — — ef,, (3.12) 

where we have introduced the quantities Q and g defined by 

e = r + A - ^ - ( 3 / x - £ ) M 2 

and 

§ = §——(3/t-£)Mef,= •EMen+8iiNel2. 

(3.13) 

(3.14) 

It is shown in Appendix A under the assumption that Q > 0 
always, which represents a range of strain-hardening behavior 
sufficiently general for our present purposes, that a knowledge 
of only the prescribed strain rates eu and e12 is sufficient to 
determine whether the materal at an elastic-plastic state is 
undergoing loading, neutral loading, or unloading. In fact, 
with Q > 0 the quantity g may be used in special loading 
criteria appropriate for the particular problem under discus­
sion. Thus, with Q > 0, the constitutive equations for the 
plastic strain rate and the rate of work-hardening may alter­
natively be expressed as" 

CO 

eh.= 

11, 

, if * < 0 , (a) 

0 , if g = 0 a n d g < 0 , (ft) 

0 , if g = 0andg"=0, (c) 

[eq. (3.12) , if g = 0 and g > 0 , (d) 

(3.15) 

We emphasize that the loading criteria in equation (3.15) are derived from 
the general form of the strain space loading criteria, and not postulated in an ad 
hoc fashion. 

and 

* = (&i 1 + - y vet,) ef, + 2 (fel2 + «ef2) ef2, (3.16) 

where the loading criteria in (3.15a,ft,c,d) correspond, respec­
tively, to an elastic state, unloading from an elastic-plastic 
state, neutral loading at an elastic-plastic state, and loading at 
an elastic-plastic state. We note that during unloading and 
neutral loading it follows from equations (2.4a), (3.4), 
(3.1 Oft), and (3.11) that g = g = / , while during loading from 
equations (3.4) and (3.11) to (3.14) we have 

/ = 
Q 8 r+A 

g, (g = 0,g>0). (3.17) 

Results from the general theory similar to these and those ob­
tained in Appendix A are summarized in Table 1 of Casey and 
Naghdi (1984c). 

Before closing this section, we need to comment further on 
the restriction Q > 0 which bears on the loading criteria in 
equation (3.15). With reference to equation (3.13), since Y 
may be used to characterize the strain-hardening behavior, 
with equations (2.8) and (3.8) the condition Q > 0 may be 
seen to include hardening behavior ($>0) and perfectly 
plastic behavior ($ = 0), but at first sight may appear to ex­
clude a small range of softening behavior.12 However, it can 
be shown (Appendix A) that at an elastic-plastic state with Q 
< 0, the applied strain rates e u and e12 can only be such that g 
< 0. But the expression (3.14)2 which occurs in the loading 
criteria (3.15) must be capable of admitting all possible choices 
of e n and e12 (and hence capable of taking both positive and 
negative values) for all physically realistic tests. Since a state 
corresponding to Q < 0 is unnecessarily restrictive, it will be 
excluded from consideration in the present development. 

4 Determination of Material Constants. Details of 
Calculations. 

Previously a procedure was suggested for determining the 
material coefficients in the constitutive equations from the ex­
perimental data in a uniaxial cyclic loading test (Naghdi and 
Nikkei, 1984). This procedure is by no means unique; and, in 
fact, for data obtained from one-dimensional tests, other than 
uniaxial cyclic tests, it may be desirable to use a different pro­
cedure. Such alternative procedures are likely to be more ad­
vantageous in two or three dimensional tests. With reference 
to their experimental results for OFHC copper, Lamba and 
Sidebottom (1978a) note that the peak axial stress attained 
after the material has been cycled along a strain path such as 
that in Fig. 1(a) is significantly higher than the peak axial 
stress attained after simple uniaxial cycling. They go on to 
state that this difference indicates that " . . . material proper­
ties obtained from tensile tests or even uniaxial cyclic tests will 
not give accurate predictions of cyclic deformation under non-
proportional or out-of-phase conditions."13 A conclusion of 
this kind cannot be made independent of a particular theory 
used and does not follow from the knowledge of only a part of 
the experimental measurements (e.g., a part of the 
measurements that leads to the calculated sn). Rather, it re­
quires a detailed examination of the entire experimental data 
in conjunction with the relevant constitutive equations. 

This is because the condition Q > 0 places a greater restriction on T than 
does the more general result T + A > 0 (which is a consequence of the work 
assumption of Naghdi and Trapp, 1975b). 

13The term out-of-phase refers to the specification of e n and e12 as 
sinusoidal functions of time with the 90 degree phase difference between them, 
resulting in an elliptic path in the en — e12 plane. 
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As can be seen from equation (3.7), 2 and (3.8)2 with K = KS, 
&(K) = c^ and with / = 0 , the expression for KS in a two-
dimensional cycling test depends on su, sn, ef,, ef2 as well as 
& — as. However, the expression for KS in the case of a "peak" 
axial stress (i.e., the value of sn when 5,2 = 0) will depend on­
ly on the axial stress sn in addition to other parameters such as 
as and the plastic strains. We further observe that in the biax­
ial tests under discussion the value of the parameter KS, which 
represents the size of the loading surface in two dimensions, is 
particularly sensitive to the values of the stresses but much less 
so to the values of as and the plastic strains. In view of the ex­
perimental result of Lamba and Sidebottom (1978a) men­
tioned in the previous paragraph, if KS is determined from 
uniaxial cycling data alone, then the theoretical prediction for 
the two-dimensional cycling experiments may not be as ac­
curate as when KS is determined from the entire experimental 
data of a two-dimensional strain cycling test. 

We keep the foregoing discussion in mind when describing 
the alternative procedure for determining the material coeffi­
cients in the constitutive equations. A value for KS will be 
determined from two-dimensional strain cycling experiments. 
For our present purpose, it will suffice to determine the other 
constants from uniaxial cycling data as before.14 Thus, a value 
for K0 follows from / = 0 and the yield stress in uniaxial ten­
sion, and a value for as can be determined from the slope of 
the uniaxial stress-strain curve at saturation. By selecting a 
point at saturation from the experimental data for a two-
dimensional cycling experiment, similar to points Q, R, S, or 
T shown in the calculated results in Figs, l(a-c) and with the 
values of stress and plastic strain at such a point the value for 
KS may be determined from / = 0. We took the value KS to be 
the average of the values obtained from points R and T, in 
order to have the best overall prediction for all loading paths 
in the e,, -el2 plane. The remaining constants may then be 
determined from the uniaxial cycling data by the procedure 
described previously (Naghdi and Nikkei, 1984). Using the 
above procedure with the experimental data of Lamba and 
Sidebottom (1978a, Figs. 2 and 3(a-d)) for the OFHC copper 
the material constants were determined to be 

- ^ _ = - ^ - = 8 . 14x l0 - 3 , 
E E 

— = 2 . 3 0 x l 0 - 2 , - ^ = - 9 . 3 8 x l 0 " 5 , 
E E1 

- ^ - = 4.03 x l 0 ~ 8 , - ^ - = 1 . 9 3 X l O " 6 , — = 0.374, (4.1) 
E2 E2 E 

£'=115GPa. 

In the course of identifying values for the coefficients a0 and 
as, it was found that their values differed only by less than 0.3 
percent. This suggests that if this difference can be neglected, 
we could set a0 = o>s approximately and then the coefficient r\ 
in equations (2.5) and (2.6) will no longer require an indepen­
dent identification. This would make the task of determina­
tion of the coefficients much easier; and, in fact, with a0 = as 

the coefficient rj can be determined in terms of a0 and &. To 
see this, we recall that in the special case in which a0=as = u 
(say) the constitutive equations used here reduce to a special 
case of those employed previously by Caulk and Naghdi 
(1978, equations (40), (56), and (70),). For their equations, 
they obtained the restriction tj = - a/3/2 (see equation (70)2 in 
Caulk and Naghdi, 1978). In view of the fact that the values 
determined for a0 and as are essentially the same, for the pur-

In contrast to KS, for the relatively simple constitutive equations used here 
the determination of the other constants from the uniaxial tests seems to be 
adequate. 

pose of comparison with the experimental data of Lamba and 
Sidebottom (1978a,b) for OFHC copper, it will suffice to take 
a0 = as and 17 = — a0/3/2. 

The calculations summarized in Section 1 were carried out 
by first parametrically specifying the strains e n and en as 
functions of time, corresponding to a particular path in the 
e n — e12 plane. The constitutive equations (3.15) and (3.16) 
were then integrated numerically with the values (4.1) for the 
coefficients. Finally, the stresses were calculated using equa­
tion (3.4). 

To calculate $ in equation (2.10), a knowledge of A in equa­
tion (2.8) and F in equation (3.9) is needed. The particular 
representation of T in equation (3.9) depends on the stresses, 
as well as the quantities M and TV which also involve the 
stresses sn and sl2. Then, in view of equation (3.4), T may be 
expressed in terms of the total and plastic strains. It follows 
that $ depends on total and plastic strains, as well as on K. 
But, from the fact that on the yield surface g = 0 with the 
function g given by (3.8),, it is possible to solve for K in terms 
of the other quantities so that * may be represented as a func­
tion of only en, el2, ef,, and ef2. It is of interest to plot the 
variation of $ with plastic strains for fixed values of e n and 
e,2. After making the substitutions indicated above, the 
dependence of <3> on the total and plastic strains may be ex­
pressed in the form 

* = * ( « , - ( i + ^ ^ ) % I > e f 2 - ( l + ^ ) % 2 ) . 

(4.2) 

For definiteness, we specify e,, = e,2 = 0 and then calculate 
the value of $ for each ef,, ef2 pair. The resulting plot using 
the values (4.1) is shown in Fig. 4. It is clear from the 
arguments of the function 4> in equation (4.2) that this single 
calculation provides all of the relevant information on the 
variation of <£; and, for any other specified values of e u and 
e,2, the surface plotted in Fig. 4 will not change in shape but 
will simply translate parallel to the ef, - ef2 plane by the con­
stant amounts 

('-r-f-)"''." ('*-£-)"- <"> 
in the ef, and ef2 directions, respectively. It must be kept in 
mind that the domain in the ef, — ef2 plane must be such that 
the value of K corresponding to the values of e u , e12, ef, and 
ef2 is between K0 and KS. In Fig. 4, the outer boundary (with 
the smallest value of $) corresponds to K = KS and the inner 
boundary (with the largest value of *) corresponds to K = K0. It 
should be mentioned that some elastic-plastic states cor­
responding to points on the surface may not be reached by any 
path. For example, on the inner boundary in Fig. 4, where K = 
K0 , the plastic strain is nonzero indicating some plastic defor­
mation must occur to reach an elastic-plastic state correspon­
ding to this edge of the surface. However, after plastic defor­
mation has taken place K cannot have the value K0 (the value of 
K at initial yield) while the material exhibits hardening 
behavior except in the special case of purely kinematic harden­
ing. Thus, for the plot displayed in Fig. 4, no acutal elastic-
plastic state corresponding to the inner boundary of the sur­
face can be reached. 

5 Concluding Remarks 

In summary, a relatively simple set of constitutive equations 
is used to predict various phenomena occurring in two-
dimensional strain cycling in the range of small deformation. 
The calculated predictions are compared with corresponding 
experimental results of Lamba and Sidebottom (1978a,b) with 
good qualitative agreements. It is noteworthy that even during 
the post-saturation behavior of the material, the constitutive 
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equations used have adequate predictive capabilities as 
demonstrated by the results in Figs. 2{a-c) and Figs. 3(a-c). 
Furthermore, it may be emphasized that the theoretical 
calculations successfully predict the erasure of memory 
phenomenon which has significant practical utility in two-
dimensional, post-saturation strain cycling experiments. 
Clearly, by exploiting this phenomenon, the response of a 
material to strain eyeing along strain paths in different direc­
tions can be determined by performing experiments on one 
specimen if a large cycle which erases the material's memory 
of the preceding smaller cycle is traversed after each smaller 
cycle. 

The main differences between the present calculations and 
the experimental results can be attributed primarily to the 
manner of identification of two of the material constants at 
saturation, namely KS and as. These values can be chosen to be 
the same as those identified either from experiments in simple 
tension (e,2 = 0) or experiments in simple shear (eu = 0). The 
values resulting from experiments in simple tension can lead to 
discrepancies in matching experiments involving mainly sim­
ple shear (such as those in Figs. 2(a-c) and 3(«-c)), and 
likewise values chosen from experiments in simple shear will 
affect the agreements between the theoretical and experimen­
tal results in simple tension. The choice for the value of the 
constant KS used in the calculations (for details see Section 4) 
was motivated by a desire to obtian the best overall agreement 
with experimental results for all directions of the strain paths 
in the e n - e 1 2 plane. Similarly, as noted in the last section, as 

was chosen to be equal to a0 in order to simplify the iden­
tification of the material coefficients for OFHC copper. The 
slope of the calculated response curve in the s[2 — en plane at 
saturation can be shown to depend to some degree on <xs, so 
that if a more accurate prediction of the slope of the curve 
during loading along FB in Fig. 2(c) is desired an alternative 
procedure for determination of as could be used. 

The plot displayed in Fig. 4 contains detailed information 
pertaining to strain-hardening behavior for the particular 
material used in the experiments of Lamba and Sidebottom 
(1978a,b). Accessibility to such information or the data 
representing * for all values of total and plastic strains in the 
domain of interest is clearly of value in analyses and computa­
tions. It should be possible in principle to determine the value 
of $ directly from experiments. Casey and Naghdi (1984b, 
equation (4.29)) have previously shown that the function $ 
can be interpreted in terms of the ratio of the outward normal 
velocities of the yield surfaces in stress space and in strain 
space. It is suggested that future experimenters provide direct 
measurements concerning the yield surfaces in both stress 
space and strain space and also consider the possibility of ob­
taining the values of $ directly in the course of their 
experiments. 

We close this section with some remarks concerning addi­
tional experimental data on two-dimensional cycling that have 
become available very recently. McDowell (1985) has reported 
experimental results for two-dimensional strain cycling of a 
type similar to those of Lamba and Sidebottom (1978a,b); and 
in principle, similar comparisons can be made with his data. 
However, the data provided in McDowell's paper are insuffi­
cient for the identification of all of the material constants ap-

In addition to the two elastic constants, there are six material constants (a0, 
as, (3, rt, K0, KS) which must be determined from experimental results. However, 
for the special case in which a0 = as as utilized in Section 4, an additional 
restriction obtained by Caulk and Naghdi (1978) can also be invoked and this 
reduces the number of independent constants to be determined to the four (a 0 , 
(3, K0, KS). With a0 ^ as, the calculations will involve more complex expres­
sions and plots (for different values of e^ , e ^ ) of the function <p will exhibit 
changes in shape and will not simply represent translations of the surface 
parallel to the ef ] — ef2 plane as in the case when a0 = as. 

pearing in the constitutive equations used here.16 Also, it 
should be noted that our approach for theoretical predictions 
differs from the "two surface stress space model" used by 
McDowell (1985) for comparison with his experiments. 

Ohashi et al. (1985) have reported some experimental data 
for two-dimensional stress cycling. They do not discuss any 
theoretical predictions for comparison with their experiments. 
While in principle, there should be no difficulty in making 
such comparisons, the data provided is again insufficient for 
the identification of all of the material constants appearing in 
the constitutive equations used here.17 

Acknowledgment 
The results reported here were obtained in the course of 

research supported by the Solid Mechanics Program of 
the U.S. Office of Naval Research under Contract 
N00014-84-K-0264, Project NR 064-436 with the University of 
California, Berkeley. 

References 

Casey, J., and Lin, H. H., 1983, "Strain-Hardening Topography of Elastic-
Plastic Materials," ASME JOURNAL OF APPLIED MECHANICS, Vol. 50, pp. 
795-801. 

Casey, J., and Naghdi, P. M., 1981, "On the Characterization of Strain-
Hardening in Plasticity," ASME JOURNAL OF APPLIED MECHANICS, Vol. 48, pp. 
285-296. 

Casey, J., and Naghdi, P. M., 1983, "A Remark on the Definition of 
Hardening, Softening and Perfectly Plastic Behavior," Acta Mechanica, Vol. 
48, pp. 91-94. 

Casey, J., and Naghdi, P. M., 1984a, "Further Constitutive Results in Finite 
Plasticity," Quarterly Journal of Mechanics and Applied Mathematics, Vol. 37, 
pp. 231-259. 

Casey, J., and Naghdi, P. M., 1984b, "Strain-Hardening Response of 
Elastic-Plastic Materials," presented at a Conference on "Constitutive Laws for 
Engineering Materials: Theory and Application," Tuscon, AZ., Jan. 10-14, 
1983. In Mechanics of Engineering Materials, Desai, C. S., and Gallagher, R. 
H., eds., Chapt. 4, Wiley. 

Casey, J., and Naghdi, P. M., 1984c, "Constitutive Results for Finitely 
Deforming Elastic-Plastic Materials," in Constitutive Equations: Macro and 
Computational Aspects, Willam, K. J., ed., The American Society of 
Mechanical Engineers, New York, pp. 53-71. 

Caulk, D. A., and Naghdi, P. M., 1978, "On the Hardening Response in 
Small Deformation of Metals," ASME JOURNAL OF APPLIED MECHANICS, Vol. 
45, pp. 755-764. 

Green, A. E., and Naghdi, P. M., 1965, "A General Theory of an Elastic-
Plastic Continuum," Archive for Rational Mechanics and Analysis, Vol. 18, 
pp. 251-281. 

Green, A. E., and Naghdi, P. M., 1966, "A Thermodynamic Development of 
Elastic-Plastic Continua,'' Proceedings of the IUTAM Symposium on Irreversi­
ble Aspects of Continuum Mechanics and Transfer of Physical Characteristics 
in Moving Fluids, Parkus, H., and Sedov, L. I., eds., Springer-Verlag, New 
York, pp. 117-131. 

Lamba, H. S., and Sidebottom, O. M., 1978a, "Cyclic Plasticity for Non-
proportional Paths: Part 1—Cyclic Hardening, Erasure of Memory, and Subse­
quent Strain Hardening Experiments," ASME Journal of Engineering Materials 
and Technology, Vol. 100, pp. 96-103. 

Lamba, H. S., and Sidebottom, O. M., 1978b, "Cyclic Plasticity for Non-
proportional Paths: Part 2—Comparison With Predictions of Three Incremen­
tal Plasticity Models," ASME Journal of Engineering Materials and 
Technology, Vol. 100, pp. 104-111. 

McDowell, D. L., 1985, "A Two Surface Model for Transient Nonpropor-
tional Cyclic Plasticity: Part 2 Comparison of Theory with Experiments," 
ASME JOURNAL OF APPLIED MECHANICS, Vol. 52, pp. 303-308. 

Naghdi, P. M., and Nikkei, D. J., Jr., 1984, "Calculations for Uniaxial 
Stress and Strain Cycling in Plasticity," ASME JOURNAL OF APPLIED 
MECHANICS, Vol. 51, pp. 487-493. 

Naghdi, P. M., and Trapp, J. A., 1975a, "The Significance of Formulating 
Plasticity Theory With Reference to Loading Surfaces in Strain Space," Inter­
national Journal of Engineering Science, Vol. 13, pp. 785-797. 

McDowell's paper (1985) does not include the data for uniaxial strain cycl­
ing needed for the identification of material constants in the context of the pro­
cedure used here. 

17Ohashi et al. (1985) do not perform any uniaxial strain cycling tests. The 
data from such tests are necessary for identification of most of the material con­
stants using the procedure summarized in Section 4. 

Journal of Applied Mechanics DECEMBER 1986, Vol. 53/829 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Naghdi, P. M., and Trapp, J. A., 1975b, "Restrictions on Constitutive Equa­
tions of Finitely Deformed Elastic-Plastic Materials," Quarterly Journal of 
Mechanics and Applied Mathematics, Vol. 28, pp. 25-46. 

Ohashi, Y., Kawai, M., and Kaito, T., 1985, "Inelastic Behavior of Type 316 
Stainless Steel Under Multiaxial Nonproportional Cyclic Stressings at Elevated 
Temperature," ASME Journal of Engineering Materials and Technology, Vol. 
107, pp. 101-109. 

A P P E N D I X A 

We include here the details of the arguments which 
demonstrate that the special loading criteria in equation (3.15) 
with g (rather than g) are consistent with the loading criteria 
of the strain-space formulation, i.e., at an elastic-plastic state 
with Q > 0 we establish the correspondence 

g<0 •» g<0 , (unloading), 
g = 0 <* g = 0 , (neutral loading), 
g > 0 <* £ > 0 , (loading). 

We first prove that at an elastic-plastic state with Q J± 0, g 
= 0 if and only if g = 0. Sufficiency follows equation (3.12), 
where if g = 0 so is ep

KL = 0 and then from equation (3.14) g 
= 0 also. To establish necessity suppose that g = 0. It then 
follows from equations (2.4) and (3.14) that g = 0. 

In view of the result of the previous paragraph note that at 
an elastic-plastic state with Q jt o, g ^ 0 if and only if g T± 0. 
We now prove that at an elastic-plastic state with Q > 0, g > 
0 if and only if g > 0. To establish sufficiency suppose that g 
> 0. If g < 0, then e"KL = 0 by equation (2.4) and (3.14) im­
plies g = g, which is a contradiction and hence we must have g 

> 0. To establish necessity, we suppose that g > 0, and this 
implies that g = g(T + A)/Q from equation (3.17). In view 
of the fact that T + A > 0 (Casey and Naghdi, 1984b, equa­
tion (4.50)) and the fact that we are considering only the case 
in which Q > 0 this implies g > 0. 

As a consequence of the results of the preceding two 
paragraphs, it follows that at an elastic-plastic state with Q > 
0, g < 0 if and only if g < 0. 

In the remainder of this appendix we demonstrate that if Q 
in equation (3.13) is nonpositive at an elastic-plastic state, i.e., 
if Q < 0, then the applied strain rates en and e12 can only be 
such that g < 0. 

We first prove that with Q < 0 we can only have g < 0. 
Suppose g > 0. If g < 0, then equations (2.4) and (3.14) imply 
g = g which is a contradiction. Alternatively if g > 0, then g 
= g(T + A)/Q from equation (3.17). In view of the fact that 
T + A > 0 (Casey and Naghdi, 1984b, equation (4.50)) and 
that we are considering the case in which Q < 0, it follows that 
g < 0 which is also a contradiction. Hence, we can only have g 
< 0 if Q < 0. 

Next, we prove that if <2 = 0, we can only have g < 0. 
Again, suppose that g > 0. If g < 0, then equations (2.4) and 
(3.14) imply g = g which is a contradiction. Alternatively if g 
> 0, with the use of the expression for g resulting from equa­
tion (3.14), and the identity resulting from equation (3.13) 
after setting its left-hand side equal to zero, the constitutive 
equation for the axial plastic strain rate from equation (2.4b) 
implies g = 0 which is also concontradiction. Hence we can 
only have g < 0 if Q = 0. 
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Asymptotic Fields of a Perfectly-
Plastic, Plane-Stress Mode II 
Growing Crack 
The asymptotic near-tip stress and velocity fields are presented for a plane-stress 
Mode II crack propagating quasi-statically in an elastic-perfectly plastic Mises solid. 
The solution is found to have fully continuous stress and velocity fields, and a con­
figuration similar to that of the anti-plane strain problem: a singular centered fan 
plastic sector ahead of the crack, followed by an elastic unloading sector and a con­
stant stress plastic sector extending to the crack flank. The impossibility of a plane-
stress Mode I crack solution having these properties is also discussed. 

1 Introduction 

Rice (1982) presented a complete analysis of the asymptotic 
structure of the near-tip stress and deformation fields of a 
crack growing quasi-statically in an elastic-perfectly plastic 
solid. There, all possible solutions to the governing equations 
in the plastic and elastic sectors are given for anti-plane strain, 
plane strain, and plane stress. Drugan and Rice (1984) 
presented a general study of the continuity conditions across 
quasi-statically moving surfaces such as the interfaces between 
these sectors. 

In anti-plane strain, Chitaley and McClintock (1971) gave 
the first successful assembly of sectors for the Mises material. 
In plane strain, Slepyan (1974) presented the corresponding 
assembly of sectors for the Tresca material in both Modes I 
and II. Independently, Gao (1980) and Rice et al. (1980) pro­
duced results for the Mises material in Mode I (v — 1/2), and 
Drugan et al. (1982) generalised these results to the case of v ^ 
1/2. 

Although the plane-stress Mode II problem does not have 
the practical importance of the corresponding Mode I prob­
lem, it has theoretical importance. It also has special 
significance because no complete solution has yet been found 
to the Mode I problem. In this paper we present a solution to 
the plane-stress Mode II problem and throw some light on the 
Mode I problem. 

2 Formulation 

With reference to Fig. 1, let *,-(/ = 1,2,3) be a Cartesian 
coordinate system of fixed orientation travelling with the 
crack tip such that the x3 axis coincides with the straight crack 
front. Furthermore, let e, be the unit vector corresponding to 
the Xj direction. Similarly, let r, 8 be polar coordinates cor­
responding to xa(a = 1,2) and e r, e8 be the corresponding 
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unit vectors. The crack tip moves quasi-statically with velocity 
V = Ve{ with respect to the stationary coordinate system Xj. 
Thus in asymptotic analysis the material derivative is given by 

( ) " = - K ( ),, (1) 

The dependent variables of the problem are the in-plane 
components of the stress tensor a, and the velocity vector v 
(y3 does not enter the formulation). The governing equations 
are equilibrium with the inertia term neglected 

V-<r = 0 (2) 

and the constitutive relations corresponding to an isotropic 
Mises material satisfying the Prandtl-Reuss flow rule 

D = ( 1 / £ ) ( 1 + * - ) E - ( K / £ ) 7 V ( £ ) I + A - S (3) 

Here E is the modulus of elasticity, v is the Poisson's ratio, I 
= e ^ is the identity tensor, S = a - (1/3) Tr(o)\ is the stress-
deviator tensor, D = (l/2)[Vv + (Vv)'] is the strain-rate ten­
sor, £ = <r" is the stress-rate tensor, and A" is a scalar such 
that: (i) A* = 0 for elastic response, (ii) A" > 0 for plastic 
loading. In the second case the equations are supplemented by 
the Mises yield condition 

X 2 i 

Fig. 1 Crack tip geometry 
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Fig. 2 Loading history of particle P 

= V 3 : (4) <re = [(3/2)S:S]1/2 

where TB denotes the yield stress in shear. 
The boundary conditions of the problem are 

ff„.(r,0) = <T99(r,0) = M/-,0) = 0 (5) 
as required by Mode II symmetry, and 

art)(r,w)=aM(r,Tr) = 0 (6) 

because the crack faces are traction-free. 
Rice (1982) has shown that the governing equations admit 

only three types of asymptotic solutions. Thus near the crack 
tip we can only have three types of sectors: elastic sectors, and 
plastic sectors of either the constant stress or centered fan 
type. Here we will look for a solution with a centered fan sec­
tor ahead of the crack (0 < 0 < 0,), followed by an elastic sec­
tor (61 < 8 < 82) and a constant stress sector extending to the 
crack face (02 < 0 < TT). This configuration is schematically 
depicted in Fig. 2. 

According to Pan (1984) we need to impose continuity of all 
the components of the stress tensor across each elastic-plastic 
boundary 

[crrS] = K ] = [<Tw] = 0 (7) 

where [ ] denotes the jump in a quantity as 0 increases in-
finitesimally. He also shows that we can impose continuity of 
the velocity vector, unless the stress state at the interface meets 
certain specific conditions, in which case discontinuities in the 
velocities cannot be ruled out. Here we will look for a solution 
with a continuous velocity so that we impose 

[vr] = [vg]=0 (8) 

3 Solution 

The leading order terms in the asymptotic expansion of the 
stress and deformation fields in the three sectors can easily be 
calculated and are given below. Note that the boundary condi­
tions have already been imposed in these expressions. 

(i) Centered fan sector 

o„ = — T„sin0 om = - 2r„sin0 (9) 

(10) 

(11) 

vr = - (3 /2) V( TD /E)sm28ln (r/R) 

Vg = 3 V( T0/E) [1 - (4/5)cos20 + 5(cos0) - 1/2]ln (r/R) 

A- = -(3/2)(V/E)[(,6/5)cos8 + B(cos9)-3/2]ln(r/R)/r 

(ii) Elastic sector 

OX2 = (T0/A)[A1(28 + sm26) -A2cos,28 + Ci2\ 

CTll=(To/4)[4^1/«lsin0l+/41cos20 + /l2(20 + sin20)+C11](12) 

<T22 = (To/4)[-yl1cos20 + ^2(20-sin20) + C22] 

vl = V(To/E)Alln(r/R) 

v2=V(r0/E)A2ln(r/R) 

(Hi) Constant stress sector 

<jI2 = 0 a , ,=V3T0 ff22 = ° 

(13) 

v, = V(To/E)Dlln(r/R) 

v2=V(r0/E)D2ln/r/R) 

(14) 

(15) 

C/3 

oe(6) 

aee(6) 

Angle, 9 

Fig. 3 Stress distribution 

v20) 

v,(9) 

3D 60 9D 120 150 ISO 

Angle, 9 
Fig. 4 Velocity distribution 

A- =(l/V3)(K/£')[cos0-l/(3 cos0)]-'CC>i +£>2tan0)/r (16) 

These fields involve ten unknown constants (AUA2,B, Cn, 
Cu, C22, Di,D2,8u and 02), and must be subjected to the five 
continuity conditions given by equations (7) and (8) across the 
two boundaries for a total of ten conditions. A solution to this 
nonlinear algebraic system was found with 

9i = 13.31383 deg 

M -D -0.68994 

fl=-0.18814 

C n =-0 .38413 

02 = 179.61254 deg 

A2=D2~ -0.00387 

C l 2 « 0.26953 

C 2 2 «-0 .04160 

(17) 

and the associated stress and velocity fields are depicted in 
Figs. 3 and 4. Note that the yield condition is nowhere 
violated, and in particular that ae < a0 for 0j < 0 < 02. Also 
note that A' > 0 near the crack tip in both plastic sectors. 
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4 Concluding Remarks 

The results of this problem agree in form with those of the 
other two anti-symmetric cases, anti-plane strain Mode III and 
plane-strain Mode II. Thus it is found that in all these cases 
the solution has continuous stress and velocity fields, and the 
same configuration: a plastic sector ahead of the crack which 
produces singular strains, followed by an elastic unloading 
sector and a reverse plastic flow sector on the crack flank 
which produce no additional singular straining beyond the 
unloading level. 

Vis-a-vis the plane-stress Mode I problem, we find that 
assuming a similar assembly of sectors does not yield a solu­
tion with continuous stresses and velocities. To see this, we 
remark that the velocities in the centered fan sector would be 
(Rice, 1982) 

Vr= -3V(TO/E)sin20 ln(r/R) 

ve = -1V{T0/E) (sine) '1 / 2 V\ (.sm<t>)W2cos2<t> d4> 

+ B\ln{r/R) 

Mode I symmetry would then require 

M/ \0 ) = 0 

(18) 

(19) 

This would make B vanish, which in the context of the 
previous formulation would leave only nine unknowns to 
satisfy ten conditions. Hence, it is impossible to find a con­
tinuous asymptotic solution to the plane-stress Mode I pro­
blem with the given configuration of sectors. 

A somewhat similar situation appeared in the plane-strain 
Mode I problem where a discontinuity in the tangential com­
ponent of the velocity, consistent with the material model, had 
to be admitted. Thus it is conceivable that discontinuities in 
the velocity may have to be introduced in the solution of the 

plane-stress Mode I problem. Pan (1984) has considered such 
discontinuities. 

Finally, we point out that in addition to the plane-stress 
Mode I problem, the Mises plane-strain Mode II problem with 
i i ^ 1/2 remains to be solved. For v = 1/2 the solution ob­
tained by Slepyan (1974) for the Tresca material also holds for 
the Mises material. 
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On Consistency Relations in 
Nonlinear Fracture Mechanics1 

A simple form of consistency relations between generalized forces and 
displacements for systems exhibiting power-law behavior is presented. The later 
discussion focuses on certain details regarding applications of the relations to 
nonlinear fracture mechanics, emphasizing the finite element analysis of a single 
edge-cracked strip subjected to remote tension under plane strain conditions. 

Introduction 

Within the last decade there has been a serious computa­
tional effort towards obtaining numerical solutions to prob­
lems of nonlinear fracture mechanics. The handbook format­
ted reference (Kumar et al., 1981) gives extensive tabulations 
of important parameters (/-integral, CTOD, etc.) for various 
configurations, loadings, and material behaviors, which 
makes it useful for engineering analysis, and the review of 
prior work in the field permits its use as a good starting point 
for further research. The later work of Shih and Needleman 
(1984) exposes some quantitative discrepancies between the 
two results. These discrepancies cause confusion and implicit­
ly raise the legitimate question, "who is right?" The purpose 
of this work is to help resolve the matter of quality of reported 
data. 

There are three parts in this paper. The first one focuses on 
the derivation of consistency relations between generalized 
forces and displacements in fairly general types of nonlinear 
systems, including the class of traction prescribed boundary-
value problems for power-law isotropic materials, exhibiting 
in pure tension stress-strain behavior 

e0 V a0 / 
(1) 

where e0 and a0 are reference strain and stress values, and n is 
a material exponent varying from one for the linear material 
to infinity for the rigid plastic material. 

The second section discusses some specific features of solu­
tions for fracture mechanics configurations, stressing both the 
validity of the application of the consistency relations in prin­
ciple and their potential use in the detection of errors. 

The paper is concluded with a numerical example to which 
the consistency conditions are applied-the single edge-
cracked strip subjected to remote tension under plane-strain 
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part by ONR/Solid Mechanics under grant N00014-80-C-0706. 
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conditions. The results are compared against the data reported 
by Kumar et al. (1981) and Shih and Needleman (1984). 

Throughout the paper we use boldface letters for vectors, 
matrices, and tensors. Dot stands for an appropriate inner 
product. All computations reported herein have been per­
formed using the ABAQUS finite element program on a 
DATA GENERAL MV-10000 computer. 

Consistency Relations 

Let us consider some body loaded by a set of generalized 
forces Q. The set of generalized displacements is taken as 
derivable from the constitutive potential F, which depends on 
the overall geometry, material properties and the forces: 

dF 
q = l Q - (2) 

We confine our attention to the class of potentials which are 
both convex and homogeneous functions of Q degree (n + 1): 

F ( a Q 1 + ( l - a ) Q 2 ) < a F ( Q 1 ) + ( l - a )F (Q 2 ) , (3) 

- £ - Q = (« + lV7- (4) 

In equation (3) it is understood that Q,, Q2 are arbitrary 
sets of generalized forces and 0 < a < 1. In the relation (4), we 
adopt Euler's Theorem on homogeneous functions as a defini­
tion. One of the important properties of convex functions is 
the positive semidefiniteness of the Hessian matrix F (tangent 
compliance in the force-displacement framework): 

d2F 
r = l<F- (5) 

The inner product of T with Q ® Q leads to an important con­
clusion that the potential functions F defined above are 
nonnegative. 

The alternative definition of a homogeneous function 
allows us to reduce the effective number of independent 
variables by one; the most general representation serving our 
purposes is: 

F(Q)=f(x)[r(Q)]"+i, (6) 

where /(x) is a nonnegative function of the reduced set x, 
which dimension is one less than that of Q, and r(Q) is an ar­
bitrarily defined positive function in the Q space. The key 
point of the forthcoming derivation is that the generalized 
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displacements in equation (2) are the partial derivatives of the 
same function and, therefore, should be related. We limit our 
demonstration to the case of two generalized forces. The ex­
tension to a multidimensional set is transparent and will not be 
considered here. In this case equation (6) may be reduced to 

F=-
1 

w+1 
f(x)Q" Q: = Q , > 0 , x:=- (7) 

Straightforward differentiation leads to the following expres­
sions for q and T: 

q= 
(n+l)f-xf 

f 

Q" 
n+l (8) 

f(n+l)nf-2nxf'+x2f" 

nf'-xf" 

symmetry 

/ " 

Q" 
n + l 

(9) 

where prime denotes differentiation with respect to x. To en­
force positive semidefiniteness of T we require both r2 2 and 
the determinant of r to be nonnegative, which gives 

/ " > 0 , (10) 

/ / " 
n + l 

/ ' 2 a0 . (11) 

But since the function fix) is nonnegative, condition (11) is 
sufficient to guarantee positive semidefiniteness. 

Introduction of an auxiliary function y, in a way a con­
jugate of x, and given by 

/ ' 
y-

Qi 

qx {n+V)f-xf 

permits the rewriting of condition (11) in a simpler form: 

y'>0. 

(12) 

(13) 

Now, instead of considering the related pair of functions 
f(x) andf'(x) to describe the generalized displacements, we 
can use the pair/(x) and y(x) related via (12). If values of f(x) 
and y(x) are given at some point, say x = x0, f(x0)=f0,y(x0) 
=y0, then integration of (12) leads to 

* > - ' - ( * < « • 
(14) 

But for any value of x>x0 with x0<t<x we may write the 
following inequality 

y{t) _ y(x) y0 (15) 
l + ty0 l + ty(t) l + ty(x) 

which, after the integration gives us the main result of this sec­
tion: 

i+xvo < ( A ^ r < 1+x^ (i6) 
l+^o^o Vo-7 l+Xoy(x) 

It is important to mention that (11) and (13) are equivalent 
only if <7i > 0 for all the points within the interval [x0, x], 
which implicitly imposes conditions on both x0 and x. 

Application to Fracture Mechanics 

A broad class of problems of fracture mechanics can be 
described by a generic problem - one is given a configuration 
containing a crack, loaded by forces Q, and is asked to deter­
mine the value of the /integral (Rice, 1968) to characterize the 

local fields (Hutchinson, 1968; Rice and Rosengren, 1968) and 
q —displacements, at the remote distances, due to the in­
troduction of the crack, 

q = q ' -q / ' (17) 

where q' and qh stand for generalized displacements in two 
auxiliary problems. The first one is a prescribed traction 
boundary-value problem for the given configuration. The sec­
ond one is identical, but there is no crack. 

The constitutive potential F(Q) becomes equal to the dif­
ference in the complementary energies of the auxiliary prob­
lems: 

F(Q)= f (E ' .T ' -E*»T*)dF, 
n+l Jv 

(18) 

where T and E stand for the stress and strain tensors, 
respectively. 

The connection between this class of problems and the one 
described in the first section is obvious but, nevertheless, there 
are some important details to be considered both due to the 
necessity to perform numerical analysis and the special 
features of the fracture mechanics problems per se. 

At first, we would like to address the matter of the possible 
loss of the homogeneous structure of F(Q). In principle, the 
linearity of equilibrium, compatibility equations, and bound­
ary conditions, combined with the constitutive law, requires 
an analytical solution to the problem to be homogeneous. But 
if we have to model an incompressible material and, therefore, 
employ a penalty procedure in numerical analysis, we can en­
counter deviations from homogeneity. The simplest way to in­
troduce a penalty is by linear relations between isotropic com­
ponents of the stress and strain tensors: 

Ka0 
trT = -trE. 

3e0 
(19) 

We argue, heuristically at best, that as K tends to infinity, the 
influence of the hydrostatic stress diminishes, and material 
response tends toward incompressibility. An attempt to con­
serve homogeneity by using a power-law penalty may easily 
lead to numerical problems as we operate with large numbers. 
Therefore, we can claim that degree of compressibility and 
deviation from the homogeneous structure are implicitly 
related, and in the limiting case of a large K, material tends 
towards both homogeneous and incompressible response. The 
straightforward application of (16) may be of use in detecting 
errors in interpretation of penalty term for sophisticated varia­
tional formulations combining both regular displacement-
based and hybrid (displacement and pressure) formulations of 
the finite element method, as implemented, for example, in 
ABAQUS. Later on we present a numerical example for this 
relation. 

The question of convexity is especially interesting for the 
fracture mechanics problems. The difficulty here is that there 
is no single boundary-value problem which may be directly 
analyzed to determine F(Q), but rather two auxiliary prob­
lems. Convexity of each problem is guaranteed by the 
monotonicity of the stress-strain curve or, more precisely, by 
the convexity of the strain energy density function (Marsden 
and Hughes, 1983). The function F is nonnegative (Rice, 
1968), but is not necessarily convex. The straightforward 
mathematical example is F(QU Q2)= \QX Q2 |<"+n/2. 

In order to demonstrate the possible loss of convexity in a 
physical problem, we address the case of a penny-shaped crack 
embedded in an infinite isotropic power-law matrix subjected 
to axisymmetric remote loading, characterized by the axial 
and radial stresses Q{ and Q2, respectively. We consider three 
materials which can be generated from (1) as tensorial exten­
sions. The first one is the incompressible material given by 
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3 / a \ ' 

. i 

"o 
(20) 

(21) 

where S is the stress deviator and we take n = 3. The second 
material is linear elastic (n = 1) with Young's modulus 
E=a0/e0 and Poisson's ratio v. The last case is an isotropic, 
power-law material, compressible material, whose constitutive 
equations are derived from (20), (21) by substitution of the 
tensor T itself for the stress deviator S. The values of a0, e0, 
and v are not important because they appear as constant 
multipliers. 

The first example is treated in detail by He and Hutchinson 
(1981), for the case Ql >0 , Qx > Q2. The suggested functional 
fit to the numerical solution is given by 

(22) 

where a is the crack radius. The above expression gives us con­
cave F(Q), which can be seen directly from deriving the Hes­
sian matrix. The formula is derived from a perturbation 
technique, agrees well with numerical solutions providing 
x< 0.6, and for larger x it fails to give an accurate estimate (He 
and Hutchinson, 1981). The finite element analysis of the pro­
blem, which we have conducted, shows that at approximately 
the same point (x=0.6) the complete numerical solution gains 
convexity; therefore, we may conclude that there is condi­
tional convexity in this case. 

The well-known solution (Sneddon, 1964) for the isotropic 
linear material coincides with (22) for n= 1 and v= 1/2, and is 
given by 

HQ) = 
8(1 -v1) 

IE 
azQ]. (23) 

This expression gives only one nonzero component, r n , of the 
Hessian matrix, which, of course, retains positive 
semidefiniteness, but relations (16) degenerate to triviality. 

By performing a finite element analysis we find that the 
third material gives us an unconditionally convex potential, 
and the main result of the first section is of use. 

In the above examples we have encountered three possible 
situations for two-dimensional Q space; namely, relations (16) 
are relevant at some points in the domain, they are relevant 
throughout the Q space, or they cannot be applied at all. The 
heuristic conclusion may be drawn if we consider the dimen­
sions of the Q space of the two auxiliary and the main prob­
lem for all three materials. In the first example the solution of 
the problem without the crack depends only on the applied 
equivalent Mises stress a. If we introduce a new set of 
generalized forces, namely 

Gi' = 
Qi+2Q2 

Q2 = Qi-Qi (24) 

where the first equation of (24) defines the applied hydrostatic 
pressure and the second equation defines the equivalent Mises 
stress, then the dimension of Q'-space is one in the context of 
the problem without the crack. The main and the other aux­
iliary problem, on the other hand, exhibit two-dimensional. 
load space. It is clear from (23) that an analogous situation oc­
curs with the linear elastic material, except that the main prob­
lem is the one which has the reduced space. The potential due 
to the introduction of the crack does depend on the single 
force Qi, but, by superposition, is independent of Q2. Only 
for the last example is there a truly two-dimensional Q space 
for all three problems. 

It is clear that in the first two examples there exists some set 

_s_ 
2 

f N 
Fig. 1 Single edge-cracked strip 

Q, which essentially forms the null-space of F(Q) for the main 
or the auxiliary problem. Obviously, it is hydrostatic pressure 
for the incompressible material and stressing parallel to the 
crack plane for the main problem in the linear case. The loose­
ly defined induction is that, in order to employ (16), all three 
problems must have the two-dimensional Q space. A more 
rigorous statement would, perhaps, require the definition of F 
on the complement of the null-space. 

The conclusion is heuristic but, nevertheless, seems to 
rehabilitate the "misbehavior" of the otherwise mathemat­
ically "loyal" equations. 

It is important to note that this conclusion does not put any 
question marks on the substantial body of theoretical and 
computational effort (Budiansky et al., 1981; Rafalsky, 1985) 
in terms of the derivations and the implementation of a varia­
tional principle for determination of F directly, because here 
we deal only with the generalized force space of boundary 
tractions, rather than with a function space of Ritz procedure. 

To conclude this section we would like to mention the 
possibility of including the / integral into a gradient structure 
analogous to (2), which leads to the correlation between near 
and far fields and, of course, to another group of consistency 
relations. The procedure that was initially suggested by Parks 
et al. (1983) and later was applied by Shih and Needleman 
(1984) is essentially based on finite difference approximation 
of the gradient scheme for planar and axisymmetric problems. 

Numerical Example 

A single edge-cracked strip, Fig. 1, subjected to a remote 
loading under plane-strain conditions is considered. The 
dimensions are: 
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X 
Fig. 2 Finite element mesh 

a=10, 6 = 20, L = 60. 

The constitutive behavior is modeled by (19)-(21) with 
numerical values of material constants: 

<j0 = l, e0 = l, K=10\ n = 5. 

The values of <T0 and e0 do not correspond to-any real 
material, but as long as we are able to scale solutions, the idea 
of operating with more computationally convenient numbers 
is rather helpful. The finite element discretization is given in 
Fig. 2. The plane strain eight-node hybrid element with nine 
integration points and a bilinear interpolation for pressure is 
employed. 

The remote forces per unit thickness are tensile load N= 20 
and varying positive bending moment M, tending to close the 

Table 1 Pure tension data, n = 5, K = 10°, alb = 1/2 

Reference 

Kumar et al. 

Shih and 
Needleman 

current 

t 

83.90 

113.1 

99.00 

1 

-2.393 

- 2.430 

-2.677 

h 

309.9 

407.4 

390.2 

Table 2 Combined loading data, K = 106, n = 5, alb = 1/2f 

X 

.0000 

.0001 

.0002 

.0003 

.0004 

.0005 

.0006 

.0007 

.0008 

.0009 

.0010 

/ 

99.039237 

98.881223 

98.720673 

98.564139 

98.405337 

98.247815 

98.090018 

97.929625 

97.776636 
97.618779 
97.461915 

y 

-2.677448 
-2.676500 
-2.675612 
-2.674622 

-2.673701 

-2.672751 

-2.671816 

-2.670958 

-2.669905 

-2.668991 

-2.668057 

Lower 
Bound 

1.000268 

1.000535 

1.000803 

1.001071 
1.001338 
1.001606 
1.001873 

1.002140 

1.002408 

1.002675 

Intermediate 

Value 

1.000266 
1.000537 
1.000802 

1.001071 

1.001338 

1.001606 

1.001880 

1.002141 
1.002411 
1.002679 

Upper 

Bound 

1.000268 

1.000536 

1.000804 

1.001072 
1.001341 
1.001609 
1.001878 

1.002147 

1.002416 

1.002685 

Table 3 Pure tension data tor variable penalty term, x = 0, n = 5, 
a/6 = 1/2 

logK 
0 
1 
2 
4 
6 

h 
393.7 
390.5 
390.3 
390.2 
390.2 

/ 
101.8 
99.30 
99.05 
99.05 
99.04 

y 
-2.644 
-2.674 
-2.676 
-2.677 
-2.677 

•Emin 

.0060 

.0012 

.0008 

.0008 

.0008 

crack. We are interested in the pure tension solution and apply 
bending only for the purpose of simulation of conditions (16). 
The generalized forces are identified as Q\'.=N, Q2:=M/b 
with corresponding pair of generalized displacements ql: = <5 
and g2:-8b. It is understood that the generalized 
displacements refer to the contribution due to the crack, as 
discussed in the previous section. 

The potential F(Q) and the J integral are taken in conve­
nient dimensional forms 

1 / N \ "+ 1 

*W» = — r W > V ( * ) ( — T - ) . (25) 
n+l \o0b/ 

J=aQe0bh(x)l—-) . (26) 

The results of the computations are given in Table 1. We 
conclude that the current analysis gives results close to those 
of Shih and Needleman (1984) for the values of the rotation 
and the /integral; the displacement is somewhere between the 
earlier reported data. It is worth mentioning that the main 
point of discrepancy between the previous data is in the near 
field quantities; therefore, our results rather support the data 
reported by Shih and Needleman (1984). 

The next part of our analysis is concerned with the simula­
tion of data for relations (16). It is obvious that in this exam­
ple problem, consistency relations can be of importance. But 

hn the upper block of the table, relations (16) are not valid, in the next block 
they should be valid according to (27), (28), and in the last part relations (16) are 
unconditionally valid. 
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on the other hand, if values of x and x0 are sufficiently close 
we expect the interference of the numerical noise in the 
tabulated data to be substantial; therefore, we have to decide 
on a minimum value, xmi„, such that for all x — x0 £:Jcmin, con­
sistency relations give us reasonable conclusions. 

We adopt a very simplified estimate. The difference be­
tween bounding terms in (16) at the pure tension limit xQ = 0 is 
(x—x0)(y— y0), and this should remain positive in the most un­
favorable case. As we have four kinematical data entries in the 
above formula, then we require 

y-y0>4e„ (27) 

where eq is the relative error in q. From the homogeneity and 
dimensional considerations we can take: 

eq = neR, (28) 

where eR is the relative error in nodal reaction force in the vir­
tual work sense, and in the analysis with the ABAQUS pro­
gram, the maximum value of this error has been set at 10"4. In 
expression (28), we have neglected a dimensionless constant 
multiplier expected to be of order unity. Relations (27), (28) 
form the implicit conditions on xmi„. The results of computa­
tions are given in Table 2 and give xmin = 8.10"4, which is in a 
fair agreement with conditions (27), (28) which give the value 
of *min = 3.10~4. Therefore, we may claim that our data is 
probably acceptable. 

The section is concluded by the consideration of the penalty 
term as a possibility for the loss of homogeneity. In this set of 
computations we take A'varying from 1 to 106, keeping the 
rest of the material constants to be the same. 

The results of Table 3 show that the maximum difference 
for various K> 100, in xmjn, /integral, and q, only appears in 
the fourth digit. These results suggest that one might be able to 
use moderate values of the penalty K. There are clear advan­
tages to such a procedure because the computations converge 
more rapidly and there is less chance to encounter numerical 
difficulties. For small values of K (below 100) the most sen­
sitive parameter turns out to be xmin, though the physical 
quantities remain within an acceptable variation. 
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Elastodynamic Formulation of the 
Eulerian-Lagrangian Kinematic 
Description 
An extension of the Eulerian-Lagrangian kinematic description (Haber, 1984) to 
elastodynamic problems is presented. Expressions are derived for field variables and 
material time derivatives using the new kinematic description. The variational equa­
tion of motion is written in a weak form suitable for use with isoparametric finite 
elements. The new kinematic model allows a finite element mesh to continuously ad­
just for changes in the structural geometry, material interfaces, or the domain of the 
boundary conditions without a discrete remeshing process. Applications of the new 
model to mode I dynamic crack propagation demonstrates its advantages over mov­
ing mesh methods based on conventional Lagrangian kinematic models. Numerical 
results show excellent agreement with analytic predictions. 

Introduction 
Dynamic analysis in solid mechanics is usually based on a 

Lagrangian kinematic description in which the motion of par­
ticles is measured from a known material configuration. In 
finite element analysis, this implies that the material geometric 
discretizaton is selected a priori and the finite element mesh is 
required to follow the material motion. 

There are certain problems that require frequent or con­
tinuous remeshmg if the mesh is forced to follow the material 
motion. These include situations in which either the structural 
geometry, material interfaces, or the domain of the boundary 
conditions change with time; and may pertain to either large 
or small-deformation behavior. For example, in dynamic 
crack propagation the material particle associated with the 
crack tip changes as the crack propagates, and it would be im­
possible to describe correctly the crack-tip motion without a 
remeshing process. The displacement and velocity fields need 
to be updated correctly for the new material discretization to 
accomplish the remeshing. This is usually done approximately 
in a conventional Lagrangian description using interpolation 
techniques (Nishioka and Atluri, 1980a). Incremental contact 
behavior is another example that calls for some form of 
remeshing (Haber and Hariandja, 1985). Bazant et al. (1978) 
have applied a special form of an Eulerian description to mode 
I dynamic crack propagation problems using a moving coor­
dinate system centered at the crack tip. The finite element 
mesh is translated as a rigid body to follow the crack-tip mo­
tion. This procedure is restricted to semi-infinite strips whose 
surfaces are parallel to the direction of crack growth. Also, 
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appropriate dynamic boundary conditions must be determined 
for the leading and trailing edges of the finite element mesh. 

The mixed Eulerian-Lagrangian kinematic description 
(ELD) (Haber, 1984; Haber and Hariandja, 1985) provides an 
alternative to conventional remeshing procedures to overcome 
these problems. Haber (1984) presents a general development 
of the ELD for large-deformation analysis. The ELD shares a 
similar basic concept with the arbitrary Lagrangian-Eulerian 
(ALE) descriptions used in fluid mechanics (Donea et al., 
1977; Belytschko and Kennedy, 1978; Hughes et al., 1981). 
However, the displacement-based ELD is appropriate for 
analysis in solid mechanics, and is distinct from the ALE 
models that use material velocity as the primary unknown. A 
specialization of the ELD to small-deformation behavior is the 
basis of explicit expressions for energy release rates used to 
analyze mixed-mode crack problems (Haber and Koh, 1984; 
Haber and Koh, 1985). To date, the ELD has been applied 
primarily to static problems. 

In this paper the ELD is extended to the analysis of dynamic 
problems. A convenient fixed domain, defined in a special 
reference coordinate system, is selected as the spatial reference 
configuration. The mapping of the reference configuration to 
an actual material domain, defined in the global coordinate 
system, varies with time. The motion of material particles, 
other field variables, and the field equations are all expressed 
in the reference coordinate system. Expressions for material 
and spatial time derivatives in the ELD are presented and ap­
plied to the variational equations of motion. A special weak 
form of the variational equations of motion is presented for 
implementing the dynamic ELD in isoparametric finite ele­
ment procedures. Here, the variation of the mapping between 
the reference and material configurations constitutes motion 
of the finite element mesh. Example analyses of dynamic 
crack propagation problems are presented to demonstrate the 
new model. Advantages of the dynamic ELD over conven­
tional kinematic models are noted. Further applications of the 

Journal of Applied Mechanics DECEMBER 1986, Vol. 53/839 

Copyright © 1986 by ASME
Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Material Configuration 
at Time t2 

Current Configuration 
at Time t2 

Current Configuration 
at Time t| 

Reference Configuration 

Fig. 1 Eulerian-Lagrangian kinematic model 

ELD to dynamic crack propagation problems will be reported 
in a later paper. 

Kinematics 

The ELD kinematic model is illustrated in Fig. 1. A fixed 
Cartesian coordinate system is used to describe the material 
and current configurations, denoted by volumes V and v. 
Superscripts tx and t2 are used to refer to two distinct times. 
An independent spatial reference configuration vr is selected 
which is invariant in time. A location on the reference con­
figuration is denoted by its position vector \r defined in a 
separate reference coordinate system. At any time t a reference 
vector xr is mapped onto a material particle identified by its 
position vector X' in the material configuration. This mapping 
varies with time, so the material volume associated with vr 

changes. Changes in the material particle associated with a 
fixed coordinate xr are the Eulerian part of the kinematic 
model; the displacement of a particle u' is the Lagrangian 
part. The reference coordinates xr are the only independent 
spatial variables and both the displacement field and the map­
ping to the material configuration change with time. 

u = u(xV) 

X = X(xV) 

(1) 

(2) 

Hereafter the superscript denoting time is omitted for brevity. 
The following notation for differential operators is used. 

3( ) , , d( ) 
3X: ( );,'. 

dxf 
• = ( ) . , (3) 

The Jacobian of the mapping between X and xr has com­
ponents Jjj = Xjj and the inverse, or Eulerian, Jacobian com­
ponents are J{j = tfi;j = Jjj1. Differential volumes dVand dvr 

in the material and reference configuration, respectively, are 
related by dV = Jdvr, where / i s the determinant of the Jaco­
bian components Tjy. It is assumed that the determinant of the 
Jacobian is positive at all points in the structure. Differential 

Isoparametric Element Geometry 

Parent Element 

Fig. 2 Specialization of the ELD model to isoparametric finite 
elements 

areas dA and da' in the material and reference configuration, 
respectively, are related by dA = Kadar\ where Ka is an area 
metric between two configurations. 

In the following, it is assumed that the deformations at all 
times can be adequately described by the engineering strain 
tensor; but that finite changes in the mapping X(xr, f) are 
possible. The use of large-deformation strain measures in the 
ELD is addressed by Haber (1984) for static problems, and has 
no effect on the dynamic part of the formulation. The com­
ponents of the small-deformation strain tensor are 

1 
% = - y (uukJkj + uj<kJki) (4) 

Time derivatives in the two coordinate systems are written 

ao I 
dt Ixfixed 

3( ) | 

= (*); Material time derivatives 

= ( ); Spatial time derivatives 

(5) 

(6) 
dt lxrfixed 

The material and spatial time derivatives are related by 

(*) = ( ' ) - ( )-JXJ=( " ) - ( )ikJkjXj (7) 

and the spatial time derivative of the inverse Jacobian is ex­
pressed as (see equation (25) in Haber, 1984), 

1 
J'j= l i m -TT W'-J'ij) = -J'ikX'kJ',j 

At—0 i i / 
(8) 

Then the velocity and acceleration of a material particle are 

u-, = ut - Uj. JXJ = it, - uKkJkJXj (9) 
* * 
U: = U, 

. . -2ui.jXj + 2u,JXJ.kXk-u,jXj + u,jkXJXk (10) 

Variational Equations of Motion 

In this section the governing equations for an elastodynamic 
problem are formulated in the reference coordinate system. 
The equilibrium and constitutive relations, written in the 
material configuration, are 

amj+Fi P Uj 

Cijklekl 

(11) 

(12) 
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where F: are components of body force per unit volume, atj 

are components of the Cauchy stress tensor, and Cijkl are com­
ponents of the elasticity tensor. The mass density p is assumed 
to be uniform over the volume V. The strain-displacement 
relations are defined in equation (4). The displacement and 
traction boundary conditions are 

Uj = Uj(xr,t) onAu (13) 

oyrij = T, = Ti(\',t) onAT (14) 

in which w, and Tt are prescribed displacements and surface 
tractions, Au and AT are surface regions in the material con­
figuration on which displacements and tractions are pre­
scribed, and rtj are the direction cosines of the surface normal 
vector. 

Let dUj denote a kinematically admissible variation of the 
displacements at time t and let 5e,y = 1/2(5«,;J- + 8M,-.,-). After 
substitution of equation (10) into the variational equations of 
motion we obtain 

f OjjbeijdV- [ FfiUidV- f TfiutdA + f pufiu^V 

- f 2pui.jXj8uidV+ \ 2pUi.jXj.kXkSUidV 

- f pui.jXj8uidV+\ pui.jkXjXk6uidV=0 (15) 

The last integral in equation (15) includes a second-order 
spatial derivative of the displacements, which would require 
the trial functions in an assumed-displacment solution pro­
cedure to be Cj continuous. This requirement can be inconve­
nient in finite element solutions, so the Gauss theorem is ap­
plied to the last integral to relax the continuity requirement. 
Finally, the variational equations are rewritten in the reference 
coordinate system; 

f . oyteyJdif- f . F,8u,Jdvr- f Ti8uiKadar 

J v J v J a j 

+ \ r pufiUjJdvr — \ r 2puij(JkjXj8UjJdvr 

+ \vr PUi,kJk,XhmJmjXjbuiJdV 

- J vr puiikJkjXJ8uiJdvr 

+ r pu^hjXjXtnfiUiK^a' 
J a 

-\vr PUi,kJkjXjXhmJml8u,Jdvr 

- \vr PUi.J.jXjXfiU^JdV = 0 (16) 

where ar
T is a surface area in the reference configuration cor­

responding toAT. Equation (16) can serve as the basis of weak 
formulations of general, linearly elastic dynamic problems. 

Equation (16) can be simplified for certain special cases. 
The surfaces of a finite body are constrained by X«n = 0 to 
prevent material motion across the physical boundaries of the 
structure. In this case the second surface integral in equation 
(16) vanishes. Note that the constraint does not hold when the 
reference configuration is mapped onto a subdomain of a 
large structure as in Bazant et al. (1978). In this case, some 
portions of ar do not represent physical structure boundaries. 
When the mapping changes only in the Xx direction, as in the 

analysis of mode I dynamic fracture problems, equation (16) 
reduces to 

I r ajj8eijJdvr — I r Fi8uiJdvr 

— 1 fj8uiKadar + 1 ptii8uiJdvr 

~)/ 2Pili,kJkiX^uiJdvr 

-\/PKi,kJklXl8uiJdvr 

- \vr puljcJn{X{f6ultinJmlJdvr = (i (17) 

It is easily verified that the variational equation of motion by 
Bazant et al. (1978) for uniform p is equivalent to equation 
(17) if a moving spatial domain centered at the crack tip is 
chosen as the reference configuration in the dynamic ELD for­
mulation. It should be noted that this equivalence is only valid 
for the special case of constant-velocity, uniform motion of 
the spatial domain. In fact, Bazant's equation is not valid for 
general nonuniform motions.1 

Isoparametric Finite Element Model 

This section presents a specialization of the dynamic ELD 
kinematic model to isoparametric finite element formulations. 
Finite element expressions are written for a general three-
dimensional linear elastodynamic problem using equation 
(16). In general, the motion of a spatial domain can be either 
known or unknown in advance. In this paper the finite ele­
ment formulation is only developed explicitly for a known 
mesh motion, but it can be extended to the case of unknown 
motion, as will be discussed later. 

In the isoparametic specialization of the ELD a mapping is 
established between a mesh of isoparametric elements and an 
actual material domain. The kinematic model is depicted in 
Fig. 2. The parent element geometry is selected as the spatial 
reference configuration for each element. A local natural 
coordinate system is used as the reference coordinate system in 
each parent element. Motion of the finite element mesh is 
represented by changes in the isoparametric mapping. The 
displacement field, the element geometry and other field 
variables are interpolated using isoparametric shape functions 
as, 

Uj = hauia 

Ui = hauia 

Ui = hauia 

8ui = ha8uia 

X, = haXia 

X, = haXja 

Xj = haXia 

u = HUe 

ii = HUc 

ii = ! ! ( ) , 

5u = H5Ue 

X = HXe 

X = HXe 

X = HXe 

(18«) 

(18ft) 

(18c) 

(18c?) 

(18e) 

(18/) 

(18*) 

where ha are element shape functions, the subscripts ia in­
dicate the component in direction i at node a ranging from 1 
to the number of nodes in the element. The matrix H is the 
usual interpolation matrix containing the element shape func-

The left-hand side of equation (20) in Bazant et al. (1978) is missing the term 
[vpc Bc/dxi dUj/dxi dUjdVwhich arises from a convective term in the spatial 
time derivative of dUj/dXj for the case of general nonuniform motion. This in­
tegral cancels with the corresponding right-hand side term. For uniform motion 
these terms are zero, and have no effect. 
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tions, and column matrices with subscript e contain quantities 
measured in the global coordinate system, but evaluated at the 
element nodes. 

Equations (18) are used to obtain a discrete form of equa­
tion (16), 

SUrE([ r B
TEBJdv' + | r pUTVGJdvr

e 

- \ r PUTAGJdvr
e+ \ r pH.TkGAiKadar

t 
ive Jae 

- f pHTSGJdv£- \ r PGTATAGJdv')V 
Jve Jve 

+ mTz([ rpHTHjdv^ii 

+ 8VTL(- f r IpWAGJdvlSt 

= 5 l F £ ( j / HTVeJdv'e + j ^ H T W « t ' ) (19) 

in which the summation symbol indicates assembly over the 
number of elements, and vr

e and ar
e are volume and area in the 

parent element geometry. The column matrices U, U, and t) 
are assembled forms of the corresponding element matrices. B 
and E are the strain-displacement transformation and elastici­
ty matrices. Other matrices and the scalar quantity Ax are 
defined in Appendix 1. The reader is cautioned that U and t) 
do not contain material velocities and accelerations, but rather 
first and second-order spatial time derivatives of displacement 
at the finite element nodes. 

The finite element equations obtained from equation (19) 
are 

MU+CU+KU=P (20) 

where M is a consistent mass matrix, C and K are nonsym-
metric "effective damping" and stiffness matrices, and P is a 
load vector. Such nonsymmetric matrices are common in mov­
ing mesh procedures (Nishioka and Atluri, 1980a; Bazant et 
al., 1978). Matrix expressions for M, C, K, and P are 
presented in Appendix I. The solution to equation (20) can be 
obtained by either implicit or explicit time integration 
methods. 

The matrices in equation (20) are evaluated based on the 
geometry at time t + At when implicit integration is used. This 
presents no problem for cases in which the history of mesh 
motion is known. For cases where the element mesh motion is 
not known (e.g., crack propagation prediction, free surface 
and moving boundary problems), the variational equation (16) 
can be rewritten using incremental expressions for both the 
displacement and the mapping. This renders equation (16) 
nonlinear with two sets of unknown variables: increments in 
the displacements Au and in the mapping AX. One way of 
solving the problem is to approximate AX based on conditions 
at time /, and then treat the problem as a known mesh motion 
problem. Iteration might improve the prediction of the mesh 
motion. Another way is to add AX as unknown solution 
variables and solve a linearized form of equation (16). This 
procedure requires additional constraint equations, derived 
from appropriate criteria (e.g., crack propagation criteria or 
moving boundary definitions), to determine the mesh motion. 
Explicit integration methods, based on known geometry at 
time t, produce simpler finite element expressions. Further 
study and tests are needed to demonstrate the practicality of 
the method for problems with unknown mesh motion. 

__i_±_I_i_±_±_. 
L W = 40mm 

2h = 40mm 

Young's Modulus (E); 7.56 x I010 N/m2 

Poisson's Ratio (*); 0.286 

Shear Modulus (^)I 2.94 x lO l oN/m2 

Mass Density (p): 2.45 x I03 Kg/m3 

Fig. 3 Dimensions and material properties of a mode I dynamic crack 
propagation problem 
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A 

A 
a0 

(a) a0 /W = 0.2 

(b) a/W = Q5 
Fig. 4 Finite element mesh for a mode I dynamic crack propagatin 
problem (v = 0.4 Cs): a) initial crack geometry; b) final mesh geometry 

Numerical Examples of Mode I Dynamic Crack 
Propagation 

In this section the dynamic ELD formulation is applied to 
the analysis of a mode I dynamic crack propagation problem. 

842/Vol. 53, DECEMBER 1986 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Kl 

1.0 

k(v)Kr{0)-

0.5 

• Present Method (a0/h = 0.4, W/h =• 2.0) 
Nishioka 8 Atluri {a0 /h =0.4, W/h = 2.0) 
K f l v ) , Nilsson's Steady-State Solution (a0/h = W/h = a» 

0.4 0.5 W 

Fig. 5 Normalized stress intensity factor for a mode I dynamic crack 
propagation problem (v = 0.2 C s ) 
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Fig. 6 Normalized stress intensity factor for a mode I dynamic crack 
propagation problem (v = 0.4 Cs) 

Results of finite element solutions are presented, and com­
parison is made with analytic predictions and other numerical 
results using conventional kinematic descriptions. 

A square plate with an edge crack of length aQ is subjected 
to statically applied prescribed displacements under plane 
strain conditions. After a given time the crack propagates with 
constant velocity, while the prescribed displacements are 
maintained. The dimensions and material properties are 
described in Fig. 3. Three different crack velocities are con­
sidered: v = 0.2, 0.4, and 0.6 Cs, where Cs is the shear wave 
speed. This problem is similar to the problem solved by 
Nilsson (1972), involving steady-state solutions for the pro­
blem of a semi-infinite crack propagating with constant veloci­
ty in an infinite strip. 

A mesh of linear strain triangle (LST) isoparametric 
elements is used to model the upper half of the structure. Four 
quarter-point singular LST isoparametric elements (Barsoum, 
1976) are used to model the crack-tip elements. Quarter-point 
isoparametric elements are often used to model the singular 
strain field near the crack tip in stationary crack problems 
because they are simple to implement and available in most 
finite element programs. However, in a conventional 
Lagrangian kinematic description, the use of quarter-point 
elements does not generate the desired singularity of order 
r~1/2 in the material velocity field for a dynamically pro­
pagating crack. The convective term in equation (9) in the 
dynamic ELD does introduce the appropriate singularity if 
quarter-point isoparametric elements are used. The singularity 
vanishes for a stationary crack. Thus, there is no need to use 
special singular elements, as in Nishioka and Atluri (1980a), 
which introduce compatibility problems at the interfaces be­
tween the singular and conventional elements. The finite ele­
ment mesh used in the present study for v = 0.4 Cs is shown in 
Fig. 4. The mesh in Fig. 4(a) represents the initial crack 
geometry. As the crack propagates, the mesh changes con­
tinuously to model the crack growth. The final mesh at a/W 
= 0.5 is shown in Fig. 4(b). 

The finite element solutions were obtained using implicit in­
tegration with Newmark's parameters 8 = 0.5 and /3 = 0.25. 
The initial crack length a0 is 8 mm, and the change in crack 
length per integration time step is At-v = 0.2 mm. The 
dynamic energy release rate for the propagating crack was ob­
tained by considering the increments in global external work 
and internal energy during a time step. The stress intensity fac­
tor (SIF) was computed from the energy release rate using the 
relation given by Freund (1973). The SIF values plotted in 
Figs. 5-7 are normalized by the SIF of a stationary, semi-
infinite crack in an infinite strip, Kf°(P) = uQE/hln(\ -v2). 
To indicate the expected long-term behavior, normalized 
values of Nilsson's steady-state solution are plotted as dashed 
lines. 

Correct tracking of the SIF is critical in the study of crack 
initiation, propagation, and arrest in brittle materials. The 
dynamic SIF for a running crack in a half plane can be ex-

Kl 

° Present Method 
Nishioko a Atluri 
K f (v ) , Nilsson's Steady-State Solution (o0/h = W/h • oo) 
Nishioka, Stonesifer a Atluri 

Fig. 7 Normalized stress intensity factor for a mode I dynamic crack 
propagation problem (v = 0.6 Cs) 

pressed as the product of a universal function of crack-tip 
velocity k(v) and the SIF of the equivalent stationary crack 
(Freund, 1973). Thus, the SIF immediately after the crack 
starts propagating should be k(v)KI(0), where Kr(0) is the SIF 
for a stationary crack of length a0. This implies a negative 
jump in the SIF when the crack begins to propagate; because 
k(v) < 1.0 for v > 0. Normalized values of k(v)K,(Q) using 
finite element solutions for Kj(Q) are marked on the vertical 
axes in Figs. 5-7. Previous finite element solutions have not 
been able to reproduce the expected SIF jump. For all crack-
tip velocities studied, the present method predicts values of 
SIF virtually identical to k(v)K,(Q) immediately after the 
crack starts propagating, and a steadily increasing SIF until 
the time tf when the first reflected waves arrive at the crack 
tip. In the long term, the SIF approaches Nilsson's steady-
state solution. 

Numerical results obtained with moving singular elements 
implemented in a conventional Lagrangian mesh (Nishioka 
and Atluri, 1980b; Nishioka et al., 1981) are presented for 
comparison. This method requires frequent remeshing with in­
terpolation of field variables to the new node locations. 
Results are shown in Figs. 5-7 for a special singular element 
with propagation-eigen-functions (Nishioka and Atluri, 
1980b) and the usual quarter-point isoparametric elements 
with a global energy balance computation (Nishioka et al., 
1981). Upward arrows indicate the times at which a remeshing 
process is performed in the moving singular element pro­
cedure. For v = 0.2 Cs, the results obtained with the quarter-
point and propagation-eigen-function singular elements are 
nearly identical, so only the results of the latter method are 
plotted. Unlike the results obtained with the dynamic ELD, 
the propagation-eigen-function results do not match the 
analytic prediction of an instantaneous drop in the SIF as the 
crack begins to propagate. The SIF values are overestimated, 
and the error is larger for higher crack-tip velocities. A distur­
bance in the SIF is reported in (Nishioka et al., 1981) for the 
quarter-point isoparametric element procedure at higher 
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crack-tip velocities each time remeshing is performed. This 
might be an artifact of the displacement discontinuities (in 
time) that are produced by remeshing operations in a conven­
tional Lagrangian description. In the dynamic ELD formula­
tion the displacement field evolves continuously as the mesh 
moves, and no disturbance of the SIF is observed. 

Conclusions 

A version of the Eulerian-Lagrangian kinematic model for 
the analysis of elastodynamic problems has been developed. 
Variational equations of motion, suitable for finite element 
formulations, were derived using the new kinematic model. 
The new formulation is particularly effective for analyzing 
problems in which the structural geometry or the domain of 
the boundary conditions change with time. The ELD allows 
the finite element mesh to change continuously without a 
discrete remeshing process, so the displacement and velocity 
field remain continuous in the time domain. In applications to 
mode I dynamic crack propagation problems, the new 
kinematic description correctly models the singularities in 
both the displacement and material velocity fields when com­
bined with singular quarter-point isoparametric elements. 
Numerical examples demonstrate the advantages of the ELD 
with respect to conventional kinematic descriptions and show 
excellent agreement with analytic predictions. The ability to 
correctly predict the jump in the SIF at the onset of crack pro­
pagation is a significant indication of the reliability and ac­
curacy of the dynamic ELD. Further details of implementa­
tion and analysis results for dynamic crack propagation pro­
blems will be reported in a later paper. 

In the present work the consistent mass matrix is used and 
the nonsymmetric equations are solved directly. Whether it is 
possible to improve the accuracy or numerical efficiency of the 
solution by using a lumped mass matrix (Bazant et al., 1976), 
symmetric approximations to the stiffness and effective damp­
ing matrices or indirect equation solvers (Nishioka and Atluri, 
1980a); Bazant et al., 1978) has not yet been studied. 
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A P P E N D I X I 

Finite Element Matrices 

This appendix presents matrices for general three-
dimensional isoparametric finite element analysis based on the 
dynamic ELD kinematic model. As before, the summation 
symbol indicates assembly over the number of elements. The 
consistent mass matrix in equation (20) is 

M = E rPnTnjdvr
e 

and the effective damping matrix is 

C = E ( - f 2pHr AG Jdv'\ 

where matrices A and G are 

(21) 

(22) 

A = 

J\jxj hjxj hjXj 0 0 0 0 0 0 

W Jy*j Jy*J ° 0 ° 
0 0 0 J\JXJ Jyxj JyXj j 

(23) 

Office of Advanced Scientific Computation. Pre and post­
processing of the numerical data was carried out on the VAX 
and Image Processing System, University of Illinois at 
Urbana-Champaign. 
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and 

G = 

g O O 

O g O 

O O g 

H (24) 

g={d/dx[d/dx!ld/dx$}T 

The stiffness matrix is defined as 

K = s ( | / ttTEBJdv£ + \ r pHTDGJdv£ - \ r pHTAGJdv, 

+ \ r PHTAGAiKada^- \ r pH.TSGJdvr
e 

J ae J ve 

~ | pGTATAGJdvr^ 

(25) 

(26) 
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Here, matrix A has the same form as A with X being replaced 
by X. D and S are defined by introducing the following two 
vectors: 

b = A-G .X e , q = aH.X 

where a = XlmJml. Then 

\b,Ju bj2i b,J3i 0 0 

0 0 b,Ju btJ2i b,J, 

(27) 

D = 

JiJ 1/ 

0 

0 0 0 0 0 

0 

' • ^ 3 / 

0 

0 

0 

bJu 

0 

0 

bjv 

0 

0 

bju _ 
(28) 

and matrix S is obtained by replacing bf in D by <?,-. When the 
mapping changes in the X1 direction only, matrices D and S 
are identical, and the corresponding integrals in equation (26) 
cancel. 

The scalar A{Ka in equation (26), where A x = X,n„ is ex­
pressed as, 

A,Ka = X0 •H7 

Jq9 J")'. •'22''33 

J 12 J13 — JnJy. 

/ l 2 ^ 2 3 ~ ^22^1: 

(29) 

Note that the surface integral in equation (26) will vanish for 
finite bodies. 

The load vector in equation (20) is 

-Al f . HTFjdv' + . HTt„K„da, (30) 

where Fe and Te are vectors containing nodal intensities of 
body force and surface traction for each element. 
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Torsional Wave Sensor—A Theory 
Experimental observations suggest that the speed of propagation of torsional waves 
in a solid, elastic wave guide with a noncircular cross section is inversely propor­
tional to the density of the fluid adjacent to the waveguide. Thus, by measuring the 
speed of propagation of the torsional wave, one can infer the density of the fluid. 
Additionally, the above procedure may be utilized to measure, among other things, 
liquid level and the composition of binary solutions. A simple theory is derived to 
correlate the torsional wave speed and the fluid density; the theoretical results are 
also compared with experiments. 

1 Introduction 
The effect of adjacent fluid on the transmission of stress 

waves in solids may be utilized to measure various fluid 
characteristics. For example, since the speed of propagation of 
torsional stress waves in a rod with a noncircular cross section 
decreases as the density of the adjacent fluid increases, one 
can determine the fluid's density by measuring the wave's 
speed of propagation. A device which operates on the 
aforementioned principle (hereafter referred to as the "tor­
sional wave sensor") can be installed permanently, in line, to 
monitor continuously the density and other fluid 
characteristics such as liquid level, composition of binary 
suspensions, etc. 

Prototypes of torsional wave sensors were manufactured by 
L. C. Lynn worth (1978). Experiments were conducted with 
these sensors being used for the measurement of fluid density 
(Lynnworth, 1977), liquid level (Miller et al., 1980) and void 
fraction of wet steam (Arave et al., 1978). Based on his ex­
perimental data, Lynnworth (1077) derived an empirical cor­
relation between the speed of the stress wave in the wave guide 
and the adjacent fluid's density. It appears, however, that a 
quantitative predictive theory for the torsional wave sensor 
has not been derived yet. In this paper, I derive such a theory 
and then compare its predictions with the experimental data. 

2 Theory 

An elastic rod of length L and density ps with a uniform 
noncircular cross section is submerged in a fluid of density pj 
and subjected to a torsion pulse, z is a coordinate along the 
rod axis. The angle of rotation (<j>) per unit length of the rod is 
d<j>/dz. Accordingly, the elastic energy in the rod is 

1 ( ^ / d<f> 

'--HX-S-) dz, 0) 

where D is the torsional rigidity and G is the shear modulus. 
The rate of deformation is d<fi/dt, and the corresponding 
kinetic energy of the rod is 
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Fig. 1 The flow field (stream lines) around a rotating prism with a rec­
tangular cross section (aspect ratio alb 3.31) 

I f 1 /dcj)\2 

^-r lo^br; dz-
(2) 

where Is denotes the polar moment of inertia of the rod's cross 
section. 

As the torsional wave passes through the waveguide, ac­
celeration and deceleration of the fluid occurs. To the first ap­
proximation, I assume that the fluid motion is two-
dimensional and inviscid. To illustrate the effect of the 
waveguide's deformation on the adjacent fluid, I reproduce in 
Fig. 1 a description of the flow field (streamlines) around a 
rectangular prism, of aspect ratio 3.31, rotating in an inviscid 
fluid. 

The corresponding kinetic energy (ii3) of the fluid is 
1 eL / S A \ 2 -S>(^); 

dz, (3) 

where If denotes the fluid's "apparent" polar inertia. 
The assumption of inviscid fluid behavior can be justified 

on the grounds that the thickness of the viscous boundary 
layer is much smaller than the dimensions of the waveguide's 
cross section. The thickness of the viscous boundary layer is of 
the order (vT)xn, where v is the fluid's kinematic viscosity and 
T is the wave's period. For example, for a waveguide 
operating at a frequency of 50 kHz in water, (yT)l/1 ~ 10~5m, 
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Fig. 2 The ratio between the fluid's apparent inertia (/,) and the cross 
section's polar inertia (/s) as a function of the aspect ratio (alb) for rec­
tangular and elliptical cross sections 

RECTANGULAR CROSS SECTION 

ELLIPTICAL CROSS SECTION 

K 

RSPECT RRTIO 
Fig. 3 The K factor (the ratio of the speed of propagation of torsional 
waves in a waveguide with a rectangular or elliptical cross section and 
that in a waveguide with a circular cross section) as a function of the 
aspect ratio a/b 

while the waveguide's cross-sectional dimensions are of the 
order of 10"3m. 

Given the assumptions stated above, it follows that D, Is 

and If are not functions of z. Consequently, the corresponding 
Lagrange equation is 

a 2 * - > a 2 * ( 4 ) 

dt2 dz2 

where 

c,K^u+jfi-yn
 (5, 

Ps V !SPs ' 
and K=4D/IS<\. In order to obtain a quantitative relation­
ship between c and the ratio of fluid-solid densities {pf/ps), 
one needs to obtain explicit expressions for K, If, and Is, 
which depend on the shape of the cross section alone. Here, 
two different cross-sectional geometries are considered: an 
ellipse and a rectangle. The former was chosen since the cor­
responding parameters (K, If, and Is) are readily available and 
the latter was used to facilitate comparison with Lynnworth's 
(1977) experiments. 

Elliptical Cross-Section. For an elliptical cross section of 
axes 2ax2b, Milne-Thompson (1968, p. 260) and Sokolnikoff 
(1983, p. 122) have, respectively, reported that 

(a 2 - f t 2 ) 2 

2ab(a2 + b2) 
and A > 

lab 

a2 + b2' 
(6) 

If/Is and K are depicted as functions of the aspect ratio a/b, 
where a>b, in Figs. 2 and 3, respectively. 

Rectangular Cross Section. To obtain If/Is for a rec­
tangular cross section of dimensions 2a x 2b, I follow a pro­
cedure devised by Bickley (1934). The derivation is lengthy 
and therefore is not reproduced here. I note in passing that 
Bickley's paper contains a few misprints. (Corrections are 
available from me upon request). Calculated values of the 
ratio Ij/Is are depicted in Fig. 2 for aspect ratios 1 < a/b < 10. 

As the ratio a/b— oo, the apparent inertias around the rec­
tangle and the ellipse approach the same limit of « r 4 /8 . In the 
case of the ellipse, If approaches the limit from below while, in 
the case of the rectangle, the approach is from above. The 
limit corresponds to the apparent inertia of fluid adjacent to a 
flat plate of length 2a. The same is not true, however, with 
regard to the cross-sections' polar moments of inertia. The 
ratio here is 

(/,) rectangle 

</,). ellipse 

16 

17" 
for all a/b, which suggests that for a/b > 2.5 sensors with ellip­
tical cross sections are likely to be more sensitive than their 
rectangular counterparts. 

According to Sokolnikoff (1983, pp. 128-132) the K value 
for rectangular cross section is 

(2« + l)ir a 

K2--
1 + {a/b)1 1 

192 
_ 5 

b-)i 
a / TTn 

tan/i-

(^ (2/2 +1)5 (7) 

where a> b. This infinite series converges rapidly and it is suf­
ficient, for any practical purpose, to retain only the first term 
in the series. The variation of K as a function of the aspect 
ratio a/b is depicted in Fig. 3. 

3 Comparison With Experiments 

A few experiments involving the torsional wave sensor have 
been carried out by Lynnworth (1977). In these experiments, 
wave guides with rectangular cross sections were submerged in 
various fluids and torsional pulses were induced at one end of 
each rod, using a magnetostrictive transducer. The resulting 
waves were reflected from the rod's other end and intercepted 
by the original transducer which alternatively operated as a 
transmitter and as a receiver. The time span between transmis­
sion and reception was then measured. Lynnworth 
documented the ratio between Dt (the difference between 
transmission time in a waveguide submerged in fluid and in 
air) and the transmission time t for waveguides surrounded by 
air. 

According to equation (5) 

Dt / h Pf l (8) 
h Ps ' 

when the transmission time in air is assumed to be about the 
same as in a vacuum. 

For Ij/Is pj/ps < < 1, this expression can be approximated 

Dt 

t 

1 h Pf 
2 I, 

(9) 

to yield a linear relationship between Dt/t and pj/ps. 
In Fig. 4, the ratio Dt/t is depicted as a function of the den­

sity ratio (pf/ps) for rods of various cross sections (a/b= 1.05, 
2.46, 2.93, and 3.75). The curves represent the theoretical 
results (equation (9)) where the ratio If/Is is obtained from 
Fig. 2. The crosses correspond to Lynnworth's experimental 
data. The sensor material was stainless steel (SS 304). The 
fluids used were: «-Pentane, Ethyl alcohol, Benzene, Water, 
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Fig. 4 The ratio D(/( is depicted as a function of the density ratio pf/ps 

for stainless steel waveguides with rectangular cross sections of 
various aspect ratios. Dt denotes the difference in the transmission time 
in a waveguide submerged in fluid of density pf and the same waveguide 
in air. t is the transmission time in air. 
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Fig. 5 The ratio Dtlt is depicted as a function of the aspect ratio alb for 
stainless steel waveguides with various rectangular cross sections. The 
waveguides are submerged in water. 

Chlorobenzene, Carbon-tetrachloride, and Ethylene-bromide. 
The deviation in Fig. 4 between the theoretical predictions and 
the experimental data is typically well below 20 percent. Since 
Lynnworth (1977) did not report the experimental uncertainty 
of his experiments, it is impossible to comment whether the 
above difference is within the experimental error. 

In Fig. 5, the ratio Dt/t is depicted as a function of the 
aspect ratio {a/b) for stainless steel sensors («/£>= 1.05, 2, 
2.41, 2.46, 2.49, 2.93, 3.3, and 3.75) submerged in water. The 
density ratio Pf/ps is maintained constant. The solid lines and 
the crosses correspond, respectively, to theory and experi­
ment. The disagreement between theory and experiment is 
smaller than 12 percent. 

In Fig. 6, Dt/t is again depicted as a function of the density 
ratio Pf/ps for sensors of aspect ratio a/b = 2. The crosses and 
stars correspond to Lynnworth's experimental results and the 
solid lines, to the theoretical predictions. The stars relate to a 
sensor made of fused silica submerged in the same fluids 
detailed in Fig. 4, and the crosses correspond to sensors made 
of graphite, Magnesium, Aluminum, Titanium, stainless steel, 
copper 129, and Tungsten and submerged in water. The devia­
tion between theory and the experiments is smaller than 25 
percent. 

DENSITY RRTIO 
Fig. 6 The ratio Dtlt is depicted as a function of the density ratio pflps 

for waveguides made out of a variety of materials 

4 Conclusions 

A simple theory has been advanced to predict the perfor­
mance of a torsional wave sensor. Despite the simplicity of the 
theory which neglects three dimensional and viscous effects, a 
favorable agreement with experiments is obtained. 

The importance of the theory is that it enables one to op­
timize sensor performance. To improve sensor sensitivity, one 
must maximize the ratio If/Is while minimize the density of 
the wave guide (ps). For both the rectangular and elliptical 
cross sections, If/Is increases monotonically as the aspect ratio 
{a/b) increases. However, for practical reasons, the aspect 
ratio a/b cannot be increased without limit. A minimum value 
must be set for {b) to assure structural integrity and the value 
of (a) should be well below the wave length of the torsional 
wave in order to minimize dispersion. Conceivably, Ij/Is 

might be maximized more effectively with cross sections other 
than those investigated here. A search for the optimal cross 
section would probably be accomplished most efficiently using 
numerical techniques rather than the analytical approach 
taken in this note. 
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On the Dynamics of Flexible 
Beams Under Large Overall 
Motions—The Plane Case: Part I 
The dynamic response of a flexible beam subject to large overall motions is tradi­
tionally formulated relative to a floating frame, sometimes referred to as the shadow 
beam. This type of formulation leads to equations of motion of the form g(y, y, t) 
= 0, that are implicit, nonlinear and highly coupled in the inertia terms. An alter­
native approach is proposed whereby all quantities are referred to the inertial/rawe. 
As a result, the inertia term enters linearly in the formulation simply as mass times 
acceleration. Crucial to this formulation is the use of finite strain rod theories 
capable of treating finite rotations. Numerical examples that involve finite vibra­
tions coupled with large overall motions are presented in Part II of this paper. 

Introduction 
The dynamics of a flexible beam undergoing large overall 

motions is typically formulated relative to a coordinate system 
that follows the rigid body motion of the beam, sometimes 
referred to as the shadow beam (Laskin, Likins, and 
Longman, 1983). The introduction of this floating frame, 
relative to which the strains in the beam are measured, is 
motivated by the assumption of infinitesimal strains. This 
assumption has been used by several authors, such as, to name 
a few, Ashley (1967), Grotte et al. (1971), de Veubeke (1976), 
Canavin and Likins (1977), Kumar and Bainum (1980), Kane 
and Levinson (1981a,b), and Kane et al. (1983). With the 
assumption of small strains, the use of a floating frame allows 
a simple expression for the total potential energy of the beam. 
By contrast, the expression of the kinetic energy of the system 
takes a rather cumbersome form. The resulting equations of 
motion, although restricted to small strains, are nonlinear and 
highly coupled in the inertia terms due to the presence of Cor-
iolis and centrifugal effects as well as inertia due to rotation of 
the shadow beam. Moreover, the Galerkin discretization in 
space variables, leads to a system of implicit coupled nonlinear 
differential equations in time of the form g(y, y, t) =0 (e.g., 
Song and Haug, 1980). An essential characteristic of this 
system is that it cannot be transformed to a standard explicit 
form y = g(y, t), without appending an algebraic constraint.2 

'Formerly at the University of California, Berkeley. 
2 One can always set y = z, and append the algebraic constraint g(z, y, t) - 0. 

This is a DAE system, and not a standard ODE system (Petzold, 1982). 
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Thus, use of the mode shapes of the structure as a Galerkin 
basis, a procedure often employed (see, e.g., Likins, 1974) ap­
pears to be of little value in the general case due to the highly 
coupled nature of the resulting semi-discrete equations. 
Moreover, the complex nature of these equations has often led 
to simplifying assumptions; see, e.g., Winfrey (1971), Erdman 
and Sandor (1972), and Baghat and Willmert (1973). We refer 
to Song and Haug (1980) for a review of several approaches in 
the dynamic analysis of mechanisms and machines. 

In this paper, we propose an approach based on a 
philosophy opposite to that outlined above. The kinetic energy 
of the system is reduced to a quadratic uncoupled form simply 
by referring the motion of the system to the inertial frame. 
This results in a drastic simplification of the inertia operator, 
which now becomes linear and uncoupled, while the stiffness 
operator emanating from the potential energy functional 
becomes nonlinear. Conceptually, the essential step needed in 
developing this alternative approach is the use of rod theories 
capable of accounting for large rotations of the beam. It is im­
portant to note that the basic characteristic of the appropriate 
strain measures in these theories—as discussed by Reissner 
(1972, 1973), Antman (1972, 1974), Simo (1985), and Simo 
and Vu-Quoc (1985)—is their invariance under superposed 
rigid body motions. 

From a computational standpoint, the substantial advan­
tage of the proposed approach over the traditional shadow 
beam approach lies in the much simpler structure of the 
resulting equations. As shown in Part II of this paper, by in­
troducing a Galerkin semi-discretization in the space 
variables, one obtains the standard nonlinear system of ODE's 
that typically arises in nonlinear structural dynamics: M q + 
D q + P(q) = F (see, e.g., Belytschko and Hughes, 1983). In 
addition, this approach has the advantage of automatically ac­
counting for large strains. Within the present context, there is 
little to be gained by introducing at the outset the additional 
small strain assumption. 

As a basis for our discussion, we choose a specific problem 
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Reference{ Initial) 
Configuration 

-«-
Fig. 2.1 Basic kinematics. Floating and inertia! frames. 

to introduce our formulation: the dynamics of a flexible robot 
arm. This model problem consists of a flexible beam with one 
end at the origin of the inertial frame (e,, e2, e3 j (see Fig. 
2.1). The robot arm is allowed to rotate about the axis e3, but 
the entire motion of the arm is restrained to the plane {e!, e 2 ) . 
It will become clear, however, that our formulation can be ap­
plied to a more general setting of flexible plane beams subject 
to large overall motions. We shall also show through 
numerical examples that our formulation can be employed 
directly in the analysis of a system of flexible beams connected 
by hinges, i.e., the multibody dynamics problem. 

2 Classical Approach Based on Small Strains: Floating 
Frame 

In this section we summarize the equations of motion for a 
rotating flexible beam using the shadow beam approach and 
assuming small strains superposed onto large rigid body rota­
tions. Our purpose is to exhibit the main drawback of this ap­
proach. Use of the floating frame, although allowing a simple 
expression for the potential energy, leads to a cumbersome ex­
pression for the kinetic energy of the system. This results in 
equations of motion with highly coupled nonlinear terms in­
volving the time derivatives of the state variables. From a 
computational standpoint, the numerical integration of these 
equations is a nontrivial task. 

2.1 Basic Kinematic Assumption. Consider the rotating 
beam shown in Fig. 2.1. Let <j> be the position vector of a 
material particle initially located at X = Xlel + X2e2 in the 
undeformed (reference) configuration. Here [e,, e2 } is the in­
ertial frame attached to the fixed undeformed configuration. 
In addition, we introduce a floating frame {a( (t), a2 (t)} that 
follows the rigid body motion of the beam, i.e., the shadow 
beam. The basic kinematic assumption is that plane sections 
remain plane after deformation. Accordingly, we set 

<j,(XuX2,t): = j>0(Xl,t) +X2t2{Xut) (2.1a) 

£o(^ i ,0 : = [ ^ i + " 1 ( ^ i , 0 ] a 1 ( 0 +"2(^1 ,0*2(0 , 

tl(Xut): = cosoi(Xut)ai(t)+smct(Xut)a2(t), (2Ab) 

t2(Xut):= - s ina(X 1 ,Oa 1 (0 + cosa(A r , ,Oa2(0. 

For notational simplicity, explicit indication of the arguments 
Xu X2, and / will often be omitted. Since the motion is 
planar, e3 = t3 = a3. Note that [t, , t2) defines a moving 
frame that follows the deformation of the beam with t2 always 
contained in the deformed cross section and t! perpendicular 
to the cross section. Using matrix notation, relations (2.1Z>)23 

may be expressed as 

= A' where A: = 
-sina 

sina cosa 
(2.2) 

Although it is possible to develop the formulation without in­
troducing any restriction on the size of the strain field, the 
assumption of small strains is typically introduced ab-initio, as 
discussed below. 

2.2 Motivation: Total Potential Energy. By introducing 
the floating frame (a] , a2) one can enforce at the outset the 
following infinitesimal strain assumption: 

a small (< 10°) A = 
1 

1 

u,, and u2 small (2.3) 

The strain y and the curvature K relative to the floating frame 
{aj, a2) are then defined as 

*f = *i-tlt K = a't3, (2.4a) 

where (•) ' : = d( •) /dXx. In component form, y is expressed as 

7 = 7 1 a 1 +f 2 a 2 (2.46) 

where 

7i = "i> 72 = "2 - a (2.4c) 
One refers to yx and y2 as the axial strain and the shearing 
strain, respectively. Denoting by EA, GAS, and EI the axial, 
shear, and flexural stiffnesses of the beam (relative to the 
floating frame (a^ a2)) , the potential energy is expressed as 

4- [ {EAy\ + GAsyl+EI(a')2]dS 

+nEXT-nM(t) (2.5) 
where HEXT 1S the potential energy of the external loading 
acting on the beam and T(t)e3 is an applied torque at the axis 
of rotation e3 of the robot arm. 

2.3 Kinetic Energy. The kinetic energy of the system takes 
a rather cumbersome form compared with the simplicity of 
(2.5). To obtain the appropriate expression, we introduce the 
time derivative relative to an observer attached to the floating 
frame. Accordingly, we define 

II: 

V d<j> I 

dt Unfixed 
(2.6) 

The following expression for the material time derivative, 
denoted by a superposed "dot" , is standard in rigid body 
mechanics (Goldstein, 1980), 

. V 
0 = 0 + WX0, (2.7) 

where w is the angular velocity of the floating frame. For the 
plane case under consideration, the angular velocity w is given 
as 

where 
dt 

~dT 
a3 = rl/a3, (2.8) 
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where a3: = a, xa 2 is fixed. Since the time derivative of the 
floating basis is 

ai=i/<a2, a1=-il,al, (2.9) 

it follows from expressions (2.1ft) that 

t , = ( a + ^)t2 , i2=-(&+i)t1. (2.10) 

Thus, we arrive at the following expression for the time 
derivative of the position vector <t> 

V 
^ = ^ 0 + ^ [ -« 2 a ,+(A r

1 +M 1 )a 2 ] - J f 2 (a + ^)t1 , (2.11a) 

Y 
^o = « i a i+« 2 a 2 . (2.11ft) 

The kinetic energy of the system obtained from the expression 

K:=\ r h „ i p(Xl,X2)\\^\\2dXldX2, (2.12) 
J[0,Z. ]x[_-—,—J 

where p(Xu X2) is the density and Il0ll2: = <£2 + <j>\. By 
substituting (2.11) into (2.12) we obtain 

^ J [0,/,] 

+ - 2 - { B ) L ] ^ p { 2 ^ [ - « 2 « i + ( ^ i + " i ) « 2 ] 

Here, the inertia constants Ap and Ip are defined as 

(2.13) 

A-.= 

V = 

5[--f-f] 
p(XlrX1)dXi, 

h ft 1 

2 ' 2 J 

p(jr,,jr2)^lrfx2 (2.14) 

2.4 Equations of Motion: Coupled Inertia Terms. The 
equations of motion may be systematically derived by means 
of Hamilton's principle. Accordingly, we require that the 
action 

L: = 
!'l.'2l 

(K—R)dt be stationary, (2.15) 

for arbitrary paths connecting two points at time ty and t2 in 
the configuration space. Substituting expressions (2.5) and 
(2.13) into (2.15) and making use of standard arguments in­
volving integration by parts, we arrive at the following equa­
tions governing the extensional and flexural motion of the 
beam 

^ [ « 2 + V)(X1+M1) + 2 ^ 1 - ^ 2 M 2 ) ] - G ^ ( M 2 ' - a ) = 0, (2.16) 

Ip(& + fo-EIa" -GAs(ui-a) = 0. 

Appropriate boundary conditions automatically follow from 
the stationarity condition (Fung, 1965). In addition to equa­
tions (2.16), one obtains the following constraint equation ex­
pressing the overall balance of angular momentum of the 
system 

J [0,i] 

J [0,i] 

{Apl(Xl+ul)
2 + u2

2] + UdXl 

AAiXi+U^Uy+UiU^dXy 

+ \ AAiXt+u^-uA ]dXl + \ IpMXx = T(t) 

(2.17) 

The highly nonlinear nature of the coupled system 
(2.16)-(2.17) involving the variables [ult u2, a, \p) should be 
noted. 

Remark 2.1. The Euler-Bernoulli formulation is obtained 
form the above equations by assuming that shear deformation 
is negligible. Accordingly, we let (u2 - a) —• 0, and GAS —• oo 
so that GAS (u2 — a) —• Vwhere Vis the shear force acting on 
the cross section of the beam. Equations (2.16)23 governing 
the transverse and flexural vibrations of the beam may be 
combined to obtain 

Apu2+EIu2'"'-Ipu2"+ApW(X1+u1) + 2iul-t
2u2)] = 0 

(2.18) 

The first two terms in (2.18) correspond to the standard linear 
Euler-Bernoulli beam theory. This equation is often attributed 
to Rayleigh (e.g., Fung, 1965, p. 321) who accounted for the 
contribution of section rotary inertia to the transverse vibra­
tion of the beam. The third one gives the contribution of the 
rotatory inertia and is often neglected in structural applica­
tions. The last three terms within brackets arise as a result of 
coupling between deformation and rigid body motion. These 
terms represent the inertia due to rotation of the shadow 
beam, the Coriolis and the centrifugal effects, respectively. 
The crucial role of the term \p2u2 related to centrifugal force in 
(2.18) with regard to the stability of a rapidly rotating beam is 
discussed in detail in Simo and Vu-Quoc (1986). 

3 Proposed Approach Based on Finite Strains: Inertial 
Frame 

By contrast with the formulation outlined above, we pro­
pose an alternative approach whereby the structure of the iner­
tia operator becomes linear and uncoupled. This is achieved 
by referring the basic equations of motion to the inertial 
frame. As a result, drastic simplification of the inertia (tem­
poral) part is obtained by shifting the nonlinearity of the pro­
blem to the stiffness (spatial) part of the equations of motion. 
Conceptually, the essential step needed to develop this ap­
proach is the use of finite strain rod theories capable of ac­
counting for large rotations. In section 3.3, we summarize 
from a physical standpoint the appropriate finite strain 
measures. We refer to Reissner for the plane case, and 
Reissner (1973, 1981), Antman (1974), Simo (1985), and Simo 
and Vu-Quoc (1985) for the three-dimensional case. An essen­
tial characteristic of these strain measures is their invariance 
under superposed rigid body motions. 

From a computational standpoint, the substantial advan­
tage of the proposed approach over the shadow beam ap­
proach discussed in Section 2 lies in a much simpler structure 
of the resulting equations. This structure corresponds to the 
standard nonlinear system of ODE's that typically arises in 
structural dynamics. In addition, we automatically account 
for large strains. 

3.1 Basic Kinematic Assumption. As in Section 2, the 
basic kinematic assumption is the condition that plane sections 
normal to the axis of the beam in the undeformed configura­
tion remain plane, i.e., 

<}>(XuX2,t): = <t>0{Xut)+X2i2(.Xut) (3.1a) 

The difference between assumptions (2.1a) and (3.1a) is that 
the position vector <j>0 and the moving vectors (t j , t2) follow­
ing the deformation of the beam are now expressed relative to 
the inertial frame [eu e 2 ) . Accordingly, we set 

<MX,,/) : = [Xl + « , (* , .Ole, + u2(Xx ,t)e2, 

t, (X{ ,t): = cos^(X, ,t)ti + sin0(Jfi ,t)e2, (3.1ft) 

t2(Xi ,t): = - sin0(X! ,t)el + c o s f l ^ ,t)e2. 

As in equation (2.2), we shall use matrix notation and express 
relations (3.1ft)23 as 
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where A: 
COS0 

sin0 

-sin0 

COS0 
(3.2) 

(3.5) 

0i + 4>\ has the 

Note that the floating basis (a], a2) plays no role in the pre­
sent formulation. 

3.2 Motivation: Kinetic Energy. We show that the kinetic 
energy of the system relative to the inertial basis reduces to the 
standard quadratic uncoupled form. To see this, note that 
from equation (3.2) the rate of change of the moving vectors 
(t j , t2) is given by 

U=h2, t 2 = - 0 t , . (3.4) 

Hence, the time derivative 0 of the position vector <t> is ob­
tained as 

4> = <S>0-X26ty, 

0O = " l e l +U2^2-

It follows from equation (3.5) that II0I 
expression 

ll«All2 = [uj + ul] +Xle2-2eX2(cosdui + sin0u2). (3.6) 

Upon integrating p(Xx,X2) ll<£II2 over [0, L] x [-(h/2), h/2], 
we arrive at the following expression for the kinetic energy of 
the system 

Km-L\ [A^ + iiD + I^dX,. (3.7a) 
2 J [0,L] 

Here, as in equation (2.13), the inertia coefficients Ap and Ip 

are given by equation (2.14). 

Remark 3.1. The case of a flexible beam attached to a rigid 
body considered in Levinson and Kane (1981) can be readily 
accommodated within the present formulation by modifying 
expression (3.7a) for the kinetic energy. Let mR be the mass of 
the rigid body, and IR its inertia relative to an axis parallel to 
e3 = t3 and passing through the connecting point with the 
beam. The kinetic energy of the composite system, then, is 
given by 

tftow =K+~y mR »*o(o,0 ll2 +4" 

where K is given by (3.7a). 

Remark 3.2. It is noted that expression (2.13) for the kinetic 
energy in the shadow beam approach may be exactly recovered 
from equation (3.7) simply by employing the coordinate 
transformation 

(3.8) 
^ i + M i ^ l |~ cosxl/ -sini/- 1 CXi+iii 

y_ u2 J sin^ cosi/- [_ u2 j 

That is, the expression for the kinetic energy of the system is 
independent of any particular assumption on the magnitude of 
the strain field. 

3.3 Potential Energy: Invariant Strain Measures. Within 
the context of large strains, a physically reasonable definition 
of the strain field in the beam is also provided in vectorial 
form by expression (2.4) 

r = *o ' - t i . K:=0%. (3.9a) 

The physical interpretation of y is clear as shown in Fig. 3.1. y 
measures the difference between the slope of the deformed 
axis of the beam and the normal to the cross section defined by 
t,, and K is the rate of rotation of the cross section along the 
undeformed length of the beam. In component form, relative 
to the inertial frame we have from equation (3.1b) the follow­
ing expression for y 

y = 7 , e i + T 2 e 2 = [(1 + u[) - cos0]e, + [u{ - sin0]e2 (3,96) 

Alternatively, relative to the moving vectors (t,, t 2 ) , from 
relation (3.2) we have the following expression 

7 = r , t 1 + r 2 t 2 , (3.10a) 

where 

u2 — sin0 
(3.106) 

The analogy between expressions (2.4a,6,c) and (3.9a)-(3.96) 
should be noted. We now assume the same expression for the 
potential energy, relative to the moving frame (t[, t 2 ) , as the 
one considered in the small strain shadow beam approach 
discussed in Section 2. Accordingly, we set 

n:=4~( {EAV\ + GAsV
2

2+EI(d')2)dS 

+ HEXT-T(t)6(0,t) (3.11) 

Remark 3.3. The components of the strain y in the basis 
{t!,t2] denoted by [1^ T2]' are invariant under superposed 
rigid body motions on the beam. One can see this by consider­
ing the rigid body motion composed of a superposed transla­
tion c(t), and a superposed rotation P(t) represented by the 
orthogonal transformation matrix 

Q( / ) : = 
cos/3 -sin/3 

sin/3 cos/3 
(3.12a) 

The transformed quantities in the expression of T, in equa­
tions (3.10) above are as follows 

* o
+ (A-„0=c( f ) + Q ( 0 * o ( * i , 0 , 

<>o '• = 4>oi' ei + 4>0
+
2' e2 = Q ^ , 

•>&' 
= Q 

w. 

(3.126) 

(3.12c) 

IRd2(0,t) (3.76) Since t 

A + = Q A , (3.12rf) 

i - cos(/3 + 0)e, + sin(/3 + 0)e2, it follows that 

y+ : =IYt,+ +T2
+t2

+ =0O
+ ' - t , + , (3.13a) 

where 

= A"t _ rcos(/3 + 0) ") 
Csin(fl + 0) i -m 

(3.136) 

The invariance under superposed rigid body motions of the 
curvature K follows at once in the plane case from expression 
(3.9a). This invariance property of the strain measures is 
essential for the success of the proposed approach. 

Remark 3.4. It can be shown that definition (3.9a) and ex­
pressions (3.96), (3.10) follow from a rigorous argument 
based on the equivalence of the stress power for the general 
three dimensional theory with the reduced stress power of the 
(finite strain) beam theory; see Antman (1972, 1974) and Simo 
(1985). 

Remark 3.5. We shall be concerned only with spatially fixed 
loads, which do not depend on the deformed configuration, as 
opposed to follower loads that are configuration dependent. 
Simo and Vu-Quoc (1985) give a treatment of follower loads 
in the general context of the three-dimensional finite strain 
beam. Accordingly, the potential of the distributed loading in 
(0, L) is given by 
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We recall that A and C are given by 

C: = 
EA 

0 

0 " 

GA, 
, A: = 

cos0 

sin0 

-sin0 

COS0 
(3.17c) 

Equations (3.17a,6) comprise the system of nonlinear partial 
differential equations governing the response of the system. 
Note that these nonlinear equations are linear in the time 
derivative terms. 

To define the natural boundary conditions, and for subse­
quent developments, we introduce the notation 

m ACA' 
l + uf-cosfl 

u2 - sin0 
m:=EI6'. (3.18) 

1 +U, 

Fig. 3.1 Physical interpretation of the strain components of a beam in 
the finite strain case 

ns J [0,L] 
m'0e3 + n'(j>o]dXl (3.14) 

Here, n(Xu t): = n1(Xl, t)t^ + n2(Xx, t)e2 and m(Xu t) 
: = m(X1, r)e3 are the external force and torque per unit of 
reference length acting on the beam. 

Remark 3.6. Dissipative mechanisms with viscous force pro­
portional to the velocity can be readily accommodated in the 
formulation. To this end, the first variation of equation (2.15) 
is augmented by a velocity dependent dissipative term WD 

defined by 

Here, n(Ar
1, t):=nl(Xl, t)e{ + n2(Xl, t)t2

 a n d m(Xlt t) 
: = »i(Ar

1> /)e3 represent the internal force and internal mo­
ment acting on a deformed cross section of the beam. For the 
robot arm in Fig. 3.1 we have the following natural boundary 
conditions 

m(0,0 = n O e 3 , m(L,O=n(Z, ,O=0. (3.19) 

These boundary conditions follow automatically from 
Hamilton's principle and the appropriate expression for TLEXT. 

3.5 Conservation of Global Momenta. Within the pro­
posed approach global linear and angular momenta are 
automatically satisfied, and do not provide an additional con­
straint. This is in contrast with the shadow beam approach in 
which the basic equations of motion (2.16) must be sup­
plemented by the global angular momentum condition (2.17) 
for the evolution of the system to be completely determined. 
To verify conservation of global linear and angular momenta 
we rewrite equations (3.17a,6) with the aid of equation (3.19) 
as 

L - n ' - n ' = 0 , H - m ' - 0 o X n - r h = O. (3.20a) 

Here ~L(Xlt t) denotes the linear momentum per unit length, 
and H (Xy, t) the angular momentum per unit length relative 
to the centroid of the deformed cross section. Using equation 
(3.1) we have 

WD:=-\ [ [nD>8<j>0+mD-&de3]dX1dt, (3.15) L : = L J L J L I P^dX2=Ap^0, 
i[tht2] J[0,i] ^ L 2 ' 2 J 

where S</)0
 a r ,d ^ e 3 denote arbitrary variations, and n^, and 

mD are the velocity proportional viscous force and torque. For 
simplicity, we assume the expressions 

Hz>:=MP0o> mD:=ixlJe3. (3.16) 

In the linear case this dissipative mechanism is often referred 
to as mass proportional damping, and becomes progressively 
ineffective in the high frequency range of the response. Alter­
native dissipative mechanisms typically involve inelastic con­
stitutive behavior, e.g., viscoelastic response. 

H : h hi 
2 ' 2 J 

p[<j>-<t>0]xj>dX2=Ipde3, (3.206) 

where e3: =ei x e2. The global linear and angular momentum 
of the system denoted by IL(/) and JH(t), respectively, are 
defined as 

r * * l 

m (0 :=[ r * *iP*x*dar,daf2. (3.21) 

Ij+Ixlj-EIB" 

_ r -u2 

ACA' 
1 + W,'-COS0 

u2 - sin0 

IH 

3.4 Equations of Motion: Uncoupled Inertia Terms. As in 
Section 2, the equations of motion governing the evolution of 
the system may be systematically obtained from Hamilton's Making use of the identity <j> X $ = (0 - 0O) x 0 + <j>0 X <£ the 
principle. Standard manipulations yield the final result global angular momentum is expressed as 

( 0 = ( [H + 0 o xL] r f^„ (3.22) 
J [0,L] 

ri = 0,(3.17a) w h e r e L(^r , ,0 and H(Xltt) are given in equation (3.206). 
Differentiating equation (3.22) and using equation (3.20a), we 
obtain the following condition involving the applied load and 
boundary conditions 

ffl = [m + <A0xn] + \ [m + ^ x n ] d l , . (3.23) 
lA-^0 J[0,i] 

Condition (3.23) states that the resultant torque of the applied 
ACA' 

1 +u{ -cos0 

ui — sin0 
-m = 0. (3.176) 
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loading equals the rate of change of the total angular momen­
tum. Similarly, for the global linear momentum we obtain 

i * i= i f 
IL = n + ndXu (3.24) 

1*1 =0 J[0,L] 

which states that the resultant force of the applied loads equals 
the rate of change of the global linear momentum. Equations 
of motion (3.20a) along with definitions (3.20Z?) are general, 
and remain valid in the three dimensional theory. Thus, the 
foregoing discussion leading to expressions (3.23) and (3.24) is 
not only restricted to the plane case. 

4 Concluding Remarks 

In this paper, we have presented a new approach to the 
dynamics of a plane beam under large overall motions. The 
essence of this approach is the fully nonlinear plane beam 
theory that can account for finite rotations as well as finite 
strains. The appropriate strain measures in the beam theory 
are invariant under superposed rigid body motion; such in-
variance is the necessary ingredient to the success of the pre­
sent approach. The motion of the beam is completely referred 
to the inertial frame. We thus obtain the expression of the in­
ertia term in the equations of motion simply as mass times ac­
celeration. By contrast, in the shadow beam approach, one 
obtains a nonlinear and highly coupled inertia operator; hence 
a special computer code must be devised to solve the resulting 
system. In our approach, the inherent nonlinear character of 
the problem is transferred to the stiffness part of the equations 
of motion; this results in equations of motion that arise 
typically in nonlinear structural dynamics. As demonstrated in 
Part II of this paper, the dynamics of flexible beams under 
large overall motions can be analyzed in any existing nonlinear 
finite element program. Without alteration in the formula­
tion, one can apply this approach to the dynamics of a system 
of flexible beams connected by hinges, as shown by our 
numerical examples. In addition, the approach proposed in 
this paper can be readily extended to accommodate inelastic 
constitutive behavior, and can be used to treat a wide range of 
problems including the dynamic analysis of an earth-orbiting 
satellite composed of beam elements. Finally we note that, 
conceptually, the proposed approach readily carries over to 
the fully three dimensional case. Further comments on possi­
ble extensions of the proposed methodology are given in part 
II of this paper. 
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On the Dynamics of Flexible 
Beams Under Large Overall 
Motions—The Plane Case: Part II 
The numerical treatment of the methodology proposed in Part I of this paper is con­
sidered in detail. Unlike traditional approaches, a Galerkin spatial discretization of 
the equations of motion, now referred to the inertial frame, yields the standard form 
of nonlinear structural dynamics: Mq + Dq + P(q) = F, with M and D constant 
matrices. Numerical examples that involve finite vibrations coupled with large 
overall motions are presented. These simulations also demonstrate the capability of 
the present formulation in handling multibody dynamics. 

1 Numerical Approximation: Galerkin Method 

In this section we discuss the numerical treatment of the 
nonlinear partial differential equations developed in Section 3 
of Part I. The basic strategy is to perform a Galerkin 
discretization in the spatial variable leading to the standard 
system of ODE's in the time variable characteristic of 
nonlinear structural dynamics. This system may then be solved 
discretely using standard time stepping algorithms (e.g., the 
Newmark family). The finite element method provides an 
established technique for constructing the (spatial) basis func­
tions necessary to perform the Galerkin discretization. Expres­
sions of the matrices resulting from the application of this pro­
cedure are given in the appendix. 

1.1 Weak Form of Equations of Motion—Spatial 
Discretization. The equations of motion (3.14) of Part I may 
be put in the following form 

Id(jr1 ,0+Ad(Jr1 ,0 + P[d(^i ,0 = ' ( ^ i . O . (1-lfl) 
where 

I: = Diagfy4p,>!„,/„], A: = Diag[/i/l/,,/*/!„,ft/p], 

d (*„/): = 

xl + ul(xl,t)^ 

u2(Xut) 

e(xut) 
f(AT„0: = 

(1.16) 

'«,(*„/)' 
n2{Xut) 

m{Xut)j 

Equation (1.1a) is a nonlinear partial differential equation in 
the generalized vector d (Xx, t) 6 K,, where Vx is the space of 
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admissible (generalized) displacements.2 This equation is 
linear in the terms involving time derivatives, i.e., the accelera­
tion d in the first term and the velocity d in the second term. 
The third term P[d], on the other hand, is a nonlinear dif­
ferential operator in the space variable XX€(Q,L). This 
nonlinearity results from the coupling between large overall 
motions and (finite) strain deformations in the beam. Con­
cerning the applied load ii and m, see remark 3.5. The weak 
form G(d,rj) of equation (1. la) is obtained by integrating over 
the spatial domain (0,L) CR the dot product of this equation 
with an arbitrary weighting function )/£ V2.

3 That is 

G(d,i;):=f >/'[! d + Ad + P[d] -f]dX, =0,Vi/€ V2 (1.2) 
J [0,L] 

The final expression is obtained from (1.2) by integration by 
parts on the spatial derivatives entering P[d], so that only first 
order spatial derivatives are involved in G(d,ij). We refer to 
the appendix for the details. The displacements d(Xx,t) and 
the weighting function vi^i) a r e t n e n interpolated in the 
spatial variable Xx according to 

d(Xl,t)sJ^^I(Xl)qI(t), 

N 

(1.3) 

Upon introducing the spatial discretization (1.3) of d(Xx,t) 
and of ^(Xi) into the weak form (1.2), we obtain the semi-
discrete equation of motion in matrix form 

M i i ( 0 + D d ( 0 + P ( q ( 0 ) = F ( 0 (1-4) 

2 A possible choice for Vx could be K,:= (d e [Hl(0,L) X C^fO, <*>)]' 
l" l lx,=0 = »21x1=0 = °. and © \Xl=0f) 

3 V2 could be chosen to be V2: = (i)a Hl (0, Z,)]3 I with appropriate bound­
ary conditions for ij such that i)lnl + i\2n2 +rj3m = 0 at the boundaries) 
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where M and D are constant mass and damping matrices, 
respectively, q(t) : = [ q ^ r ) , • • • >QJV(0] ' denotes the 
generalized displacement vector, P(q(/)) the vector of inter­
nal forces depending on q ( 0 , and F(?) the applied load vec­
tor. Details of the expressions of M, D, P(q( / ) ) , andF( / ) can 
be found in the appendix. 

Remark 1.1. In the absence of dissipative mechanisms (e.g., 
damping) the system has a well defined energy function H = 
K + II. The Galerkin procedure outlined above is then 
equivalent to a standard Raleigh-Ritz approximation based on 
(1.3),. See, e.g., Meirovitch (1970). 

Remark 1.2. In the shadow beam approach restricted to 
small-strains, one may also use the modal superposition 
method to discretize spatially the displacements [Ui,u2] as in 
(1.3). For this purpose, consider equations (2.16) of Part I. 
One first eliminates a from equation (2.16) using (2.16)2. The 
semi-discrete equation of motion of the system is then obtain­
ed by projecting the resulting equations (2.16) onto the or­
thogonal basis of mode-shapes of the Euler-Bernoulli can­
tilever beam. However, no matter which discretization pro­
cedure is used, the resulting semi-discrete equations of motion 
system constitute a system of highly coupled nonlinear dif­
ferential algebraic equations (DAE). The solution of this com­
plete system of DAE's is not a trivial task, and requires a 
specially designed computer code (Benson and Hallquist, 
1985). Numerical integration methods for DAE systems may 
be found in Gear (1971a,b), Petzold (1982), and Gear and Pet-
zold (1984). The solution of the standard nonlinear structural 
dynamics equation (1.4), on the other hand, is much simpler 
and may be carried out using any nonlinear structural finite 
element code. A time stepping algorithm solution procedure 
will be outlined in the next section. 

Remark 1.3. Multibody Dynamics. In Section 5, we will 
show through numerical examples that the proposed approach 
can be applied without alteration in the formulation to study 
the dynamics of a system of flexible bodies connected through 
hinges. It is indeed a simple matter to model such a system in a 
finite element program. The shadow beam approach, on the 
other hand, leads to a much more involved formulation, e.g., 
as in Hughes (1979), Likins (1974), Song and Haug (1980), 
and Sunada and Dubowsky (1980). 

1.2 Time Stepping Scheme—Temporal Discretization. 
The semi-discrete equations of motion (1.4) can be trivially 
rephrased into the standard form of a system of nonlinear 
ODE's, y = g(y,0, by setting y : = (q,q) . This standard ODE 
system can be integrated by a variety of time stepping 
algorithms (Gear, 1971), which must be consistent with (1.4) 
and stable for some range of the time step. We refer to stan­
dard textbooks such as Gear (1971) and Richtmyer and Mor­
ton (1967) for precise definitions of these concepts. Two basic 
strategies in devising algorithms for (1.4) may be adopted: 

(a) Explicit schemes: Typically, high accuracy may be 
achieved by employng high order methods. A classical exam­
ple is furnished by the family of Runge-Kutta methods. It is 
well-known that the main drawback of explicit schemes is the 
severe limitation on the time step imposed by their restrictive 
stability characteristics. 

(b) Implicit scheme typically possess very robust stability 
characteristics. Classical examples are the trapezoidal rule, 
which is the highest order A-stable method possible (Dahl-
quist, 1963), the stiffly stable methods of Gear (1971b), and 
the family of algorithms devised by Newmark (1959) and 
widely used in nonlinear structural dynamics (Belytschko and 
Hughes, 1983). 

Here, motivated by stability considerations, attention is 
focused on the Newmark family of algorithms for solving 

(1.4), which includes the trapezoidal rule as a special case. The 
behavior and stability characteristics of the Newmark 
algorithm applied to linear problems is well established, e.g., 
see the analysis of Goudreau and Taylor (1973), and Hilber 
(1976). For completeness, we shall outline the basic steps in­
volved in the numerical solution of (1.4) by the Newmark 
algorithm. 

Let q„ denote the approximate solution to q (t„) at time /„. 
Similarly, v„ = q(t„) and r„ = q(/„) represent the approx­
imate velocity and acceleration at time t„, respectively. 
Assume that the solution (q„, v„, r„} at time /„ has already 
been obtained, i.e., the momentum equation (1.4) is satisfied 
at time t„ 

Mrn + Dv„+P(q„)=F„ (1.5) 

where F„ = T?(t„). We now aim at satisfying the momentum 
equation (1.4) at time t„+u i.e., 

Mr n + 1 +Dv„ + 1 +P(q„ + 1 ) = F„ + 1 (1.6) 

The Newmark time stepping algorithm defines the relationship 
between [q„+ 1 , v„+ 1 , r„+ 1) according to the following 
formulae 

1 

q n + i - q n 
h2P hp 

(1.7a) 

= v„ + /i[(l-T)r„ + Tr„+1], (1.76) 

where h: = t„+l-t„ denotes the time step size, and (/3, T) are 
the parameters of the Newmark algorithm. We note that 
|3 = 0.25 and T = 0 .5 correspond to the trapezoidal rule; this 
choice of the parameters 0 and r renders the algorithm uncon­
ditionally stable in the linear case,4 and second order accurate. 
Substitution of equation (1.7a) into (1.6) yields a system of 
nonlinear algebraic equations in terms of q„+ [. 

The resulting nonlinear algebraic system may then be solved 
employing the classical Newton-Raphson method. Let q®+1 

denote the value of q„+ 1 at iteration (i) of the Newton-
Raphson algorithm, and A q ^ V the incremental dis­
placements. As an initial guess for [q„+ 1 , v„+ 1 , r „ + 1 ) , one 
may choose the starting value qffl { to be the same as the con­
verged value in the previous time increment, i.e., q„; the initial 
values \®l! and r<,°ji follow from the Newmark scheme (1.7): 

(1.8a) a(0) , = a 

h(3 
(1.86) 

yfll=yn + h[(\-T)tn + TT^+l\ (1.8c) 

At iteration (i) of the Newton-Raphson scheme, the lineariza­
tion about qtfl} of the system of nonlinear algebraic equations 
yields 

[W M + ~hJ D + Kr(qSi)]Aq< i
+V )=F„+ 1 2/3 "" ' W 

- M r « » , - D v < ' | 1 - P ( q « ' | 1 ) (1.9) 

It should be noted here that while the mass matrix M is 
positive definite, the tangent stiffness matrix T&.T(qiHi) may 
be positive semi-definite. The system of equations (1.9) is of 

Roughly, the notion of stability corresponds to well-posedness of the semi-
discrete problem. In the nonlinear case the appropriate concept of stability re­
mains unsettled, and several notions of stability have been proposed (A-
stability, spectral stability, stability in the energy sense, etc. . .). See, e.g., 
Belytschko and Hughes (1983), Gear (1971b), Chorin et al. (1978). 
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Material Properties-. 
EA = GAS = 10,000. 
E I =1,000. 
A p = l . 
1 ^ = 10. 

Fe. Mesh; 10 linear elements 

Time history of * j /( t ): 

1.5 
& 

2 3 4 5 6 7 8 9 10 II 

10 
0 2.5 t 

Fig. 1(a) Displacement driven flexible robot arm; problem data 

I,£.2 

= 5.0 t = ,4-5 ' = 4.0 
1=3.5 

t = 3.0 

t = 2.5 

i// = 1.5 rad 

Fig. 1(b) Displacement driven flexible robot arm. Repositioning se­
quence to stop angle $ = 1.5 rad. Time step size h = 0.5. 

t * 
1 = 5.5 

t = 7.0 t = 7.5 t = a o 

i|/=!.5 rad 

Fig. 1(c) Displacement driven flexible robot arm. Free vibration about i 
= 1.5 rad. Time step size h = 0.5. 

the form KAqJft!",1' = F where the matrix K is banded, sym­
metric, and positive definite. Solving for Aq^,1', and up­
dating (q<j'+l, v « , , r<'|i), we obtain the value of (q„+1, 
v«+i> rn+i) a t iteration (/'+ 1) as follows 

a( / + l) _.„(/) +Aad+l) 
4n+l In + 1 T **M/i + 1 

v ( i + l ) = v ( l ) , _| L_ Afl(< + J) 
Y n + 1 Y n + 1 T , n UH»+1 

(1.10a) 

(1.106) 

r ( i + l ) _ r ( i ) . Aq^/ ' (1.10c) 

The iterations are continued until convergence is attained 

within certain tolerance. A basic characteristic of Newton's 
iterative method is that the asymptotic rate of convergence is 
quadratic. 

2 Numerical Simulations 

In this section we present a series of numerical simulations 
that illustrate the formulation and numerical procedure 
discussed in Sections 3 of Part I. Our purpose is to exhibit: 

(a) The simplicity of the numerical procedure. Essentially 
any existing nonlinear structural finite element dynamics code 
could be employed. Here we employ an extended version of 
the computer program FEAP developed by R. L. Taylor and 
documented in Zienkiewicz (1977), chapter 24. 

(b) The capability of the proposed formulation to 
automatically handle finite strains superposed onto large 
overall rigid body motions. This includes flexible bodies in 
free flight. Viscous effects can also be accounted for easily in 
the formulation. 

(c) The immediate applicability of the proposed approach 
to the dynanics of a system of interconnected flexible bodies 
without alteration of the formulation. 

It is emphasized that no simplification is made in the 
simulations that follow in the sense that Coriolis and cen­
trifugal effects as well as the inertia effect due to rotation are 
automatically accounted for. The deformed shapes in all 
figures reported in this paper are given at the same scale as the 
geometry of the beam, i.e., there is no magnification of the 
structural deformations. 

In all simulations reported herein, the trapezoidal rule 
(Newmark algorithm with r = 0.5 and /3 = 0.25) was employed. 
Numerical operations were performed in double precision in a 
VAX 11/780 under the Berkeley UNIX 4.2 BSD operating 
system. 

Example 2.1. Flexible Robot Arm. This simulation is con­
cerned with the repositioning of a flexible beam rotating 
horizontally about a vertical axis passing through one end. 
The finite element mesh consists of 10 elements with linear 
isoparametric interpolation functions for both displacement 
and rotation. To avoid the well known "shear locking" 
phenomenon (Zienkiewicz, 1977), a uniformly reduced one-
point Gauss quadrature is employed to integrate the tangent 
stiffness and residual. The mass matrix, however, is integrated 
exactly with two-point Gauss quadrature. Two cases are 
considered. 

2.1.1. Displacement Driven Flexible Robot Arm. The 
geometry, material properties, finite element mesh, as well as 
the time step size used in the integration are given in Fig. 1(a). 
The robot arm is first repositioned to an angle of 1.5 radians 
from its initial position. This is achieved by prescribing the 
rotation angle ip(t) == 0(0, t) as a linear function of time, as 
shown in Fig. 1(a); the sequence of motion during this reposi­
tioning stage is depicted in Fig. lib). Once the rotation angle 
\j/(t) is fixed at 1.5 rad for all time / > 2.5, the robot arm then 
undergoes finite vibrations as shown in Fig. 1(c). 

2.1.2. Force Driven Flexible Robot Arm. The robot arm is 
now driven by a prescribed torque T(t) applied at the axis of 
rotation e3, as shown in Fig. 2(a). The applied torque is 
removed at time / = 2.5; the robot arm then undergoes a 
torque-free motion. The simulation is terminated after com­
pletion of one revolution, as shown in Figs. 2(b) and 2(c). 

Example 2.2. Flying Flexible Rod. A flexible rod with free 
ends, initially placed in an inclined position, is subject to a 
force and a torque applied simultaneously at one end, see Fig. 
3(a). The applied force and torque are removed at the same 
time t = 2.5, so that the subsequent free flight of the rod ex­
hibits a periodic tumbling pattern. It should be noted here that 
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Moteriol Properties-
EA = GAS= 10,000. 
EI =1,000. 
Ap=l. 

vp--\o. 

Fe. Mesh; 10 linear elements. 

Time history of T( t ) : 

T ( t ) 

80.0 

T(.)(fc 
1 2 3 4 5 6 7 

hinge 10 
0 5.0 t 

Fig. 2(a) Force driven flexible robot arm; problem data 

t = 2.5 

t=2.0 

t=0.0 
Fig. 2(6) Force driven flexible robot arm. Sequence of motion during 
application of torque. Time step size h = 0.5. 

Fig. 2(c) Force driven flexible robot arm. Sequence of motion after 
removal of applied torque. 

the boundary conditions (3.19) of Part I now become m(0,/) 
= m(L,t) = n(0,/) = n(L,t) = 0 during the free flight stage. 
Two cases are considered. 

2.2.1. Flexible Beam in Free Flight. The motion of the rod 
during application of loading is shown in Fig. 3(b). The stiff­
ness of the rod is low enough to exhibit finite deformations. A 
close-up of the first two revolutions is shown in Fig. 3(c) while 
the entire sequence of motion is depicted in Fig. 3(d). 

2.2.2. The "Flying Spaghetti." The bending stiffness EI 
of the rod is lowered by a factor of 5 relative to the simulation 
in 2.2.1. This dramatic reduction in stiffness results in the se­
quence of motions depicted in Fig. 4. 

Moteriol Properties. 
EA = GAS = 10,000. 
El =500. 

6 ^ _ ^ T ( t ) 

Fig. 3(a) Flexible beam in free flight; problem data. 

t=0.5. ,t=|.0 ,t = l.5 ,1 = 2.0 t = 2.5 

Fig. 3(b) Flexible beam in free flight. Sequence of motions during ap­
plication of loading. Time step size h = 0.1, plot after each 5 time 
increments 

/t = 3.0 t=8.0 ,t = l3.0 

Fig. 3(c) Flexible beam in free flight. Free flight of the beam after 
removal of loading—close-up on the first 2 revolutions. Time step size h 
= 0.1, plot after each 5 time increments 

Fig. 3(d) Flexible beam in free flight. Free flight—entire sequence. 
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Fig. 4 The "flying spaghetti." Time step size h = 0.1, plot after each 5 
time increments. 

Example 2.3. Multi-Body Dynamics. Two examples will 
be considered to illustrate the applicability of the present for­
mulation to the dynamics of multibody systems. 

2.3.1. Multi-Component Robot Arm. The robot arm con­
sidered in Example 2.1.1 is in this example stiffer by a factor 
of 100, and consists now of two flexible components con­
nected together by a hinge at midlength. The two-component 
robot arm is subjected to the same prescribe rotation \j/(t) = 
0(0, t) as in Example 2.1.1. The problem data are summarized 
in Fig. 5(a). The sequence of motions is shown in Figs. 5(b) 
and 5(c). Note that while the first component vibrates about 
the stop angle \j/(t) = 1.5 rad for t > 2.5, the second one 
undergoes a complete revolution about the connecting hinge at 
midlength. 

2.3.2. Multibody System in Free Flight. A two-body 
system consisting of two flexible links connected by a hinge, is 
initially at an inclined position. The system is set into motion 
by applying a force and a torque at one end of the lower link, 
as shown in Fig. 6. The applied loads are subsequently re­
moved at time t = 0.5, so that subsequently the articulated 
beam undergoes free flight. The lower link, indicated by the 
letter A in the figure, then moves in the same clockwise direc­
tion as the applied torque, whereas the upper link, indicated 
by the letter B, moves in the opposite counter clockwise 
direction. 

Example 2.4. Spin-Up Maneuver. The flexible robot arm 
considered in Example 2.1.1 is now subject to a "spin-up" 
maneuver by prescribing the angle \j/(t) = 0(0,0 for ?€R+ as 
follows 

* (0 = 

[̂4* (-£-)'(»£-)] rad 0<r<15 sec 

(2.1) 

(6r-45)rad r>15 sec 
This type of motion was proposed in Kane et al. (1985) to il­
lustrate how naive linearized approximations may lead to 
grossly inaccurate results, i.e., instability of a physically stable 
system. The motion is also of practical interest in applications 
such as helicopter rotor blades or aircraft propellers. The 
material properties and time history of \{/(t) are shown in Fig. 

Material Properties: 
EA = GA8= 1,000,000. 
EI =100,000. 
A„M. 
fp-y 

Fe.Mesh: 4quadratic elements. 

Time history of uV( t ): 
e 

i | / ( t )(rad) 

v ^ t ) 1 hinge 

Fig. 5(a) Multibody dynamics: displacement driven, multi-component 
robot arm; problem data 

t = 0.5 

Fig. 5(b) Multibody dynamics: displacement driven, multi-component 
robot arm. Repositioning sequence to stop angle ^ = 1.5 rad. Time step 
size h = 0.1. 

t=0.9 

t=0.8 

Fig. 5(c) Multibody dynamics: displacement driven of multi-
component robot arm. Vibration of robot arm about stop angle, and 
revolution of flexible appendage about connecting hinge. Time step size 
h = 0.01, plot after each 10 time increments. 

Moterigl Properties: 
EA = GAS= 1,000,000. 
EI =10,000. 
A ^ l -
\p = I. for link A 
I/O = 10. for link B 

Fe.Mesh: 4quadratic elements. 

Time history of F(t) and T(t) 
TO) 

160.0 

0.5 

F0) = T(t) /4. 

hinge 

Fig. 6 Multibody dynamics: articulated beam in free flight. Time step 
size h = 0.05, plot after each 5 time increments. 
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Fig. 7 Spin-up maneuver; problem data 
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Fig. 8(a)-(d) Spin-up maneuver. Several deflected shapes during first 
revolution. Time histories for displacement components and section 
rotation relative to the shadow beam. Time step size ft = 0.005. 

860 / Vol. 53, DECEMBER 1986 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Material Properties' 
EA = GAS= 1,000,000. 
El= 1,000. 
AyO=l. 
Ip= 10. 
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Time history of F(t)-
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Fig. 9(a), 9(6) Damped vibration: cantilever beam. Velocity proportional 
viscous force; problem data; maximum deflected shape; time history of 
vertical tip displacement. 

7. Deflected shapes for several values of t during the first 
revolution are depicted in Fig. 8. Also shown in this figure are 
the time histories of the displacements M,(L,/), u2(L,t) 
relative to the shadow beam, and the section rotation a(L,t). 
The results of Fig. 8 clearly exhibit the centrifugal stiffening 
effect: after an initial deflection during the acceleration phase, 
f€[0,15], the centrifugal force straightens the robot arm in the 
constant angular velocity phase, t > 15. The exact solution for 
the steady state extension of a pinned-free beam with length L, 
axial stiffness EA and mass per unit length pA, spinning with 
constant angular velocity o can be easily shown to be 

rtanaL "l , / pA 
W 0 = 4 - ^ - l J ; w h e r e « = ^ (2.2) 

For this particular example co = 6rad/sec, L = 10 and pA/EA 
= 3/7 x 10~7. Expression (2.2) then leads to a steady state 
extension at the free end of ut(L,t) = 5.14 x 10"4. This 
result is in complete agreement with the computed solution 
(see Fig. 8). The small periodic vibration of the beam about 
the floating frame during this steady state phase is noted. 

Example 2.5. Damped Finite Vibration of a Cantilever 
Beam. This example illustrates how simply viscous effect can 
be included in our formulation. A cantilever beam is initially 
subject to a concentrated end load. Subsequently, the load is 
removed, and the beam undergoes free vibration. Figure 9 
shows the material properties, the maximum deflected shape, 
and the time history of the vertical tip displacement. Only 
velocity proportional damping is considered here; more 
general dissipative mechanisms warrant a separate treatment. 

3 Concluding Remarks 

We recall that in the proposed approach the inherent 
nonlinear character of the problem is transferred to the stiff­
ness part of the equations of motion. This approach results in 
equations of motion that arise typically in nonlinear structural 
dynamics. Consequently, the dynamics of flexible beams 
under large overall motions can be analyzed in any existing 
nonlinear finite element program, as demonstrated through 
several numerical examples. Without alteration in the for­
mulation, one can apply this approach to the dynamics of a 
system of flexible beams connected by hinges, as shown in ex­
amples 2.3.1 and 2.3.2. Further, we will address the following 
points in forthcoming publications: 

(/) The approach proposed in this paper can be readily ex­
tended to accommodate inelastic constitutive behavior. In par­
ticular, general viscoelastic response that extends classical 
linear models such as the Kelvin and standard linear solids to 
finite strains. In many applications, this is of practical impor­
tance since, as noted in Remark 3.6 of Part I, velocity propor­
tional damping is ineffective at high frequencies. 

(;'/') It will be shown that the algorithmic treatment pro­
posed in Section 4 remains essentially unchanged if general­
ized viscoelastic models are considered. Only a modified stress 
update is necessary. This applies to more sophisticated models 
accounting for damage effects. 

(Hi) The methodology presented in this paper can be 
employed for the dynamic analysis of an earth-orbiting 
satellite composed of beam elements. However, one must 
carefully treat separately the far field and the near field to 
avoid ill-conditioning. The gravitational force field as well as 
satellite control actuator forces are configuration dependent 
and require special treatment. 

iv) Conceptually, the proposed approach readily carries 
over to the fully three dimensional case. This extension relies 
on a proper treatment of three dimensional finite rotations in 
both the structural deformations of the beam and in the 
overall motions. For the static case, such a treatment is 
available in Kane et al. (1985). The dynamic case, however, 
warrants a separate treatment. 
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A P P E N D I X 

Finite Element Matrices 

In this appendix, we shall give the expressions of the rele­
vant matrices discussed in Section 1; namely, the mass matrix 
M, the damping matrix D, the internal forces vector P(d), the 
tangent stiffness matrix K r (d ) , and the applied forces vector 
F ( 0 . 

Using the spatial discretization (1.3) in the first term of the 
weak form of the equations of motion (1.2), i.e., the inertia 
term, the mass matrix is obtained at once as 

M = : [ *' 
J [0,£] 

(Xl)n(xl)dx1 
(A.la) 

with 

* ( * , ) : = [*iC*i). * * ( * , ) ] (A.\b) 

The damping matrix D is obtained exactly as in (A Ad), but 
with A in the place of I. 

Next, by making use of (3.17) and (3.18) of Part I, we may 
rephrase the third term in the weak form (1.2) as follows 

!»:= 11*1 + 5 / 2 * 2 + 1 3 * 3 , 

L „ V'PWdX, = - \ [r)in{ + r)2ni + ri3m' 
*J [0, i , ] «J [0,L] 

(4.2) 

+ r/3[(l + ul)n2-uinl]]dXl 

Integrate by parts (A.2)2, and recall that ylnl + ij2«2 + ri3m = 0 
at the boundaries. There results 

( ,.P[d]d«r, = ( D^d)*. 
J[0,i] J[0,L] 

r« iW 
n2(d) 

m(d). 

dXx (A.3a) 

with D t(d) denoting the following differential operator 

D,(d): 
dXx 

0 
0 dXx 

0 

«2 

- ( l + « 0 
d 

dXx 

(A.3b) 

Introducing the discretization (1.3)2 into (A.3d), we obtain the 
expression for the discrete internal forces 

P ( d * ) = [ [D,(d* ) * ( * , ) ] ' 

nx(d") 

n2(d") 

m(dh) 

• dXx (A A) 

In (A A), the superscript h in d* is used to designate the spatial 
approximation to d (Xx ,t) according to (1.3),. The same nota­
tion will be used throughout in this appendix. 

We now undertake the linearization of \[0:L] i; • ~P[d]dXx 

about a fixed configuration d = d. This linearization pro­
cedure and the spatial discretization (1.3), lead to the expres-
sion for the tangent stiffness matrix K r(d) appearing in (1.9). 
For the developments that follow, it proves convenient to 
rewrite equation (3.18) of Part I as 

' MW "" 

N2(d) 

. M(A) _ 

- : = C 

-

" «i(d) 

"2(d) 

^m(q) 

'(d) < 

r i +MiH 
«2 

<?' J 

r — • 

r n 
0 -

>• = A ( d ) 

/V,(d) -

N2(d) 

M ( d ) ^ 

(A.5a) 

where 

C: =Diag[EA,GAs,EI], A(d): = 

cos6 -s in^ 0 

sinf? cosS 0 

0 0 1 

(A.5b) 

The linearization about d is based on the notion of directional 
derivative at d in the direction Ad: = [Aux, Au2, Ad]'. The 
following linearized quantities are needed: 

d_ 
~~dl 

d_ 
~dl 

d_ 
~dl 

A [d + eAd) = 
6 = 0 

-
£ = 0 

-/vr 
JV2 

" 0 -Ad 0 " 

i « 0 0 A(d), 

-(d + eAd) = CA(d)D,(d)Ad, 

D,(d + eAd)j/ = 
6 = 0 

" 0 0 Aui 

0 0 -Au[ 

0 0 0 

V-

(A.6a) 

(A.6b) 

(A.6c) 

The linearization of the second term in the weak form (1.2) 
then follows at once 

de 
— I ff ri>Vld + eAd]dXi} = 

f D.fdh.AWCA'idJD^dlAdrfZ, (A J) 
J[0,i] 

+ [ D2j/.G(d)D2AdcUr, 
J [0,L] 

in which the differential operator D2 and the matrix G(d) are 
defined below 
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^-H^^H* 
G(d): = 

0 0 -« 2 (d ) 

0 0 «!(d) 

-«2(d) «,(d) - [ ( l + w0"i(d) + ^w2(d)] 

(A.8) 

Let us now introduce the spatial discretization of Ad(X,) in 
the same manner as in (1.3) j 

A d ( ^ , ) s I > ( * i ) A q / (A3) 

Using (1.3) together with {A.9), we finally arrive at the expres­
sion for the tangent stiffness matrix at Ah = d 

K 7 . (dA )=K(d")+KG (dA ) (AAOa) 
* 

where K(d") represents the material part of the tangent 
stiffness, 

K(d*):= J \P1(d
h)*(XJ]'A(fl*)CA'(a'')B1(di')*(X1)dX1 

(AAOb) 
* 

and KG (dA) the geometric part, 

Ko(d") := j [ o L ] [ D 2 * ( ^ , ) ] ' G ( d / i ) D 2 * ( ^ 1 ) ^ 1 (4.10c) 

It is clear that the applied load vector ¥(t) is given by 

F ( 0 = [ *'(*i) 
J[0,i] 

f » i ( * i , 0 

n2{Xut) 

m(Xut) 

dX, (4.11) 

The integration in all of the above matrices may be performed 
numerically using Gauss quadrature. For the tangent stiffness 
matrix K r , we use uniform reduced integration to avoid shear 
locking. 

.Readers Of_ 
The Journal Of Applied Mechanics 
Will Be Interested In: 

FED-Vol. 36 
Cavitation and Multiphase Flow Forum—1986 
Editor: O. Fuyura 

Presented at The AIAA/ASME 4th Fluid Mechanics, Plasma Dynamics, and Lasers Conference, Atlanta, Georgia, 
May 11-14,1986 

The papers contained in this volume were presented during four technical sessions; Session I—CAVITATION PHENOM­
ENA, paper topics include: Temperature Effects on Single Bubble Collapse and Induced Impulsive Pressure, Unsteady 
Horizontal Air-Water Flow, and Acoustic Signals for Cavitating and Noncavitating Flows in a High Speed Water Tunnel; 
Session ll—MEASUREMENTS IN CAVITATION AND MULTIPHASE FLOW, paper topics include: Measurements of 
Oceanic Nuclei Distributions, Void Fraction in Two-Phase Flow in a Large-Diameter Vertical Pipe, and A Possible Cause of 
Surge in NPSH-Requirements, Observed at a Certain, Partial, Flow-Rate; Session III—CAVITATION AND MULTIPHASE 
FLOWS IN FLUID MACHINERY, paper topics include: The Prediction of Two Phase Flow Through Nozzles, and Drag of 
Bodies of Revolution in Cavitation Flow; Session IV—MULTIPHASE FLOWS; paper topics include: Constitutive Equations 
in Inertia Dominated Two-Phase Flow, and Simulating Some Statistical Features of Dusty Gas Turbulent Flow. 
1986 Book Number G00340 75pp. $24 list $12 ASME Members 
Descriptions of other volumes of interest appear on pages 784, 797,806,830,833,896,934,946, and 958. 

Address Orders To: AMI70 
ASME Order Department/22 Law Drive/Box 2300/Fairfield, NJ 07007-2300 

Journal of Applied Mechanics DECEMBER 1986, Vol. 53/863 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



C. Y. Wang 
Professor, 

Michigan State University, 
East Lansing, Mich. 48824 

Mem.ASME 

Free Rotation of an Elastic Rod 
With an End Mass 
This paper models a rotating space satellite with a long flexible antenna. Large 
deformations of the elastic rod are caused by the centrifugal forces. Bifurcation 
analysis shows the effect of end mass on the critical rotation speeds above which 
sinuous equilibrium configurations occur. The nonlinear governing equations are 
then integrated numerically. We find a class of solutions with a looped configura­
tion whose existence requires a certain minimum total energy and minimum angular 
momentum. Catastrophic changes are possible. 

Introduction 

Space structures often rotate due to necessity. This type of 
motion is called "free rotation" since the system is not in­
fluenced by outside forces and moments. When the structure 
is flexible, large deformations may occur due to centrifugal 
forces. Previous work on free rotation includes only two 
sources: the rotation of an elastic rod (Wang, 1982) and the 
rotation of an elastic ring along a diameter (Wang, 1983). 

The present paper studies the elastic deformations due to 
the free rotation of a long, thin, elastic rod with an end mass. 
This situation occurs in the case of an artificial satellite with a 
long appendage or antenna. For example, the Radio 
Astronomy Explorer Satellite (Stone, 1965) used a 460 m 
antenna for detecting low-frequency signals. These antennas 
are very flexible due to weight considerations and due to ease 
of storage during launching. We wish to determine the possi­
ble equilibrium configurations and the conditions under which 
they may occur. 

Formulation 

Consider a spherical satellite of mass m with an originally 
straight antenna (slender elastic rod) of length £and density p. 
Figure 1 shows one possible configuration of the system which 
is in steady rotation with angular velocity Q. We shall put 
Cartesian axes (x', y'), rotating with the system, at the center 
of mass, where x' coincides with the axis of rotation. For Q^ 
0 the rod may remain straight if it coincides with the axis x' 
(Case I) or coincides with the axis y' (Case II). There may be 
other curved equilibrium configurations as well. 

If the rod is slender enough, the local moment Mis propor­
tional to the local curvature: 

M=EI-
dd 

dV (1) 

Here EI is the flexural rigidity, s' is the arc length from the 
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mass, and 6 is the local angle of inclination. The coordinates 
(x', y') and (s', 6) are related by 

dx' 

ds' - = cos 
dy' 

ds' 
= sin 8 (2) 

Consider an elemental length ds' of the rod. A local moment 
balance gives 

M+dM=M-ds' cos0f ,pQ2y'ds' (3) 

If we normalize all lengths by I, and drop primes, equations 
(l)-(3) yield 

d26 
- = J4u cos d (4) ds2 

cPu 

ds2 

where 

(5) 

(6) « = ! ; yds 

and J = (p'A Q'A (EI)~y' is an important nondimensional 
parameter representing the relative importance of length and 
rotation to flexural rigidity. Since other parameters are 
generally constant, J is a measure of rotation rate Q. At s = 0 
we expect the centrifugal force of the rod to balance the cen­
trifugal force of the end mass: 

mQ2y'(0) + \'pQ2y'ds'=0 

M(0) = a - ^ - ( 0 ) . 
ds 

(7) 

(8) 

Here a is the ratio between the end mass and the rod mass, a 
= m/(pl). The other boundary conditions are 

d6 dd 
K(1) = 0 , — - ( 0 ) = — - ( 1 ) = 0. ds ds 

(9) 

Equations (4), (5), (8), (9) are extremely nonlinear. There are 
two trivial solutions resulting in a straight rod: 

• u = 0 (10) 

864/Vol. 53, DECEMBER 1986 Transactions of the ASME 
Copyright © 1986 by ASME

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 1 The coordinate system 
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Table 1 

4.73004 
4.29292 
4.04183 
3.92660 

7.85321 
7.31747 
7.13384 
7.06858 

10.99561 
10.40160 
10.25663 
10.21018 

•ef-

IV VI 

Fig. 2 The six different Cases 

which is a rotation along the axis of the rod, and 

7T (s + ct) 

2(1 +a) 

representing rotation perpendicular to the rod. In what 
follows, we shall investigate the cases where the antenna may 
be curved. 

Bifurcation 

As rotation speed, and thus centrifugal force, is increased 
by some means, the state represented by equation (11) remains 
invariant. However, the rotation along the axis, equation (10), 
may lead to curved equilibrium states. The bifurcation proper­
ties are studied by a perturbation about small 8 and u. The 
governing equations linearize to 

d28 . d2u 
ru, 

ds2 " "' ds2 

The general solution is 

6 = cx sinh Js + c2 cosh Js + c} sin Js + c4 cos Js 

u = J~2{ci sinh Js + c2 cosh Js—c3 sin Js—c4 cos Js) 

(12) 

(13) 

(14) 

The boundary conditions, equations (8) and (9), yield the con­
dition for a nontrivial solution: 

aJ(cosJ sinh J— sin /cosh J) + cos J cosh J- 1=0. (15) 

For given a, equation (15) is solved numerically for the eigen­
values / . The results for nontrivial J are given in Table 1. The 
rod would remain straight if the rotation speed is so small such 
that J < , / j . When J > Ju the first bifurcation occurs and the 
configuration shown in Fig. 2 (Case III) is possible. When J > 
J2, the second bifurcation, an S-shaped configuration (Case 
IV), may occur. The higher bifurcations correspond to higher 
J. See Fig. 2. 

When the end mass is absent, a = 0. The bifurcation values 

agree with those of the rotation of a single flexible rod studied 
by Wang (1982). The effect of increased end mass is to 
decrease the bifurcation value / „ , or the critical rotation 
speed. 

Numerical Integration 

For large deflections, equations (4), (5), (8), (9) must be in­
tegrated numerically. It is better to turn the two-point 
boundary value problem into an initial value problem as 
follows. Set 

t = (l-s)J, v = J2u. 

The original equations become 

cPd 

dt2 -=v cos 

The initial conditions are 

= 0, 

d2v 

~~dF 

dd I 

dt Lo 
= 0. 

(16) 

(17) 

(18) 

Given 8 l,=0 and any dv/dt\l=0 we integrate equations (17) and 
(18) by the fifth order Runge-Kutta-Fehlberg algorithm until 
d8/dt is zero again, say at t = t*. Then 

J=t*, ct = 
v(n 

dt 

->0. (19) 

We see that / and a are obtained inversely. By adjusting 
dv/dd\t=0 one can obtain the results for a specific a. We find 

«(0)=4r«(A -^-(.0)=-^ v(J) 
J2 

0(O) = 0 l , = r . , 

(20) 

dd 

ds 
(0) = 0. 

In order to determine the equilibrium configuration of the 
system, we set 

x=x+a (21) 

where a is the unknown axial distance from the end mass to 
the center of mass. Then 

dx 

ds 
- = cos0, i(0) = 0 (22) 

Equations (4), (5), (20), (22) are integrated numerically. The 
shape is obtained by 
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• 

1 
1 

iff f^ 
I , , I I I . , J I /, 

Fig. 3 Maximum amplitude. Letters correspond to States in Figs. 
(6—8): a = 0; —•— • « = 0.2; « = » . 

Fig. 4 Maximum force: a = 0; — — a = 0.2; a 

x = x—a, y-
du 

~ds 
The location of the center of mass is found by 

1 d 1 f . 
a= x 

a + 1 Jo ds 

(23) 

(24) 

Figure 2 shows schematically the equilibrium configurations 
of some of the lowest modes. As rotation rate is increased 
while other parameters are fixed, Case II is stable, while Case I 
may become unstable and bifurcate into Cases III, IV, VI, 
when the critical rotation speeds Ju J2, J3 are reached. Case 
V, however, does not bifurcate from a trivial state and, thus, 
cannot be predicted from the linearized equations. Only by 
numerical integration of the nonlinear equations can we deter­
mine the configurations of Case V. Higher rotation rates may 
lead to more complicated equilibrium states. 

Figure 3 shows the maximum amplitude v(l) = b as func­
tion of normalized rotation rate / . For Case II, the maximum 
amplitude is 

1+a 
2 + a 

(25) 

The value of b ranges from 1/2 for a = 0 to 1 for a = oo. The 
amplitude of Case I, of course, is zero. As rotation rates are 
increased, Case III solutions bifurcate at / , , and Case IV solu­
tions bifurcate at J2. Of interest are the Case V solutions 
which do not bifurcate from zero. In general, the amplitudes 
of Case V solutions may increase or decrease with J. There is a 
minimum rotation rate below which Case V solutions do not 
exist (Jmin = 6.9, 6.1, 4.8, for a = 0, 0.2, oo, respectively). 

\ v 
\ 
\ 
\ 

\ 
\ 
/// /// 

i 
/ / / 

/ / / 
. . , . , in, , 

/ / / / 

/ / /iv 

/ / / 

' / 
,11 1, , , 

Fig. 5 Maximum local moment: a = 0; _ .— a = 0.2; — -

Fig. 6 Configurations for Case III. J 
1.0; D: a = oo. 

5.6; A: a 
D 

0; B: a 0.2; C: a 

The above mentioned Cases are the only ones found below / 
= 10. 

Figure 4 shows the maximum force experienced, occurring 
at the first intersection of the rod with the rotation axis. This 
force, normalized by El/f, is calculated from 

F= 
F' 

EI/P 
(26) 

Unlike the amplitude, the force increases without bound as / is 
increased. Case V curves show a characteristic minimum due 
to nonbifurcation. For Case II, a simple formula can be ob­
tained: 

'-$[>-(•&•)'] (27) 

Figure 5 shows the maximum normalized moment, 
represented by the curvature dd/ds. For both Cases I and II 
the moment is identically zero. For the other Cases, the max­
imum moment occurs at some interior point. The effect of the 
mass ratio a is to shift the curves towards the left. Figures 4 
and 5 are important in the design of satellites with long 
antennas. 

Figure 6 shows some equilibrium configurations for Case II 
at the same rotation rate / . As a is increased, the location of 
the end mass becomes closer to the rotation axis. Figure 7 
depicts Case IV configurations for fixed a = 0.2. The elastic 
rod becomes more sinuous with increased rotation. Case V, 
not studied before, has a characteristic looped shape (Fig. 8). 
The conditions for its existence will be discussed in the next 

866/Vol. 53, DECEMBER 1986 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 7 Configurations for Case IV. a = 0.2; E: / = 7.48; F: J = 8.08; G: / °o 
= 8.56; H: J = 10.41. 

-e* 
Fig. 8 Configurations for Case V. a •• 
= 6.2; N: J = 6.2. 

M 
0.2; K: J = 8.77; L: J •• 

N 

7.29; M: J 

section. We note (e.g., from Fig. 3) that for given /, the solu­
tion is not unique. The States Mand Nin Fig. 8 have the same 
rotation rate. 

Energy and Angular Momentum 

The total energy of a freely rotating elastic system consists 
of two parts, the kinetic energy and the strain energy. The 
elastic rod has both kinetic and strain energies while the end 
mass has kinetic energy only. Thus, total energy is 

1 
Pn2p[ 

Jo 
y2ds 

~2l 
r ' / dd \ 2 l 

(——) ds + /wflW(O). (28) 
Jo \ ds / 2 

Normalizing with EI/21 we obtain 

e=lo(-^-)2* + J 4 [ l o ^ + ^ ( 0 ) ] - (29) 

The total energy can be integrated numerically since d(s) and 
y(s) have been determined previously. Figure 9 shows e plotted 
against J. The total energy of Case I is zero for our idealized 
infinitesimally thin rod and point mass. For Case II the energy 
is entirely kinetic and increases rapidly from 7 = 0 : 

= J*\2 L_l 
L 3 (2 +a)2 J' 

(31) 

For Cases III and IV the total energy bifurcates from zero at 
/ , and /2 . It is interesting to note that the Case V solutions not 
only require a minimum rotation rate / but also a minimum 
total energy in order to exist. The minimum energy re­
quirements are emin = 76, 64, and 51 for a = 0, 0.2, and oo, 
respectively. For example, when a satellite system is disturbed 
by an impact from a meteor, if the sum of the energies of the 
meteor and satellite is less than emin, then Case V will not 
occur. 

Another characteristic of free rotation is the total angular 

Fig. 9 The total energy e as a function of J 

0.4 0.6 
X 

Fig. 10 Total energy and total angular momentum: a = 0; 
a = oo 

momentum which, after normalizing with bJpEI, can be ex­
pressed as 

git = j2F( y2ds + ay2(0)\. (32) 

Similar to total energy, the angular momentum also shows a 
minimum for Case V, SfKmin = 0.41, 0.40, 0.32 for a = 0, 02, 
oo, respectively. Thus 3Hmin is an additional necessary criterion 
for the existence of Case V. 

For sufficiently large values of / , e, and 9TC, the system may 
rotate in one of the several admissible configurations. Which 
final equilibrium state actually occurs depends on its 
dynamical history (not studied here). All cases presented in 
this paper are locally stable except Case I when J > / [ . I n 
general, for small changes in energy or momentum, the state 
of the system tends to adjust slightly but remains close to its 
previous state unless a catastrophe happens. 

In Fig. 10, the total energy is plotted against total angular 
momentum. If an ideal free rotating system is in equilibrium 
at State Q of Case III, say, it would remain there due to con­
servation of momentum and energy. However, minute irrever­
sible friction would gradually decrease both energy and 
angular momentum such that the State moves slowly from Q 
to R and eventually into the origin. The situation is different 
for Case V. With a gradual loss of energy and momentum 
both States S and T (on different branches) move toward State 
U, where a further minute decrease causes large changes (a 
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catastrophe). We would expect that angular momentum 9TC 
will be conserved while total energy e drops abruptly toward 
another Case at States V, R, or W. This sudden transforma­
tion may cause large amplitude transient oscillations of the 
elastic rod which may eventually dissipate the excess energy 
through internal heating. 

Discussion 
Space structures are becoming increasingly larger and more 

flexible. Structural problems unique to space are not found on 
earth. Free rotation is one of the examples. In this paper, we 

found many characteristics of nonlinear mechanics: bifurca­
tion, nonuniqueness, nonexistence, catastrophic change, etc. 
Further work, especially in the dynamical area, should be 
investigated. 
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Stretching and Bending of 
Rotating Beam 
The effect of uniform high-speed rotation on the simplest representation of a 
rotating blade is analyzed according to the linear theory of elasticity. The blade is 
modeled as a uniform prismatic beam of general cross section rotating about a prin­
cipal section axis perpendicular to the centroidal axis. This quasi-elastostatic three-
dimensional problem is reduced to a two-dimensional boundary value problem to 
which solutions for the amenable circular and elliptic cross sections are given. For 
sections not possessing two axes of cross-sectional symmetry, the theory predicts 
curvature of the blade center line. 

1 Introduction 
The determination of stress and strain fields in prismatic 

rods of arbitrary cross section due to forces applied at the ends 
of the rod only, is known as Saint-Venant's Problem. Solu­
tions have been obtained for tension, pure bending, torsion, 
and bending due to a terminal shearing force (Sokolnikoff, 
1956); apart from their direct application, these solutions pro­
vide justification and limitations to the technical theories used 
in "strength of materials". Exact solutions have also been ob­
tained for body force gravity loadings of rods and beams pro­
ducing longitudinal extension (Sokolnikoff, 1956) and 
bending (Love, 1944). In principle, exact solutions can be ob­
tained for any case in which the forces applied to the beam 
along its length can be represented by rational integral func­
tions of the beam axial coordinate (Almansi, 1901). 

In the present paper the authors give the solution for a beam 
rotating about a principal axis perpendicular to its centroidal 
axis, as shown in Fig. 1. Such a centrifugal body force loading 
is of obvious importance in the design of turbine blades, where 
a knowledge of the deformed shape of the blade due to rota­
tion and thermal effects is required before subsequent vibra­
tion analysis. The physical model analyzed here is the simplest 
representation of a rotating blade, having no pretwist or taper, 
and a "setting angle" fixed by cross-sectional shape; the coin­
cidence of the x axis of rotation with a cross section principal 
axis precludes twisting of the blade which would otherwise 
arise due to asymmetric "body force loading" in the.y direc­
tion. Apart from classical interest, the solution should provide 
a test for approximate methods of analysis. 

2 Blade Model 
The problem to be solved is the determination of stress, 

strain, and displacements of the prismatic isotropic beam 
shown in Fig. 1; the z axis coincides with the beam centroidal 

Visiting Research Fellow from the Maritime Transportation Institute of 
Shanghai, The People's Republic of China. 

Contributed by the Applied Mechanics Division for publication in the JOUR­
NAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME 
Applied Mechanics Division, July 24, 1984; final revision, February 12, 1986. 

n. 

Fig. 1 Rotating blade model 

axis and the x and y axes are principal. The beam is assumed to 
rotate in a horizontal plane about a vertical axis through the 
end z = 0 with constant angular velocity fi rad/sec. The surface 
generators of the beam are assumed free of traction, and no 
specific constraint is placed on the displacements at the end 
z = 0. 

3.1 Elasticity Equations 
We have to satisfy the equilibrium equations 

(la,b,c) 

dax ! drxy | dTXz_Q 

dx dy dz 

dryx+day+dr Q2y_Q 

dx dy dz 

dr 6V,,, da7 , 

dx dy dz 

he boundary conditions on the 

ax-(+Txym = 0 

Tyx-t+oym = 0 

Tzx-(+Tzym = 0 

s 

: surfac 

- (2a,b,c) 

where I and m are the direction cosines. 
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The conditions at the free end z=L are not specified except in­
sofar as all the stress resultants are required to be zero. Addi­
tionally, the following equations of compatibility must be 
satisfied: 

d2er d2e 

dy2 

d2ey 

dz2 

d2e, 

dx2 

a\ 
dy2 

d2er 

dx2' + 'dz2 

d27xy 

dxdy 

d27n 
dydz 

927« 
dxdz 

(3a,b,c) 

2d2ex _ 3 

dydz dx 

232e 

djyz , a 7 . 

dx 
9 (Wyz 
dy V dx 

dyyz
 9 T. 

dxdz dy 

2d2e, a / 3 7 

xz . "7x>* 

dy dz > 

xz . "7xy \ 

yz , "Ixz 

dy dz 

dy. 
dxdy dz \ dx dy dz 

xy\ 

Z J 

(4a,b,c) 

3.2 Semi-Inverse Solution 

The solution was originally obtained by assuming stress and 
strain components to be quadratic functions of the axial coor­
dinate z, i.e., 

ax = 42h2 + 4'h + a^ 

(5) 

etc. 

and by adopting a procedure very similar to that employed by 
Love (1944) for the consideration of a beam subjected to 
distributed transverse loading. 

We now employ a semi-inverse procedure and assume the 
following: 

(a) T^ = Tn = yxz = yyz = 0, 
(b) planar stresses and strain ax, rxy, ay, and yxy to be in­

dependent of z, and 
(c) longitudinal strain given by 

pfl2 

=6°+~2E' (^-^-"oX-Koy+td^+y2) (6) 

where e0, eit K0, and K'0 are constants to be determined. 
The first two terms in equation (6) are consistent with the 
elementary longitudinal strain expected, the second two terms 
allow bending, while the final term allows distortion of the 
cross section into a paraboloid of revolution and is suggested 
by the known solution for longitudinal loading in a beam due 
to self weight. 

The equilibrium equations (la, b, c) reduce to 

do- drr 

dx dy 

9T,V do„ 

- = 0 

dx dy 
+ PQ2y = 0 

^ - + PQ2z = 0 
dz 

the compatibility equations (3a,b,c) become 

(la,b,c) 

d 2 e* , d2£y _ a 2 7 x 

dy2 

92e„ 

dx2 dxdy 

d2e 

dz2 

d2er 

dy2 

d2er 

= 0 

dx2 dz2 

and equations (4a,b,c) become 

0 

(Sa,b,c) 

dh 

dydz 

d2ey 

dxdz 

d \ 

dxdy 

- = 0 

= 0 (9a,b,c) 

We note that (9c) is immediately satisfied by the choice of ez. 
The equilibrium equations (7a, b) are satified by introducing 
the stress function * (x,y) such that 

a2* 
* dy2 ' xy dxdy ' 

Now from the Hookes' Laws 

a2</># a2* PQ2y2 

av=-^r^. - — • (10a,o,c) dx2 

°x v , 
x E E \ y zi 

oy v 
y E E z 

a, v 
e, = ( a , + CTv) 

z E E V x y) 

(Ha,6,c) 

the first two when differentiated twice with respect to z give 

d2ex _ d2ey _ v d2az _ ppQ2 

~dz2 a ? - - - ! ? ' dz2 ~ E 
by virtue of equation (7c). The compatibility equations (8b,c) 
thus require 

d2ez _ d2ez _ -vpti2 

"dx2 dy2 E 

which enables the constant e, to be evaluated as e, = 
-vpQ2/2E. The direct longitudinal stress az may be con­
structed from (lie) as 

pU2 

oz=Ee0+^- (L2-Z2)-EK0X-EK^ 

-^(*2
+/)_„, (x2+y2) + v(ox + oy) 

and integrating over the cross section gives the tensile force 
resultant as 

T= j j azdxdy = EAe0+•?-—- (L2-z2) 

vpQ,2 

(/» + /,) + "J J ( ° * + °> )dxdy 

whereIy = \ 1 x2dxdy, Ix=\ \ y2dxdy. 

The area integral (ax + ay) dxdy may be expressed as 
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J j (°x + °y) dxdy=\ j £ — (xax+yrxy) 

d -) 
+ — (XTxy+yay)^dxdy 

The first integral transforms to the line integral 

1 [x(oxl+Txym)+y(Txyl+oym))ds 

which is zero by virtue of the boundary conditions (2a, b), 
while the second integral reduces to 

\ f pQ2y2 dxdy, 

by virtue of the equilibrium equations (7a,b). 

Thus we find, v I 1 (ox + oy) dxdy = vpQ,2Ix, and the tensile 

force becomes 

pAQ2 , „ vpQ2 

T=EAe0+-^~ (L2-z2) + - ^ - ( / » - / , ) . 

To evaluate the constant e0 , we require the tensile force T to 
be zero at the free end z = L, giving 

which is zero by virtue of the boundary conditions (2a,b), 
while the second integral reduces to 

"IT i J (-y1~x^y dxdy 

and hence the bending moment Mx becomes 

Mx = ~EIXK'0 - vpU2 \x2y dxdy. 

Similarly we find 

My=EIyK0-
vpQ2 

\ \ (y2-x2)x dxdy. 

Now since these bending moments are independent of z and 
are required to be zero at the tip z = L, the constants (cur­
vatures in the xz and yz planes, respectively) are found to be 

vpQ2 

2EIy 

vpU2 

~ Eh 

\ \ (y2-x2)xdxdy 

\ i x2y dxdy 
(13) 

from which 

2EA 

T = ^ ( L 2 ^ , 

Before considering in detail the two-dimensional problem 
and determination of the stress function $ , the remaining 
unknown strains ex and ey may be readily calculated from the 
Hooke ' s Laws (\\a,b), and the stress and strain components 
listed as 

a2* 

(12) 

dy2 

9 2 * PQ2y2 

as expected from the elementary theory. 
To evaluate the constants K0 and K'0 we construct the bend­

ing moments 

M j = yazdxdy and My = —\ I xazdxdy. 

Firstly 

Mx = j j [Ee0y + -^- (L2-z2)y-EK0xy 

ppQ2 ") 
-EK'0y

2 — (x2 +y2)y+v(ox + oy)y\>dxdy, 

and the first three terms become zero, as the centroidal x a n d y 
axes are also principal, giving 

°> = dx2 2 

oz = — (L2 - z2) - EK0X - EK'0y 

vpQ
2 V(Iy-Ix) ^ 2 _ 2 

2 I A 
-— (x2+y- »] 

a 2 * a 2 * PQ,2y2^ 

a2* 
dy2 

dxdy 

vpQ2 , , , , . 
(L2-z2)+vK0x+vn'0y 2E 

"2PQ2 \dy~Ix) 

vpQ2 

MX=-EK'BIX- 2 I (x2+y2)y dxdy 

(x2+y2)] 
IE L A 

(\-v2) a2$ v(\ + v) ( a2* /)QVN 

Now the area integral may be expressed as 
,,2 „2 

+ v\ \ (ax + ay)y dxdy. 

tegral may be expressed 

3 / y2 —x2\ \~) 

+-^<»"-+(-i-h)l<"<d* 

The first integral t ransforms to the line integral 

j c ]xy(axl+Txym) + {^—^—j (rxyl+<jym)jds 

dy2 E \ dx2 

(L2-z2) + vK0x+vK'0y "P®2 - 2 _ , 2 
' 2E 

_ z W r i i - 7 £ ) 1 
2E L A ' '\ 

\-v2\( d2§ PQ2y2\ v(\ + v) a 2 * 

pQ2 

2E 

dx2 2 

(L2-z2)-Kox-K'0y 

) - dy2 

2E l A 

i a 2 * 

;>] 
Jxy G dxdy ' Jxz lyz ° -

^ (14) 
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3.3 Two-Dimensional Problem 

The equilibrium equations (7a,b) have been satisfied by in­
troduction of the stress function $, through equations 
(\0a,b,c). From the calculated strain components in equation 
(14), compatibility equation (8a) requires 

v 4 * = - ( ^ ) ^ 2 <15> 

while the remainder (8b,c, 9a,b,c) are seen to be satisfied. 
The boundary conditions for <S> become, from equations 

(2a,b) and (14), 

ds \ dy ) 

d / d$ \ _ 

ds\ dx ) 

pU2y2 dx 

" " 2 ds~ 

(16) 

3.4 Solution to Two Dimensional Problem 

3.4.1 Circular Cross Section. For the boundary 
x2+y2-R2=0, we find 

$ 
/v + 3v2\ pQ2 , , , „ . , 

64 

+ 4 - r (y4 — — x* + 2x2y2 + 14R2x2 - 2R2y2), 
64 3 

curvatures K0 and K'0 are both zero, and hence stresses are: 

(17) 

3.4.2 Elliptic Cross Section. For the boundary x2/a2 + 
y2/b2 - 1 = 0, we find 

* 
A 2u2/x

2 y2 \ 2 

--—a2b2(—^- + ~—1) -
8 \a2 b2 / 

2
 PQ2 b2 

Pn2 

b2 / 24 a2 4 

curvatures K0 and K^ are both zero, and hence stresses 

A / x2 3y2 \ 

A . - / 3 . x 2 y2 \ 

pQ2b2 ( x2 y2 

2 

pU2 

L(-£-S-) 
< r , = — C L 2 - z 2 ) 

(-f-5-0 
r „ = - A x y , TX, = T „ = 0, 

(20) 

+ ^ - ( i ? 2 - x 2 - ^ 2 ) 

2 

P ( 3 + P ) 

8(1 - v2) 

(\-v-4v2) 
8(1 - v2) 

PU2(R2-2x2-2y2) 

pQ2xy 

TXz=ryz = 0 

(18) 

where 

v + 3v2^ a2b2 

3a4 + 2a2b2 + 3b4 
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Elastic Deformations of Strips and 
Circular Plates Under Uniform 
Pressure 
A consistent theory for linear elastic behavior in which the strains are small but in 
which the displacements and rotations can be large is applied to the bending of a 
long rectangular plate and of a circular plate by uniform pressure. Within the range 
of small-strain, linear elastic behavior, the theory provides solutions for all 
slenderness ratios of the plates and magnitudes of the loading. Thus the theory 
bridges the gap between the classical theory and the nonlinear structural theory of 
Foppl and von Karman. The results show that the von Karman equations provide 
accurate solutions for thin plates for which deflections are not small. 

1 Introduction 
The classical theory of elasticity treats deformations in 

which the displacements, strains, and rotations are small, and 
uses linear stress-strain relations which are suitable for the 
description of materials such as metals in the elastic range. 
The difficulties involved in the solution of the equations of the 
classical theory has led to the development of technical 
theories for elastic deformations of beams, plates, and shells, 
and there is now an extensive literature on applications and 
refinements and modifications to the theories (see, for exam­
ple, the classical books by Love, 1927, and Timoshenko and 
Woinowsky-Krieger, 1959, and survey articles by Nagdhi, 
1972, and Koiter and Simmonds, 1973). For a body slender in 
one or more dimensions, such as a thin beam or plate, a large 
deflection or rotation of one part of the body relative to 
another is possible although the strains remain small and 
within the linear elastic range over the entire body. Technical 
or structural theories for large deflections, such as Kirchhoff's 
theory of rods and the theory of Foppl and von Karman for 
plates, mainly rely upon the kinematics of the deformations 
and overall equilibrium equations, and apply to very thin rods 
and plates (see Love, 1927). Some writers have used finite 
elasticity theory together with asymptotic expansions based 
upon small parameters such as a depth-to-length ratio or a 
strain measure (see Parker, 1984 and the references cited 
therein) to justify structural theories. Here we use a consistent 
theory for linear elastic behavior with small strains which was 
developed by Shield (1984). In this theory the strains are small 
enough that second order terms in the stress-strain relation can 
be neglected, but there is no restriction on the magnitude of 
rotations and displacements. The theory bridges the gap be-
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10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME 
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tween the infinitesimal theory and structural theories for 
slender bodies, and it can provide results for geometries and 
loadings for which neither of the theories applies. 

Shield (1984) applied the theory to pure torsion of a very 
long cylinder and to the bending of a cantilever beam by an 
end load about a principal axis of the cross section. Other suc­
cessful applications of the theory include the analysis of the 
deformation of a rod or beam by end loads and the bending of 
a beam by its own weight (Im, 1985; Shield and Im, 1986). 

Here we treat the bending of a long strip and of a circular 
plate by uniform pressure. The basic formulas and equations 
in the theory are reviewed briefly in Section 2. Section 3 deals 
with the bending of an infinitely long strip loaded by pressure 
on its upper surface with support conditions on its long sides. 
For small deflections, the plane strain modification of the 
generalized plane stress solution (see Love, 1927, pp. 363-364) 
provides the solution, and for a very thin strip, the von 
Karman equations have been used (see Love, 1927, pp. 
559-564). In the present approach, the deformation is con­
sidered to consist of small displacements which distort cross 
sections relative to the middle surface of the strip, together 
with rotations and translations of the cross sections which 
vary along the span. The infinitesimal solution is used to guide 
the form taken for the deformation relative to the midsurface 
of the strip and this approach leads to a solution valid for all 
values of the span-to-depth ratio of the strip. Because of the 
pressure loading, the expressions for the bending moment and 
axial force resultants contain constant terms; these terms 
become second order and negligible for a thin strip experienc­
ing deflections comparable to its thickness. For thin plates 
with depth-to-span ratios not greater than 0(e1/2), where e is a 
measure of the maximum strain in the plates, the predictions 
of the von Karman theory are confirmed, and accurate results 
are obtained for the transition range in which the pressure is 
carried by the bending moment as well as by tension in the 
plate. The bending of a circular plate by uniform pressure sup­
ported on its edge is examined in a similar manner in Section 
4. The classical theory for a moderately thick plate again 
guides the choice of the displacement field, and gives the solu-
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tion when the deflections are small (see Love, 1927, p. 481). 
For large deflections, on the other hand, nonlinear plate 
theory has been applied (see Stoker, 1968, for example). As in 
the case of the long strip, the von Karman equations are found 
to give accurate results for thin circular plates when thickness-
to-diameter ratios are 0(e1/2) or less. 

2 Basic Formulas 

We suppose that a body occupies a region V of space in its 
reference state B. In a deformation of B, a typical particle in­
itially at the point xt moves to the point yt referred to a fixed 
rectangular Cartesian coordinate system. The Cauchy strains 
Cik are given by 

Cik=yrjyr,k- (!) 

A repeated Latin index implies summation over the values 
1,2,3 and a comma is used to denote partial differentiation 
with respect to xr For deformations with small strains, the 
Green strain tensor eik is written as 

e/* = - j - ( C / t - 5 t t ) = 0(e), (2) 

where " 0 " denotes order of magnitude, e is a dimensionless 
loading parameter representing the amount of strain induced 
in the body, and 8ik is the Kronecker delta. From the polar 
decomposition theorem (Truesdell and Noll, 1965) we have 

yi,k=rimsmk- (3) 

Here rim is a proper orthogonal (rotation) tensor, and the right 
stretch tensor smk is the positive definite square root of Cjk, 

simsmk = ^ik- W 

Using equations (2), (3), (4), we find that 

5ft=5,7t + e,«r + 0(e2), rik=yuk + 0(e). (5) 

We assume that the first partial derivatives of eik are 0(e)/h, 
where h is a reference length involved in the description of a 
body and the loading causing the deformation. It can then be 
shown that (see Shield, 1984) 

nkJ = 0(e)/h,yiM = 0(e)/h. (6) 

The equilibrium equations in terms of the Lagrangian stress 
tensor Tjk are given by 

9Tki 

dxk 
-+F. = 0, (7) 

where F( are the components of the body force measured per 
unit volume of the reference state B. 

An elastic material has a strain energy Wper unit volume of 
the reference state which is a function of the deformation gra­
dient yik only through the strains Cik or ejk. When the strain 
energy W is written symmetrically in eik and ekh the 
Lagrangian stress tensor Tik and the Kirchhof f stress tensor ajk 

art given by 

TH = 
dW dy, dW dx, dW 

(8) 
byhk dxr derk dyr deik 

To 0(e), oik are true stresses associated with directions in the 
deformed state of line elements which were initially parallel to 
the coordinate axes. Substituting for Tki in (7) and multiplying 
by dxr/dyh we find that the equilibrium equations can be writ­
ten as 

= 0, 
a°ik , yi J.* dx' -T— + orkr'rk+Fk-T,— dxk dyk 

where the Christoffel symbol is given by 

(9) 

TL = 
d2y„ dX; 

dxrdxk dy„ 
-=C~l(e rm,k + e, km,r " 

Fig. 1 Force and moment resultants for a long strip under uniform 
pressure 

For linear elastic behavior for small strain deformations, it is 
sufficient to take W to be 

W= Likmncikcmnf *~ikrnn *-mnik *- k 

where cikmn are the usual elastic moduli for small strains. The 
stresses <rik are then given by 

°ik=cikmnenm- ( 1 0) 

Consistent with the accuracy of the assumption of linear 
behavior for small strains, second order terms are ignored in 
calculating the strains ejk from equation (2). With eikit = 0(e)/h 
as assumed earlier, the Christoffel symbols in equation (9) will 
be 0{e)/h. Thus neglecting terms of the order of Ee2/h , where 
£ is a typical elastic modulus of the material, the equations of 
equilibrium become 

do,. 
- + F, 

dx. 
= 0, (11) 

dxk dyk 

in which dXj/dyk is evaluated to 0(1). To our order of ac­
curacy, it is only necessary to satisfy equation (11) to 0(e). 

If the tractions are prescribed on a portion ST of the surface 
S of V, then 

Tkink = orkyLrnk = T, on ST, 

where 71,- are the applied tractions of order Ee and n, is the unit 
outward normal to S. Equivalently we have 

<%«* = Tk-
dXj 

dyk 
on (12) 

To the present order of approximation dx/dyk in equation 
(12) need only be evaluated to 0(1) and f,- are then the com­
ponents of the applied traction in the directions of line 
elements that were originally parallel to the coordinate axes. 
For zero surface tractions <riknk must vanish to 0(e) on ST. 

3 Bending of an Infinitely Long Strip by Uniform 
Pressure 

In this section we consider the bending of an infinitely long 
strip by uniform pressure. The strip is initially horizontal and 
supported on its long edges. The upper surface is subject to 
uniform pressure p, while the lower surface is free from trac­
tion. The weight of the strip is neglected but it could be in­
cluded as in the beam treated in Im (1985), and Shield and Im 
(1986). The support conditions and the loading do not vary 
along the length of the strip so that we have a plane strain 
problem. For small deflections, the plane strain modification 
of the generalized plane stress solution (see Love, 1927, pp. 
363-364) provides the classical linear theory solution, and for 
a very thin strip, which can have deflections comparable to the 
thickness of the strip, the von Karman equations have been 
used (see Love, 1927, pp. 559-564). Here we obtain solutions 
for all values of the span-to-depth ratio. 

A rectangular Cartesian coordinate system is taken with 
origin at the center of the cross section and with the x axis ver-
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tically downward and the z axis along the span-direction. The 
ends of the span are at z= ±t, and the lower and upper sur­
faces of the strip at x = ±h. The coordinates of the deformed 
middle plane are denoted by X(z) and Z(z), and then the ex­
tension e of the middle plane is given by 

X'2+Z'2 = (l+e)2, 

where a prime denotes differentiation with respect to z. We 
use j3(z) for the inclination to the horizontal of the tangent to 
the deformed middle plane along the z coordinate (Fig. 1). 
Then we have the relations 

sin/3 = ,T ' / ( l+e ) , cos/3 = Z ' / ( l + e), (13) 

and we can take 

y{ =X(z) + u3sin0 + (X + H^COS/J, 

y3 =Z(z ) + u3cosfi — (x+u^sinff, 

where uu u3 are small displacements which vanish with x. For 
small strains and small strain derivatives, the first and second 
partial derivatives of «,, u3 with respect to x and z are required 
to be 0(e) and 0(e)/h at most, respectively. Guided by the 
classical infinitesimal solution, we assume that 

Ut(x,z) = vex 
(1-v) 2{\-v) 

•$'x2 

.JLS. l + v 
-X4 

h2X2 

D 124(l-»<) 4(1 -v)2 3(1 -v) 
2 '^H 

u3(x,z) = - - 0* -{(u-2)xi+6h2x), 
6(1 -v) 

where D = 2Ehi/T>(\ -v2) is the flexural rigidity of the strip 
and E, v are Young's modulus and Poisson's ratio. We can 
calculate the Green strains for the deformation using equa­
tions (1), (2), and from the stress-strain law for an isotropic 
material we obtain the components of the Kirchhoff stress ten­
sor to 0(e), 

ff»=-4f(-r)3--r-f+4-)' 

2 ( 1 - ^ ) 
P"{x2-h2), 

%r<°-t>'*+p{-T(ir) 
3(2-JO x 

4(1 -v) ~7T 

provided that to 0(e) 

H-.JL 

^ 2(1-v) 

e'=0. 

These assumptions will be verified later. The traction bound­
ary conditions (12) on the upper and lower surfaces are now 
seen to be satisfied to 0(e), and the equilibrium equations 
aik,k - 0 are also satisfied to 0(e) 03'" and e" are assumed to be 
zero to 0(e), in agreement with equation (14)). 

The resultant of the traction on the surface which was in­
itially the cross section z = constant is statically equivalent to 
transverse and longitudinal forces S(z) and T(z) per unit 
length acting at the deformed position of the middle plane 
together with a moment M{z) per unit length (Fig. 1). We 
then have 

Scos/3 + rsin(3 = I T3, dA, - Ssin/3 + 7cos/3 = T33dA, 

M-- L«* -Z)T31-(yl-X)T33}dA, 

where A denotes the cross-sectional area. Using the relation 
between aik and Tjk in equation (8) together with the expres­
sions for crik, we find that to 0(e) 

2Eeh v 
S=-D(3", T=- 5 ph, 

1 1 

M=D$'+-
8 - 3 P 

-h2p. (15) 
10(1 - v) 

The geometry of the strip and loading are symmetric with 
respect to the x axis, and consideration of overall balance of 
force and moment between z = 0 and z = (leads to 

Scos/3 + Tsin/3 +py3( - h,z) = 0, 

TcosP-Ssm0-To+p{yl(-h,O)-yl(-h,z)}=O, (16) 

M-M^py^-Kz^n+pXAy^-h^-y^-^z)) 

- ^ - [ [ ^ ( - ^ . O ) ) 2 - iyi(-h,z))2] + (Tcosi3 

- Ssinj3)(X0 - X) + (7sin/S + Scosf3)Z=0, 

where the subscript o indicates values at z = 0. Differentiating 
these equations and manipulating the resulting equations with 
neglect of higher order terms, consistent with the present order 
of accuracy, we obtain 

S'+P'T+p = 0, T'-P'S = 0, M'+S = 0. (17) 

A term — p du^ — h, z)/dz neglected in the second equation 
represents the effect of the difference in the orientations of the 
middle surface and the upper surface, and can be shown to 
produce only negligible corrections within the accuracy of the 
present theory. Thus it is sufficient to assume that the pressure 
p acts on the middle surface in formulating the overall 
equilibrium equations. 

We first assume that both edges are supported so that the 
displacements of the middle plane at z = ± i are constrained to 
be zero but there is no constraint on the rotation of the edges. 
(The case of clamped edges is treated later.) The deformation 
is then symmetric about z = 0 and we have the conditions 

0O=/3(O) = O, So=S(0) = 0, M ( $ = 0, 

zw=e, z(0) = o, ^(0=0. (18) 
The bending moment is largest at z = 0, and we take 

eb=h\fc\, e m =le l m a x , e = e6 + em, (19) 

where eA, em represent measures for the bending strain and the 
membrane strain, respectively. For a fixed value of e, as h/l 
decreases the rotation /3 increases and the flexural strain eb 

eventually becomes small compared with the membrane strain 
e,„. For very thin strips, the membrane solution ultimately ap­
plies with the strip deformed into a circular arc. The curvature 

(14) 0' then has the constant value —p/T and the extension e is 
constant so that 
i8(Q = (l + e)sim3(f), X0/l= - ( l + e ) ( 1 - cosP (I)}/13 (£), 

pl/Eh = AeX0/t(\-v
2). 

From these relations, it follows that for the membrane 
solution 

1 
l/?(Ql~V6e = 0(e1/2), X0/l ^/3(Q 

= 0(e1/2), pUEh = 0(ey2). (20) 
The first relation above implies that the rotation is 0(e1/2) at 
most for the present problem. This may be compared with the 
basic assumption involved in the von Karman equations (see 
Stoker, 1968, p. 45) that the derivatives of the horizontal 
displacements are of the same order of magnitude as the 
squares of the derivatives of the normal displacements. 

The orders of magnitude of the derivatives of 0 and e can be 

Journal of Applied Mechanics DECEMBER 1986, Vol. 53/875 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 1 Comparison of results for long strips under pressure with supported edges and 
with the maximum strain approximately 0.50 x 10 ~ 3 

Cent ra l Def lec t ion X /2h 

h/Jt ' 

1/10 

1/20 

1/30 

1/45 

1/60 

1/80 

p/E 

6.950 

1.740 

7.7 30 

3.560 

2.248 

1.640 

* 
X 

x 

x 

x 

x 

k 

10"6 

10"6 

10"7 

10- 7 

10-7 

lO-7 

4.887 x 

1.958 x 

4.402 x 

1.026 

2.048 

4.723 

10-2 

io-i 

io-i 

Present 
Theory 

1.041 

4.081 

8.976 

1.924 

3.238 

5.297 

x 

x 

x 

x 

x 

X 

lO"2 

lO"2 

lO'2 

io-i 

io-i 

io-i 

Classical 
Theory 

1.042 x 10 - 2 

4.102 x lO"2 

9.195 x lfl-2 

2.141 x 10"! 

4.270 x 10"! 

9.844 x 10 _ 1 

von Karman 
Equations 

1.018 x lO - 2 

4.058 x 10" 2 

8.954 x lO"2 

1.923 x 10"! 

3.236 x 10"! 

5.296 x 10"1 

Table 2 Comparison of results for long strips under pressure with clamped edges and 
with the maximum strain approximately 0.50 x 10 " 3 

Cent ra l Def lect ion X /2h 

h/l 

l /10 

1/20 

1/30 

1/45 

1/60 

1/80 

1/160 

p/E 

1.066 

2.660 

1. 180 

5.240 

2.932 

1.653 

4.613 

x 

x 

X 

X 

X 

x 

X 

io-5 

10" 6 

10' 6 

IO'7 

IO'7 

IO"7 

IO'8 

k 

7.495 x 

2.993 x 

6.720 x 

1.511 

2.672 

4.761 

2.126 x 

10-2 

io-i 

io-i 

10 

Present 
Theo-

3.123 

1.247 

2.799 

6.277 

1.103 

1.931 

6.682 

x 

x 

x 

X 

x 

x 

X 

ty 

IO"3 

IO"2 

IO"2 

IO"2 

io-i 

io-i 

io-i 

Clas st 
Theoi 

3.123 

1.247 

2.800 

6.295 

1.113 

1.984 

8.857 

x 

x 

x 

x 

x 

x 

X 

cal 
ry 

10-3 

10-2 

10-2 

IO"2 

io-i 

io-i 

io-i 

von Karman 
Equations 

3.123 x 

1.247 x 

2.799 x 

6.277 x 

1.103 x 

1.931 x 

6.682 x 

10-3 

10-2 

IO"2 

IO"2 

io-i 

io-i 

io-i 

estimated using the overall equilibrium equations. Taking z = l 
in equations (16) and using the last two equations of (15), for 
deformations in which the bending strain dominates the mem­
brane strain we can show that 

plh2 

2D - > • 
(21) 

In order to estimate the order of magnitude of S, it is suffi­
cient to examine the case for thick strips, in which the mem­
brane strain is negligible compared with the bending strain, 
because S decreases as h/l becomes smaller for a fixed value of 
strain measure e. Manipulation of the first two equations of 
(16) in conjunction with equation (21) leads to 

S = —Eh0(e)%Eh0(e). 

Combining the last two equations of (15) with (17), and using 
the above result, we find that at most 

0*=-r«fe)^O(e)/A2 , 
eh 

T'=EhO(e2)/l^EO(e2), 

e '=0(e 2 ) /^0(e 2 ) /A . 

Differentiating equations (17), we can show that (3'" =p/D to 
0(e)/h3, and 0'" and e" are second order as assumed earlier. 

The overall equilibrium equations (17) provide equations 
for 0 and T given by 

Pm-W/D-p/D = 0, T '+£>0"0 '=O. (22) 

The first five of equation (18) provide the associated end con­
ditions, and from the first three we have 

«0) = 0, 0'(Q = 
10(1 v) D 

|3"(0) = 0. (23) 

With the aid of the second equations of (13) and (15), we find 
that the conditions Z(0) = 0 and Z(l) = I require 

For thick strips for which h/l\s not too small, the infinitesimal 
solution applies. In this case T is compressive, but the term 
Tfi'/D is negligible in the first of equations (22) and the term 
involving e can be neglected in the second relation of (15). For 
decreasing h/l, e increases and T becomes tensile until for very 
thin strips, the 0'" and 0" terms in equations (22) become 
negligible. The moment M then becomes second order and the 
third relation in equation (15) does not apply. 

When the geometry and loading are such that the bending 
and membrane strain measures e,, and em are both 0(e), 0 
varies from zero at the center to 0(e1/2) at the ends and 
0 ' =0(e1/2)/£ Because 0 ' =0(eb)/h, we see that h/l must be 
0(e1/2). From equations (22), 7" is constant to 0(e) and p/D is 
second order so that for h/l of 0(e1/2) or less we can take 

P'" -Tf3'/D-p/D = 0, T'=0, 

and 

0(0) = 0, 0'tf) = O, 0"(O) = O, 
Th2 

IF 21 
1 ?' 

= — 0: 

21 Jo 
cfe. 

(25) 

(26) 

The von Karman equations also lead to equations (25) and the 
solution can be easily obtained (see Love, 1927, pp. 559-562). 

Equations (22) under conditions (23) and (24) were solved 
by numerical integration to compare the results with the solu­
tion for the von Karman equations. The central deflection 
X0/2h for various values of h/lfrom 1/10 to 1/80 is tabulated 
for comparison in Table 1. The pressure was chosen so that 
the maximum strain is approximately 0.5 x 10~~3 in each case, 
and Poisson's ratio v was taken to be 0.25. As shown in the 
table, the classical linear theory breaks down as h/l decreases; 
on the other hand there is a slight discrepancy between the 
present theory and the solution from the von Karman equa­
tions when h/l is not too small. When h/l = 1/45, h2/f is close 
to the value for e used in Table 1, and the table shows that the 
von Karman solution is very accurate for h/l = 1/45 or 
smaller. This is in agreement with the previous paragraph 
which showed that the von Karman equations will apply for 
this problem when h/l is 0(e1/2) or smaller. 
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r, r 

2b 

Fig. 2 Deformation of the middle plane of a circular plate under 
pressure 

When both edges are clamped so that the displacements and 
rotation of the middle plane at z = ±1 are constrained to be 
zero, the end conditions on 0 become 

0(0) = 0, 0(f) = 0, 0"(O) = O, (27) 

while the conditions Z(0) = Z(Q = 0 again require condition 
(24). Together with the last condition of (26), conditions (27) 
constitute the end conditions for the von Karman equations 
also. The solution for the von Karman equations in this case is 
also given in Love (1927, pp. 563-564). For comparison, Table 
2 shows the central deflection X0/2h for various values of h/l 
from 1/10 to 1/160 as predicted by the present theory, the von 
Karman equations and the classical theory. The pressure was 
chosen so that the maximum strain, which occurs at the edges, 
is approximately 0.5 x 10"3 in each case. The table shows that 
the von Karman equations and the present theory give the 
same results for the values used for h/l, in contrast with the 
simply supported case (Table 1) in which there was a slight in­
accuracy in the von Karman solution for values of h/l which 
are not too small. For the present case of clamped edges, the 
end conditions on 0 are given by equation (27) for both of the 
approaches, and the bending strain is much larger than the 
membrane strain (in fact the ratio of eb to e„, tends to a finite 
limit 3V2 as h/l goes to zero, (see Love, 1927, pp. 563-564). 
Thus the differences between the two theories, occurring in the 
second equation of (22) and the condition (24), are insignifi­
cant, and the two approaches predict the same results. We 
note that the classical theory gives better approximations for 
smaller values of h/l compared with the previous case because 
the bending strain is more dominant for the clamped-end 
conditions. 

4 Bending of a Circular Plate by Uniform Pressure 

In this section we consider the axisymmetric bending of a 
circular plate. The plate is initially horizontal and supported 
on its edge so that the edge displacements of the middle plane 
are constrained to be zero but there is no constraint on rota­
tion of the edge. The upper surface is subject to uniform 
pressure p, while the lower surface is free from traction. A 
plate with a clampled edge can be treated in a similar manner. 

The classical theory gives the small deflection solution for a 
thick plate (see Love, 1927, p. 481). For a thin plate, the 
deflection can be comparable to the thickness of the plate and 
the von Karman equations have been used for this case (see 
Stoker, 1968). As in the preceding section, we obtain solutions 
for all values of the radius-to-thickness ratio. 

A cylindrical coordinate system is taken with the origin at 
the center of the middle plane, and with z axis vertically up­
ward. The radius of the plate is denoted by b and the thickness 
by 2h, The coordinates of points on the deformed middle 
plane are denoted by R(r) and Z(r), and the radial and cir­
cumferential extensions er and ee are then given by 

R'2 + Z'2 = (l+er)
2,R=(l+eg)r. (28) 

We use 7(2) for the inclination to the horizontal of the 
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tangent to the deformed middle plane along the radial direc­
tion, Fig. 2, and we have (c.f. equation (13)) 

R' = (1 + er)cos7, Z ' = (1 + er)shvy. (29) 

We denote by KT and ne the curvatures along the radial and cir­
cumferential directions, respectively, and in terms of 7 they 
are given by 

Kr = y'/(\ +er), Kg = siny/R = siny/r(l + ee). 

Because er and ee will be 0(e) at most, for our purposes we take 

Kr = y', K9 = siny/r. (30) 

For strain measures we can take 

e6=max( IK,./! IJK0/21), em =max(le r l ,\ee\), 

e = £b + em< ( 3 1 ) 

where eb, em represent measures for the bending strain and the 
membrane strain, respectively. Combining the second of equa­
tion (28) with the first of equation (29), we have 

l+ee + res = (l+er)cosy=l+er——- y1 + . . . , (32) 

and assuming that reg' is 0(e) it follows that at most 

7 = 0(eI/2), coS7=l — 72+0(e2). (33) 

The curvatures Kr and K6 are not independent but they satisfy 
the Codazzi relation Kr = K6 + RdKe/dR, so that to 0(e) we 
have 

Kr = KB + r4. (34) 

Let (r, d, z) and (/, S, z) denote the coordinates of a particle 
before and after the deformation. For this axisymmetric 
problem we take 

f=R + urcosy— (z+uz)siny, 

Z = Z+ Hrsin7 + (z + uz) COS7, (35) 

where ur, uz are small displacements which vanish with z. Ex­
pressions (35) may be compared to the corresponding expres­
sions in the previous section. The square of the length of a 
material line element in the deformed state is related to the 
physical components of the Green strain tensor for the cylin­
drical coordinates through 

dr2 + fidd2 + dz2 = (1 + 2e„ )dr2 + (1 + 2em )r2dd2 

+ (1 + 2ezz )dz2 + Ae^rdrdd + 4eezrdddz + 4erzdrdz. (36) 

Guided by the classical infinitesimal solution, we take 

uz=-. (er + ee)Z + — (Kr + K$)Z
2 

l — v 2(1 — v) 

| p ((l + v)z4 h2z2 (l-2v)hh^ 

Dl24(l-v) 4 ( l - v ) 2 3 ( l - * 0 2 i' 

Substituting equations (37) into (35), and the resulting expres­
sions into the left-hand side of (36), we can obtain the strain 
components to 0(e). Using the stress-strain law for linear 
isotropic materials, the Kirchhoff stress components arn aM, 
azz, arz, which are true stresses associated with directions in 
the deformed state of line elements which were initially in the 
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Tr+dTr 

Mr+dMr 

(o, z0y 
Fig. 3 Force and moment resultants for a circular plate 

radial, circumferential and axial directions, are then found to 
be 0(e) 

which were initally the surfaces r - constant, 6 = constant 
will be denoted by S(r), Tr(r), Mr(r), measured per unit 
length along the circumferential direction, and Te(r) and 
Me(r), measured per unit length along the radial direction. 
These resultants act through the deformed position of the mid­
dle plane, Fig. 3. With an approach similar to that leading to 
equations (15) of the preceding section, we obtain the follow­
ing expressions, which are correct to 0(e), 

Tr = 2Eh(er + vee)/(l-p
2)-vph/(l-v), 

Te=2Eh{ee + ver)/(l-v
2)-vph/(l-v), 

-(v2 + v + 8)ph2/20(l-v), 

Me =D(K„ + vKr)-(v
2 + v + S)ph2/20{\ - v). (41) 

As in the previous section, when considering overall balance 
of force and moment in terms of these resultants, it is suffi­
cient to assume that the pressure p acts on the central surface 
of the deformed plate. From equilibrium of a sector of the 
plate, we obtain 

r(Trsiny + Scosy) -pR2/2 = 0, 

r(Trcos7-Ssin7)-\ Tgdr+p\ R(\ + er)sinydr = 0, 
Jo Jo 

rMr - Mgdr + Rr( Scosy + Trsin7) 

+ r (Z - Z0) ( Ssin7 - T.COST ) -pR3 /3 

-p[ (Z-Z0)R(l+er)smydr+ [ Te(Z-Zo)dr = 0, (42) 
Jo Jo 

[er-Krz+p(ee-Kez)} 

( v + 2 ( z V 
4(1 -v) h 2(1 -v) 

— [ee-Kgz+v(er-Krz)} 

•]• 

r v + 2/z \ 
+pr—\ir) '—I 4(1 -v) h 2(1 -v) 

"«=P{-T(-T) 4 1 4 ) ' 

°n= 2(\E-v2) K + Kl>) (Z1 ~h2)' ( 3 8 ) 

provided that 

Kr" = 3K„" = K'T/T = 3K„7/- = - 3p/8D to 0(e)/h3, 

er" + ee" = 0(e2)/h2, {e'r + e„')lr = 0(e2)/£2. (39) 
(In equation (38) we have neglected contributions from second 
order terms involving ureg/r and urKez/r, which are bounded 
around r = 0 because ur(0,z) = 0 by symmetry.) The trac­
tion boundary conditions (12) on the upper and lower surfaces 
are now seen to be satisfied to 0(e), and the local equilibrium 
equations are also satisfied to 0(e) provided that 

e; + vee'+(er-eg)(l-v)/r = (Ke2)/h. (40) 

which will be verified using overall equilibrium equations. To 
0(c), the local equilibrium equations in terms of orr, oM, azz, 
an, and the independent variables r and z have the same form 
as those in the infinitesimal theory for a cylindrical coordinate 
system. 

Stress and moment resultants associated with surfaces 

where the subscript o indicates values at r = 0. Differentiation 
of (42) and manipulation of the resulting equations gives 

(rTr)' -y'rS-Tecosy = 0, (rS)' +y'rTr+Tesiny-pR = 0, 

(Mrr)'-Me+rS = 0, (43) 

where higher order terms have been discarded for consistency. 
Since the edge displacements of the middle plane are con­
strained to be zero while there is no constraint on rotations of 
the ridge, we have 

(44) Z(b)=0,R(b)=b,Mr(b)=0. 

At r = 0, we have 

fl(0) = 0,Y(0) = 0, (45) 

and we expect that Kg and eg are bounded at r = 0 because 
there is no concentrated load at the center. Equations (32), 
(34), (43) can then be used to show that 

e,(0) = e,(0), K,(0) = Kr(0), Me =M r(0), 

rr(0) = r,(0),s(0)=o. 
For a fixed value of e, as h/b decreases the flexural strain e0 

eventually becomes small compared with em, and the pressure 
loading p and the shear force S also will be correspondingly 
smaller. Therefore, for conservative estimates of the order of 
magnitude of p and S, it is sufficient to examine the case for 
thick plates. Using equations (42), we find that 

/ h \ 2 / h \ 2 

P=E\-b-) 0 ( € » ) = £ ( T 7 0(e)=jB°(£) 

S = £ f t ( y ) 0 ( e j ) = J E ^ 0(e) ^Eh0(e). 

and (46) 
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Table 3 Maximum numerical values for the strains and derivatives of the strains and cur­
vatures for a circular plate under pressure; em is the maximum extensional strain of the 
middle surface and ej, is the maximum bending strain 

I * . ' 

£°<'„> 
h20(Eb)/b

2 

0 ( E 2 ) 

or less 

h/b 

p/E 

Max| e-̂ ĵl 

Em 

Eb 

e'h 
r 

e'h 

r 

Kgh 

r 

t-"*^)" 3 

(Kr' " 3 , t e ' ) h 

(<;- - *;/0h3 

K ' - Ke/r)t>3 

K - h 4 

r 
K6 rh 

1/20 

1.1 x 

9.855 

3.700 

9.485 

6.334 

2.555 

1.119 

3.714 

5.684 

2.7 x 

4.5 x 

9.0 x 

2.2 x 

1.1 x 

4.0 x 

10-5 

x 10" 4' 

x 10-5 

x 10-4 

x 10"7 

x 10"6 

x 10-* 

x 10" 5 

x 10~6 

10-' 

10"8 

10"8 

10~8 

10~8 

10 - 8 

1/50 

2.06 x 10 - 6 

9.934 

1.791 

8.143 

1.188 

5.017 

4.473 

1.334 

1.289 

4.6 x 

2.1 x 

3.9 x 

9.4 x 

1.8 x 

2.1 x 

x 10~4 

x 10-4 

x lO"4 

x 10 - 6 

x 10"6 

x 10~5 

x lO"5 

x 10 - 6 

io-' 

lO"' 

10-' 

10"8 

10"8 

lO"' 

1/100 

1.36 x 10 - 6 

9.923 x 10 - 4 

4.427 x 10 - 4 

5.524 x lO"4 

1.235 x 10 - 6 

6.877 x 10 - 6 

3.317 x 10~5 

5.681 x 10"6 

1.249 x 10"6 

7.0 x 10"' 

4.5 x 10 -' 

7.2 x 10 -' 

1.6 x lO"' 

3.3 x 10 - 8 

5.9 x 10-' 

1/200 

1.15 x 10"6 

9.925 x io"4 

7.001 x 10 - 4 

3.827 x 10"4 

5.541 x 10~' 

6.795 x 10"6 

2.751 x 10"5 

2.008 x 10~6 

1.303 x 10"6 

7.0 x 10"' 

9.5 x 10"' 

1.2 x 10~6 

1.1 x 10~7 

5.2 x 10"8 

9.5 x 10"' 

Combining the last two equations in (43) and using the last 
two relations of (41) and equation (34), we reach the equation 

Table 4 Comparison of results for a circular plate under pressure with 

D{Z^ + 5r4'+r2Ke"') = y'rTr + TBy-pr, (47) 

where y and r have been used for sin7 and R for consistency. 
In the classical theory the three terms containing KS'" ,TnTe in 
the above equation do not appear and K/ has the constant 
value -p/8D. From equation (47) and its derivatives in con-
juction with the first equation of (46) and equation (34), for 
thick plates in which the bending strain dominates the mem­
brane strain we can expect 

«»'. Kr=-frr °(£)> 3/c9"=3Ke'/r = Kr"=Kr'//-

- 3p/8Z> to 0(e) /h3, ne
m = 0(e2)/h3 (48) 

The third derivative of Kr will be of second order to be consis­
tent with the second of (48). The terms containing ne"', Tn Te 

in equation (47), which can be neglected for thick plates, 
become significant as em increases, and for the complete 
verification of the orders of magnitude of n'r, Kg and their 
derivatives for smaller values of h/b, numerical results, given 
in Table 3, are used. The assumption (40) can be confirmed by 
using the first equation of (43) and the relation between the 
stress resultants and the extensions to give 

{er-ee)(\-v)/r + e^+vel) = (\-v2)y'S/2Eh1kO{e2)/h, (49) 

in which the inequality follows because S = Eh 0(e) is a con­
servative estimate for all values of h/b. Combination of equa­
tion (49) with (32) provides 

er'+ e„'= (p - l)Y2/2r to 0(e) M, 

and manipulating this equation we can verify that 

(er' + ei)Ir = 0(e2)//?2, er"+ ee"= 0(e2)/h2. 

Thus the assumptions on the orders of magnitude have been 
verified. 

The equations governing the deformd shape of the middle 
plane are given by the twelve equations in (29), (30), (43), the 
second equation of (28), and the first two and the last two in 
equations (41). To simplify these equations, we use the expan­
sions cosy = 1 - -y2/2 + . . . , siny = y(l - 7V6 + ... . ) 
in conjunction with the first of (33) and retain only leading 
order terms in the resulting equations, consistent with the 

a supported edge and with the maximum strain approximately 10" 
various thickness to radius ratios 

for 

h/b 

1/10 

1/20 

1/50 

1/100 

1/200 

p/E 

4.4 x 10 - 5 

1.1 x 10~5 

2.06x 10"6 

1.36 x 10~6 

1.15 x 10"6 

1 

7 

4 

1 

3 

Central Deflection 

Present 
Theory 

981 x 10"2 

636 x 10"2 

190 x 10 _ 1 

299 

192 

Classical 
Theory 

1.982 x lO"2 

7.772 x 10"2 

5.606 x 10"1 

5.915 

8.000 x 10 

-Z„/2h 

von Karman 
Equations 

1.912 x 10"2 

7.570 x 10~2 

4.186 x 10 _ 1 

1.299 

3.192 

present order of accuracy. Then the governing equations are 
reduced to two equations in y, Tr as 

ry" + y' -y/r-ryTr/D+pr2/2D = 0, 

r 2h2 

rCST'r + rT^+Eh\y2+— K {(4 + v)ry'y" + vy'2 

L 3(1 — ir) 3(1 -v2) 

-vy'y/r+r2y"2-yy" +r2y'y'" } 1 =0 . (50) 

We note that the terms containing 7 ", 7'" in the second equa­
tion can be eliminated by using the first equation so that equa­
tions (50) involve a fourth order system. Using the second rela­
tion of (28), the first and last equations of (43) together with 
the force-extension and moment-curvature relations, we find 
that the last two conditions of (44) require 

( l - » ' ) r r + r r ; + ^ + ZJr7 ' (7"+7' />-7/7- 2) = 0, 

7 ' -Yvy/r- v* + v + l 
• ph2 = 0dXr = b. (51) 

20(1 -v)D 

With the aid of the governing equation (50), the regularity of 7 
and R at r = 0 requires 

r;(0)=o. (52) 

Thus the boundary conditions for the nonlinear equations (50) 
are given by equations (51), (52) and the second condition of 
(45). Introducing the radial displacement U = R — r, we can 
formulate the boundary value problem in terms of U and 7 
(see Im, 1985). 

For thick plates under small pressure loading, Tr is com­
pressive but the term ryTr/D in the first of the govening equa-
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tions (50) is negligible and the second governing equation can 
be neglected. We then reach the following equation for the 
classical theory, 

ry " + 7 ' - y/r+pr2/2D = 0, 

and the boundary conditions are given by the second of (51) 
and the second of (45). The solution for the infinitesimal case 
is obtained as (c.f. Love, 1927, pp. 481) 

pr ( .IA 3 + v , . P2 + V + 8 •) 

For thin plates for which h/b is very small, the load is 
primarily sustained by the membrane stresses, and eb is 
negligible compared with e„, over the entire plate. Although a 
boundary layer is developed in this case near the edge where 
y" and its higher derivatives change abruptly [12], their 
numerical values remain very small and the present theory is 
not affected by the existence of this boundary layer. When eb 

is negligible compared with em, so is S compared with Tr, Tg, 
and the first three terms in the first equation of (50), which are 
related to e6, can be neglected compared with the other terms. 
The terms multiplied by 2ft2/3(l - v2) in the second equation 
of (50), which are h20(y2)/b2, are also negligible compared 
with y2 in this case. Hence we reach the governing equations 
for the membrane solution (see Stoker, 1968, pp. 22-27) 

yTr -pr = 0, 3rT; + r2Tr"+Ehy2 = 0. (53) 

The boundary conditions are obtained from equation (52), 
and the first condition of (51) by neglecting higher order 
terms, 

rr ' = 0 at/• = (), ( l - e ) 7 ; + r7;' = 0 a t r = Z>. 

The membrane theory leads to the first order interior solution 
in a perturbation approach by Bromberg (1956) and the solu­
tion can be given in terms of a power series in r/b (see Stoker, 
1968). In conjunction with the first of (33), the first equation 
of (53) suggests that for the membrane solution 

p/E=hO(e3/2)/b, 

which agrees with the result for the strip (20) as expected (and 
justifies the neglect of the term vph in the first condition of 
equation (51) for the membrane theory). 

We have discussed the two extremes, the classical theory 
and the membrane theory. They cover the geometries and 
loadings for which one of eb and em dominates the other. 
When eb, em are comparble to each other, both 0(e), y varies 
from zero at the center to 0(e1/2) at the edge and then y' = 
0(eU2)/b. Combining this with hy' = 0(e6) = 0(e), we expect 
h2/b2 to be 0(e) when eb, e,„ are comparable in magnitude. It 
then follows that the terms multiplied by 2h2/3(l - v2) in the 
second equation of (50), which are h20(y2)/b2, become 0(e2) 
and negligible compared with y2 and the terms containing the 

pressure p and the term Dry'(y" + y'/r — y/r2) in the 
boundary conditions (51) become second order compared with 
the other terms. For the loading and geometry such that h/b is 
0(e1/2) or less, we therefore obtain the governing equations 

ry " + y' - y/r - ryTr/D +pr2/2D = 0, 

r(3T; + rTr") + Ehy2 = 0, (54) 

and the boundary conditions 

{l-v)Tr + rT'r = 0, y' + vy/r = 0atr = b, 

7 = 0, rr ' = 0 a t r = 0. (55) 

These agree with the von Karman equations for large deflec­
tions of a circular plate. The solution for these equations can 
be given in terms of a power series in r/b (see Timoshenko and 
Woinowsky-Krieger, 1959, pp. 408-409). For comparison of 
the von Karman equations with the present theory, however, 
we use numerical integration together with a shooting method, 
and the results are shown in Table 4. Here the equations in 
terms of U and y were used for the present theory with 
Poisson's ratio = 0.3, and the pressure was chosen so that the 
maximum strain is approximately 10"3 for each case. As ex­
pected, the table shows that for values of h/b which are not 
very small, the classical theory agrees well with the present 
theory, but breaks down as h/b becomes smaller; for very 
small values of h/b, on the other hand, the results from the 
von Karman equations are in an excellent agreement with 
those from the present theory. We note that the von Karman 
equations give good approximations even for values of h/b 
which are not very small. 

References 

Bromberg, E., 1956, "Nonlinear Bending of a Circular Plate under Normal 
Pressure," Comm. Pure Appl. Math., Vol. 9, pp. 633-659. 

Im, S., 1985, "Large Deflections of Structures with Small Elastic Strains," 
Ph.D. Thesis, University of Illinois at Urbana-Champaign, October 1985. 
T.&A.M. Report No. 474. 

Koiter, W. T., and Simmonds, J. G., 1973, "Foundation of Shell Theory," in 
Applied Mechanics: Proceedings of the 13th International Congress of 
Theoretical and Applied Mechanics, Moscow, 1972, Becker, E., and Mikhailov, 
G. K., eds., Springer-Verlag, Berlin, pp. 150-176. 

Love, A. E. H., 1927, A Treatise on the Mathematical Theory of Elasticity, 
Cambridge Univ., 4th ed., Reprinted by Dover, New York, 1944. 

Nagdhi, P. M., 1972, "The Theory of Shells and Plates," in Hand. Phys., 
Vol. VIa/2, Springer-Verlag, Berlin, pp. 425-640. 

Parker, D. F., 1984, "On the Derivation of Nonlinear Rod Theories from 
Three-Dimensional Elasticity," J. Appl. Math. Phys. (ZAMP), Vol. 35, pp. 
833-847. 

Shield, R. T., 1984, "A Consistent Theory for Elastic Deformations with 
Small Strains," ASME JOURNAL APPLIED MECHANICS, Vol. 51, pp. 717-723. 

Shield, R. T., and Im, S., 1986, "Small Strain Deformations of Elastic Beams 
and Rods Including Large Deflections," J. Appl. Math. Phys. (ZAMP), Vol. 
37, pp. 491-513. 

Stoker, J. J., 1968, Nonlinear Elasticity, Nelson, London. 
Timoshenko, S., and Woinowsky-Krieger, S., 1959, The Theory ofPlatesand 

Shells, 2nd Ed., McGraw-Hill, New York. 
Truesdell, C , and Noll, W., 1965, "The Nonlinear Field Theory of 

Mechanics," Hand.-Phys., Vol. HI/3, Springer, Berlin. 

880/Vol. 53, DECEMBER 1986 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



G. Wempner 
Georgia Institute of Technology, 

Atlanta, GA 30332 

A General Theory of Shells and 
the Complementary Potentials 
This theory incorporates the attributes which are essential to the approximation of 
shells by finite elements. It is limited only by one assumption: Displacement is a 
linear function of distance along the normal to a reference surface. Deformation is 
decomposed into rotation and strain; the rotation carries elements of the reference 
surface to the same surface in any subsequent state. Transverse-shear deformations 
accommodate simple elements. The theory is couched in the potential Pv and in the 
complementary potential Pc; these have the property, Pv + Pc = 0 for all admis­
sible (equilibrated) states. The theory is also cast in the complementary functional 
Pc of stress and displacement, and the functional Pv of displacement, strain and 
stress; Pc and Pv are akin to the functionals of Hellinger-Reissner and Hu-Washizu. 
These alternate functionals provide the means to develop various hybrid elements. 

Introduction 
The role of thin shells in modern structures is evident. In­

creasingly, we turn to numerical methods, often based on 
finite elements, to predict the response of shells. When the 
strains are small, then the analysis of an element entails only 
small relative rotations; large rotations in the assembly are ac­
commodated by the decomposition of rigid rotation and 
strain. To avoid complicated elemental approximations, the 
theory of the shell must admit transverse shear strains; then 
kinks are admissible along the continguous edges of elements. 
The foregoing observations and a theory for "finite elements, 
finite rotations and small strains" were presented previously 
(Wempner, 1969). 

Before and after the earlier work (Wempner, 1969) many 
contributions have been made to the subject of shells. Intrin­
sically, most theories admit finite rotations. These include the 
important works of Koiter (1960, 1966, 1973), Sanders (1963), 
Leonard (1961), Naghdi (1972), and Reissner (1974). Sim-
monds and Danielson (1970) and Pietraszkiewicz (1980) have 
explicitly addressed the decomposition and alternative 
representations of the finite rotation. The works of Reissner 
(1974), Pietraszkiewicz (1980), Libai and Simmonds (1983) 
also accommodate transverse shear deformations. The 
literature is vast; the works cited include many additional 
references, beginning with the early work of Aron (1874) and 
Love (1927). 

The foundations of structural mechanics were recently for­
tified by Fraeijs de Veubeke's formulation (1972) of the com­
plementary potential. Independently, Koiter (1973) arrived at 
similar results: These demonstrate the roles of the rotation and 
the use of the tensors of stretch, engineering strain and the 
associated stress in the formulation of general complementary 
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potentials. The author has given interpretations (1980) which 
reveal the complementary character of those potentials and 
also the physical significance of the associated stress. 

Here we present a general theory which is drawn from the 
three-dimensional theory with one underlying assumption: 
The displacement varies linearly through the thickness. Our 
decomposition of rotation and strain differs from the usual 
decomposition of three-dimensions: Our rotation is more 
natural for shells because it carries elements of the reference 
surface to the same surface in any subsequent state. With no 
restrictions upon the magnitudes of rotations or strains, the 
theory is expressed by the complementary functionals which 
are analogous to the functionals of three dimensions. Some 
basic equations (kinematics and dynamics) apply to any con­
tinuous shell; all results apply to any continuous elastic shell. 

Since our theory is given by any of four functionals, accom­
modates finite deformations and transverse shear strain, it 
provides a vehicle for a variety of approximations and, 
specifically, hybrid elements. 

Three-Dimensional Theory 

In a previous paper (Wempner, 1980) we began with a 
primitive functional P of a stress vector T' and the position 
vector R of a deformed state 

P= \ [T'.R„-f.R]rf!; (1) 

- \ UUda- \ U(R-tL)da 
J a J av 

Here f is body force (per unit of initial volume v), t is the trac­
tion (per unit of the initial bounding surface a) and R is the 
prescribed position on a portion av of the boundary surface. 
The variation of R in v and on surface at (where tractions are 
prescribed) provides the equilibrium conditions for the stress 
T' in v and on a,. The variations of T' in v and t on a are sub­
ject to the conditions of equilibrium; then the variation of the 
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functional vanishes for kinematically admissible dis­
placements. In short, the functional includes the potential 
PV(R) and the complementary functional PC(T). To ap­
preciate this fully we introduce the strain, stress and com­
plementary energy densities: 

As before (Wempner, 1980), let r'A denote components of 
rigid rotation which carries the initial tangent vectors, g,- = r)(-
to an intermediate system 

ti'+Aj (2) 
A stretch with components C\ carries the intermediate triad g/ 
to the current system: 

R.,-=g/ = C!g; (3) 
Here the component of stretch, C,-, = CJjt is related to the 
component of engineering strain: 

hu = hJi = Cu-gu, (4) 

where 

Sij & i * 6 j fei *& / 

The internal power is 

^ = T ' . R ; / = T''.(C<g;)- (5a) 

^ = T ' - . ( q g ; + q f i x g ; ) (5b) 

Here 0 is the spin of the triad g/and Cj = hj. In another form, 

W= (T'.g'J)hu+ (TikCi)(g'g x g'k).& (5c) 

The final sum of (5c) is the power expended in the rigid spin; it 
must vanish. The first term is the work expended in strain: 

W=T<v>hu (5d) 

where T^ signifies the symmetric part of the stress 
component 

T'i=g'J.T' (6) 

If Wv (fly) and Wc (T^) denote the complementary densities, 
then 

T' .R i / = r y ( ^ + ^ . ) (la) 

= WV+Wc + T«gu (lb) 

Upon substituting (lb) into (1), we obtain 

P = PV + PC (8) 

where 

(9a) 

(9b) 

Pv=\ lW„-f'R]dv-\ URda 
J v J at 

Pcs ( [Wc + T'Jg0]dv- \ t .R da 

- f t>(R-R)da 

P„ (R) is the potential when f and t are dead loads. Pc (T') is 
subject to variations T' which fulfill equilibrium and t = 0 on 
a,; therefore, in (9b) 

i'Rda=\ i>Rda=\ T'-R ,-tfy 
J av J a J v ' 

In view of the foregoing, functional Pc can be rewritten: 

Pc=\ {Wc-THj'(G,-%'i)]dv-\ U(R-R)da (9c) 
J t t J av 

It is important to note that the variation T' requires the varia­
tion of the components TJ, and the vector g ' , i.e., the rota­
tion tl, which leads to the conditions for equilibrium of 
moment: 

Reduction to Two-Dimensions 

Our theory of the shell is founded upon the assumption: 

R = R°+0 3 A 3 (11) 

Here we follow the conventions: 6" denotes an arbitrary coor­
dinate of the reference surface (a = 1,2) and 03 denotes 
distance along the initial normal n. Also, 

A = R ° 

Top and bottom surfaces lie at 03 = h+ , -h_\ s denotes the 
reference surface; c denotes the bounding edge. If h and k 
denote the mean and Gaussian curvatures of the initial 
reference surface, then 

dv = iM(63)ds 

^^l-2hd3+k(63)2 

With these notations and the assumption (11), the functional 
(1) is integrated with respect to the coordinate d3, to obtain 

P = \ [ N a . R ° a - F . R 0 + M a .A3 ) a +T.A3-C«A 3 ] cb (12) 

M'A.dc - f N.R°tfc- f 

- ( N . ( R ° - R ) d c - [ M-(A3-A3)dc 

Instead of the one vector R(0 ' , 82, d3) of three dimensions, we 
have two vectors, R° (61, 62) and A3(6', 82), which fully define 
the configuration. F and C are net external force and "cou­
ple", which include body force and surface tractions. The 
"stresses" are 

N' < = Taixd63 

Ma = Tae3nde3 

(13a) 

(136) 

(13c) 

N and M are the edge tractions (force and "couple"); N and 
M are prescribed on part c, of the edge. 

The variation of vectors R° and A3 provides a variation of 
P (the virtual work) and the stationary conditions are the 
equilibrium equations in S and on ct. With the customary 
notation, ds = Va ddl dd2, and the usual integration-by-parts, 
we obtain 

1 r-
— ( V a N a ) a + F = 0 ms (14a) 
va 

1 
(VaM a) a - T + C = 0 

= N, M«/z = M 

in 5 (14b) 

on c, (I5a,b) 

Again, the variation of stresses N°, M° and T produces 
meaningful results only when their components are referred to 
a suitable basis. 

(TikCj)(eJkt)g" = 0 

Natural Basis for the Shell 

With the presence of transverse shear strain the usual rota­
tion (which carries g, to g/) would rotate the (initial) tangent 
vector (a„ = r" } out of the (deformed) surface. Therefore, it 
is more natural to employ a rotation which carries the initial 
triad (a,, a2, a3 = n) to a triad (b[, b 2 , b3 = N) such that ba 

are tangent and N is normal to the deformed reference sur­
face. With this new meaning, we have 

(10) b, = r|,ay (16) 
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Rotation: a ; —••!>,.; b,. = r.'; a ; 

Strain: b, —A, ; A, = f /7{+8pby 

e3 

^a|3 = C„3 - ^a0 

Fig. 1 Decompositon of motion 

The orientation of b a is such that the stretch of the surface is 
given by a symmetrical tensor: 

Cafi^ba'A$ = b^Aa (17a) 

A =R° 

The deformation also carries the vector N to the vector A3 via 
transverse extension and shear: 

C„ = b,-»A, (lib) 

Note that b3 • A„ = 0. 
All components of stress are referred to the natural basis: 

Nai = b''-N01, Mai = b''-M" 

T' =b '«T 

(18a,b) 

To illustrate the basis, the initial triad (a,-), the reference triad 
(b,) and the current (deformed) triad (A,) are depicted in Fig. 
1. 

Internal Power 

The internal power of the stresses (per unit area) is 

^ = N a . R ° a + M a .A3 ) C (+T.A3 (19a) 

After much algebra, we obtain 

W= N"P Ca$ + M^Dafi (\9b) 

+ T>Cia + T3d3i+M*D,a 

+ [(iV«3 -K-M^)C^a - VC33 + 7-3Q -M^Da3]w3ll 

+ [(.N"y -K$Mtsy)C* + TvCtfco^ 

Here a component of spin 0 is expressed by 

1 
fl'=b'.fi = &** 

Spin components about the normal b3 = N, tangents b1 and 
b2 are, respectively, d>21/Va, co32/Va, and w13/Va. The flexure 
Kf is defined as follows: 

(20a) 

(20ft) 

K%=-Aa'A 3,(3 

= C|2Jg-(CIcf) l f l 

Here B% and Bap are components of curvature: 

fl?-A«j!.N,JBa/,=Aa>fl.N 

Also, in (19ft), 

A * - V A 3 . « = - * £ < ? , * 

The expression (196) serves to identify the strains associated 
with each of the stresses, TV"'3, Mai, T* and T3, respectively: 

(21fl,6) 

(22a,Z>) 

kae =-£,<*/3 + ba0, ka3 — Da 

(23a) 

(236,c) 

h3a^C3a,h33=C33-l (23d,e) 

Since the stretch (Ca|3) and strain (hap) of the surface are sym­
metric, only the symmetrical part of the membrane stress 
(TV01*3) plays a role in the power, in a potential or dissipation. 
Also, the shear stresses Na3 are merely reactive. 

In addition, the power (19b) serves to identify three condi­
tions of equilibrium: Since no power is expended in the spin, 
each bracketed term vanishes. These three equations serve to 
determine, or eliminate.the skew-symmetric part of the stress 
Na® and the reactive stresses Nai. 

Complementary Potentials of the Shell 

With the identification of strains and the associated stresses, 
we can formulate the two-dimensional counterparts of the 
potentials (9a) and (9b). The potential is analogous to (9a) and 
follows from (12). 

Pv = \sWv(hafi,kafi,hv,ka3) (24) 

- F . R ° - O A 3 ] < f o 

- f [N.R°+M.A3]tfc 

Here the strains are implicit functions of the displacements 
(RD and A3), so that the potential (24) is implicitly a functional 
of displacement. 

The complementary "potential" is analogous to (9b) and 
follows from equations (12) and (24); Pc = P — Pv: 

Pc= f [WC(N^, M«", T'., Ma3) + Na^a^ 

-M^b^ + T^ds 

- \ [N.R°+M.A3]tfc 

(25) 

J - [N. (R°-R°)+M.(A 3 -A 3 ) ]c?c 
Jcv 

The complementary density is defined, as in equation (lb), by 
the Legendre transformation: 

Wc=N^h^ +M<*Vkafl +Ma3ka3 + T'h3i- Wv (26) 

The sum of equations (24) and (25) is the functional (12): 

P=PV+PC (27) 
Verification requires the definition of the complementary den­
sity (26), the stresses (18) and strains (23). 

The stationary conditions for Pv (R°, A3) provide six 
equilibrium equations (I4a,b) and edge conditions (15a,b), 
consistent with the potential Wv (dependent upon the 
elasticity). 

The functional Pc of equation (25) depends on the stresses 
(Nai, Mai, T') and rotation of the triad (b,) just as it's three-
dimensional counterpart (9b). Admissible variations of stress 
must satisfy the equilibrium equations; in particular, varia­
tions vanish on ct. Therefore, enforcing (14a,b) in Pc of equa­
tion (25), we obtain 

[ [N.R°+M.A3]c?c= f [ ]dc-[ [ ]dc 
J Cv Jc JC( 

= [ [ J V a ' V R ° a + M a ' V A 3 i a + T.A3 

- F . R 0 - O A 3 ] < f c - f [ ]dc 

Jc, 

(28a) 

(28b) 
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Then, by employing equation (28b) in (25), we obtain the two-
dimensional counterpart of (9c): 

Pc = j s [Wc -N"? ( V R ° a -ttae) -N"3N.R°a (29) 

-M*(bfl.A3ja + ba0) - M r f N - A 3 i a 

- T*ba .A3 - T 3N.(A 3 - N ) + F-R° +C«A3]rfs 

- f [N . (R 0 -R°)+M.(A3-A 3 ) ] r fc 

+ f [N-R° + M.A3]dc 
Jc, 

The latter form of Pc is akin to the Hellinger-Reissner func­
tional (Hellinger, 1914; Reissner, 1950). The functional is sta­
tionary under varations of stress provided that the 
displacement-stress conditions are satisfied, e.g., 

In addition, the functional (29) can be regarded as a functional 
of displacements (R0, A3). The functional is stationary under 
variations of displacements provided that the equilibrium 
equations (14a,ft) are satisfied in s and equations (15«,ft) are 
satisfied on c,. Finally, the functional (29), like (25) is depen­
dent on the rotation of the triad (b,). Both are stationary 
under variations of rotation provided that the three conditions 
of equilibrium (of moments) are satisfied; these are the condi­
tions that the bracketed terms of (19ft) vanish. 

If we employ the transformation (26) to eliminate Wc in 
equation (29), we obtain 

Pv( = -Pc) = 

Pv = \jWo-N"nhc,li-b0.(R°a-ba)] (30) 

- M * [ * a f l - b | S . ( A 3 j a + 6Sb(l)] 
+ N"i[N.R°J-M°nical-N.A3,a]-T'[hla-ba.Ai] 

- r3[/!3 3 - N . ( A 3 - N ) ] - F . R ° - C . A 3 }ds 

+ [ [N . (R° -R° )+M. (A 3 -A 3 ) ] t f c 
Jc„ 

-[ [N.R°+M.A]tfc 

The functional Pv is dependent on all variables, displacements 
(R0, A3), strains (hip kai), stresses (Nai, T', Mai) and rota­
tions (of b,-). The latter is a two-dimensional counterpart of 
the Hu-Washizu functional (Hu, 1955; Washizu, 1955) cast in 
terms of the rotated system (b,) and the engineering strains 
(fly, kai). The stationary conditions are all equilibrium condi­
tions, stress-strain relations, and the strain-displacement 
relations. 

Correlation with Classical Theory 

Alternative choices of strains and stresses are always pos­
sible. From equation (20a), we could adopt the flexural strain 

Then, from equation (21ft) 

The first terms of (19ft) assume the form: 

W= (Na® -K%A{tf)Caf) +M"fC^a 

This suggest that we adopt, as membrane and flexural stresses, 
respectively, 

n*B = AN?-j^M"*3 

The latter are the usual choices (c.f. Koiter, 1966, 1973; 
Sanders, 1963; Leonard, 1961; Naghdi, 1972). Under the 
Kirchhoff-Love hypothesis, K% = B<$. If products of strains 
and stresses are also dismissed, then 

nafl =Ar«"-ft°M'"3 

Under these circumstances the latter choices pose no dif­
ficulties; however in the general nonlinear theory, we need the 
separation of stresses and strains, and the unambiguous 
transformation (26). Though unconventional, our strains (hai, 
kaj) and stresses (Na^, Mai, T') provide a precise theory 
under the one hypothesis (11). 

If transverse strains are neglected, and surface strains are 
small, then (19ft) assumes the usual form: 

W=n^haP + n^ka0 (31) 

+ (A/*3-7* ) « 3 a + / !«%, , 

From equation (31) we can draw the anticipated conclusions: 
Since ka$ = k@a, only the symmetrical part of ma® plays a 
role. Equilibrium requires that the stress T01 = A^3, the 
transverse shear force. Also, we note the equilibrium require­
ment nafi = M*3". 

On Application of the Nonlinear Theory 

In general, "solutions" (actually approximations) of the 
nonlinear equations (differential equations of the continuous 
shell or algebraic equations of a discrete model) must be ob­
tained by successive solutions of linear systems which govern 
increments (Wempner, 1971). In particular, we record the 
linear relations between incremental rotations (coj, = bj • b,), 
strains (C,„) and displacements (R°, A3): 

wfa = c * ( b / « A 0 - C 0 / ) 

CiJ =b,.A,-d>y tCf 

Recall that Ca3 = C3 = 0 and 

5R° 

Note that the rotation (co/a) is determined entirely by the 
displacement (R°) of the reference surface. Also, increments 
of the rotation tensor are given by 

rJj = " f A 
The displacement of the "normal" (A3) enters only in the 
determination of transverse shear (C3a). 

Conclusion 

A theory of shells is founded on the one assumption: The 
normal remains straight or, equivalently, the displacement is a 
linear function of the normal coordinate. The theory is other­
wise general: Finite rotations, finite strains and transverse 
shear strains are admitted without additional approximations. 
The theory is expressed by the potential and the complemen­
tary potential, in the manner of Fraeijs de Veubeke (1972). 
These functionals are expressed in terms of a rotated system 
and engineering components of strain. The theory is also ex­
pressed by a functional of displacement and stress in the man­
ner of Reissner (1950) and by a functional of displacement, 
strain and stress in the manner of Washizu (1955). All are 
precisely consistent with the one underlying assumption. The 
theory encompasses the more restrictive versions based upon 
the hypothesis of Kirchhoff-Love; all incorporating the 
decomposition of rotation and strain. This provides a general 
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basis for the approximations, via finite elements, without the 
limitations of earlier work (Wempner, 1969). As noted then, 
approximations of small rotations within discrete elements in­
volve only small rotations relative to the rotated basis (b,); 
such elemental models are nonetheless applicable to finite 
rotations in the assembly. 
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A P P E N D I X 

Some Differential Geometry and Notations 

Where possible, minuscules signify variables of the initial 
state and majuscules signify variables of the current (de­
formed state). Unless specifically noted, components are 
associated via the metric of the initial state. 

The basis of the initial state is the triad (a,) and reciprocal 
triad (a'): 

a a = r ° a . a3=n> a''.a,-=5j 
The rigidly rotated triad (b,) and reciprocal triad (b') also 
form the components of the initial metric: 

fl«0 = aa.a<3=ba-b<3 

The triad (A,) and the reciprocal triad (A') are defined by 
the equations: 

Aa=R°„, A3=R ( 3(0\ 6\ 0), A,.A/ = 6j 
The stretch is defined by (17a); the inverse (or contraction) 

is denoted by the minuscule eg and defined by 

Relations between the triads, (b,-, b7') and (A,-, A>) follow: 

Aa =Cfiab0=Calibl> 

Aa =cgb'3 

ba =ci\0 = Ca^ 

ba =qfA3 

The shear is defined by (17/3); the mixed components follow: 

C3 = b ; .A3= a d ­
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Numerical Solution to an 
Inextensible Plate Theory With 
Experimental Results 
A numerical and experimental study of the Simmonds-Libai (1979) plate theory is 
presented in this paper. This concerns the large, inextensional, noncylindrical 
bending of cantilevered plates. 

Introduction 
Presented in this paper is a comparison between numerical 

and experimental results for the large, inextensional, deflec­
tions of cantilevered plates. To the authors' knowledge, this is 
the first numerical solution to a nonlinear plate theory first 
put forth by Simmonds and Libai (1979), and later modified 
by Darmon and Benson (1985). To briefly review, the 
Simmonds-Libai (S-L) plate theory represents an extension of 
Euler's elastica to noncylindrical bending, with the principal 
kinematic feature that a line of zero curvature, called a 
"generator," exists at any point in the deformed plate. See 
Fig. 1. A curve (B passes perpendicularly through all of the 
generators. Knowledge of the normal curvature, &(£), and the 
geodesic curvature, g(£)> of this curve, permits one to con­
struct the deformed geometry of the plate (£ is the curvilinear 
coordinate along <B, as measured from the "loaded edge"). 
Reduction to cylindrical bending brings great simplification as 
g(£) becomes identically zero and the parallel orientation of 
the generators is known a priori. The modifications of Dar­
mon and Benson were to include orthotropic, elastic proper­
ties and to admit distributed loading in the Simmonds-Libai 
equilibrium equations. This was motivated by the desire to 
better model such flexible, fibrous materials as paper and 
cloth. Readers desiring additional information on this inexten­
sional plate theory are referred to Libai and Simmonds (1983), 
Darmon (1985), and the two previously cited works. 

In the Numerical Solution Section we describe the tech­
niques used to integrate the differential equations of the 
theory, and take note of alternative techniques which proved 
less useful. We also examine some numerical problems that 
arise when the normal curvature of the plate vanishes. At such 
inflection points in the plate the local generators are am­
biguously defined and the basic kinematic tool of the S-L 
theory is lost. Techniques to bridge these points of vanishing 
curvature will be presented. To test the utility of the S-L 
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Fig. 1 Geometry of the plate 

theory, and the validity of the present solution, experiments 
were performed on steel plates. "Short plate" results, little in­
fluenced by gravity, and "long plate" results, much influenc­
ed by gravity, are reported in the Experiments Section. The 
closeness of the match between the numerical results and the 
experimental measurements is considered in the Discussion 
Section. We find the match to be quite good. 

Notation follows Simmonds and Libai (1979). References 
on the numerical study may be found in Carnahan et al. 
(1969). 

Numerical Solution 

The S-L equations of equilibrium, as modified by Darmon 
and Benson (1985) for orthotropism and distributed loading, 
comprise a set of sixteen differential equations, three integral 
equations, and various algebraic constraints. The integral 
equations are of the form: 
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where q (t) is the resultant of the distributed load acting along
a single generator at t, and Q(O is the resultant of all
distributed loading between the loaded edge at t = 0 and an in­
termediate generator at t = ~. For the present purpose of
numerical solution, we find it preferable to differentiate vec­
tor equation (1) so that the integro-differential system
becomes a purely differential system. The three scalar com­
ponents of Q are then incorporated as additional unknowns so
that the eventual formulation appears as:

Singularities and Implementation

When the normal curvature k(O of the plate vanishes, a
numerical singularity arises. In the neighborhood of such in­
flection points of the curve CB, the plate is practically
undeformed and it follows that the bending strains are. so
small as to become of the same order of magnitude as the
stretching strains. This contradicts the basic assumption of the
inextensible plate theory, which stipulates that the stretching
strains are negligible in comparison to the bending strains. In
the limit, a zero normal· curvature causes a numerical
singularity as the derivative of the geodesic curvature, g' (0,
becomes infinite. The singularity has been treated by the
present authors in two separate cases depending whether it oc-

where y is a vector unknown, Yo is a vector boundary condi­
tion, and f is a vector function, all of dimension nineteen. See
the Appendix for a complete list of these equations.

Of the various numerical techniques that might be used for
the integration of (2), two main categories can be identified: a
simultaneous, finite-difference, matrix method; and a
"shooting" method. The matrix method consists of replacing
the differential equations with a system of 19 x N algebraic
equations where N is the number of points at which the solu­
tion is desired. The problem is then reduced to the inversion of
a 19 x Nby 19 x Nmatrix. Although experience has proven
that this method can be more stable than some shooting
techniques, it requires far more computation time and is fairly
complicated to implement. For that reason, it has been
discarded after some trials.

Shooting methods are of two kinds: explicit or implicit (also
known as open and closed formulas, respectively). Implicit
schemes, although a bit slower, are numerically more stable
than explicit schemes (Carnahan et aI., 1969). An explicit
fourth-order Runge-Kutta scheme was first tried with no suc­
cess, due to a lack of stability. A fourth-order and then a six­
order Milne predictor-corrector method, both implicit
schemes, gave unacceptable results as well. Finally, the Ham­
ming predictor-corrector method was tried, and was retained
for it gave satisfactory and stable answers to our problem. It is
based on the Milne method, but its stabilty is improved at the
expense of an increased truncation error. The subroutine
DHPCG (Double precision Hamming Predictor Corrector for
General differential equations), from the Scientific Subroutine
Package by IBM, has been used.

The Simmonds-Libai equations require iteration on the
unknown initial geodesic curvature g(O) so that the final
generator aligns properly with the clamp. There are two other
unknown quantities which require iteration: the direction of
the distributed load in the frame attached to the plate, and the
final value of the independent variable ~. The iteration on the
maximum value of ~ is necessary as the curve CB is not a
material line and therefore its length is not known a priori.
The present results were obtained by the Newton-Raphson
method.

curs at the loaded edge of the plate (as occurs when no bending
moment applied), or at an interior generator (plate deformed
into an "S" shape). In the case of vanishing curvature at the
loaded edge, experiment has shown that if a small bending
moment is applied, the numerical solution still behaves nicely,
but the determination of the unknown initial geodesic cur­
vature remains delicate (Darmon, 1985). If the guess for g(O) is
poor, the numerical singularity that ensues (negative argument
of a logarithm) can be physically interpreted as follows:
1/ Ig I , which represents the distance between the curve CB and
the edge of regression of the developable surface, becomes
smaller than or equal to the actual dimension of the plate
along the generator. Hence the edge of regression falls into the
plate. Theoretically, this means that the plate should be
represented with the two branches of a developable surface
which connect on the edge of regression. Physically, this is not
possible without folding or in some cases tearing the plate.

Applying a small, fictitious bending moment to the edge of
the plate provides a simplistic means for avoiding the
singularity, however it is not computationally efficient and an
alternative solution has been sought. It consists of assuming
that a small area close to the tip of the plate behaves like a
wide elastica (no twist). This removes the singularity as g is
identically zero for an elastica. After a short distance, k will be
small but nonzero, and normal integration with the S-L equa­
tions may be resumed. We found the elastica-patch to be very
simple and very accurate.

A configuration in which the normal curvature vanishes at
an interior generator of the plates requires the integration of
the geodesic curvature g on an interval where it is infinite.
Although such a configuration can sometimes be unstable (see
Love's 1944 statements with regards to the elastica), it is
nevertheless worth studying. Since, physically, the plate
deforms in a continuous manner, the mathematical analog
ought to have a solution, i.e., the singularity should be in­
tegrable. Thus, in that interval, g' should be of the approx­
imate form:

Fig. 2 Experimental apparatus

(1)

(2)

Q(O = 1: q(t)dt,.

dy
~=f(~,y) y(O)=Yo,
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Fig. 3 Clamp and skew angles 
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(3) 

(4) 

As all the cases we studied had monotonically increasing 
normal curvature (see next section), we never had cause to im­
plement equations (3) and (4). 

Experiments 

Noncylindrical bending tests were conducted on a thin, rec­
tangular, stainless steel plate, which we felt provided a 
reasonable faithfulness to the assumptions of perfectly 
homogeneous, isotropic, elastic behavior in the Simmonds-
Libai plate theory. The plate measured 635 mm (25 in.) long, 
152 mm (6 in.) wide, and 0.305 mm (0.012 in.) thick, and had 
a mass of 235 g (0.0161 slug). Through a simple cylindrical 
(i.e., elastica) deflection test, the bending rigidity was 
measured to be 0.477 Nm (4.23 lb-in.). To minimize the ex­
perimental error from the original curl of the plate, all tests 
were performed twice, and averages were taken of the "curl-
up" and the "curl-down" values. The plate was sufficiently 
stiff so that extraneous effects such as the weight of strings, air 
currents, etc., could be safely neglected. 

The clamping fixture was composed of an aluminum base 
plate on which two vertical beams were mounted. See Fig. 2. 
These beams supported, along a horizontal straight line, a 
slope-adjustable clamp. The adjustability of the clamp allow­
ed for the rotation of the test plate in the gravity field so that 
its effect could be enhanced or diminished. It was also possible 
to skew the plate within the plane of the clamp in order to 
enhance or diminish the noncylindrical nature of the deforma­
tion. Figure 3 depicts these angles more precisely. The plate 
shown in Fig. 2 has a clamp angle of 50 deg and a skew angle 
of 45 deg. 

A follower load at the edge of the plate is provided by ac­
curately calibrated weights hung on a light string passed over a 
pulley. The pulley is fixed on a bar supported by a chemistry 
stand. Small pointers, centered on the loaded edge of the 
plate, help to adjust the position of the pulley so that the ap­
plied load is perpendicular to the tangent plane of the plate. 

The deflection of the plate was measured along the two 
parallel, unloaded sides. (Recall that the clamped edge and 
loaded edge are part of the set of straight line generators.) 
Small, evenly spaced marks were scribed on the sides of the 
plate where measurements were to be taken. The spacing was 
set at one tenth of the plate width (15.2 mm), and the marks 
were made very short and shallow so that there would be no 
measurable effect on the bending rigidity of the plate. A three-
dimensional digitizer with a cone-shaped probe was used to 
measure the deflection. The probe is visible in Fig. 2. The 

Top view (XY) 

Front view (XZ) 

Clamp Angle = 30' 
Skew Angle = 21.8' 
Applied Load = 2.45 N 
Length/Width = 1.3 

WITHOUT GRAVITY: .-
Average Gap = 0.034u> 
Maximum Gap — 0.055w 

WITH GRAVITY: 
Average Gap = 0.030w 
Maximum Gap = 0.048iu 

Side view (YZ) 

Fig. 4 Short plate results 

0.10u> 

GAP 

Top view {XY) 

<y 
Front view (XZ) 

A" 
A^~ 

Clamp Angle = 73" 
Skew Angle = 45.0" 
Applied Load = 1.96 N 
Length/Width = 2.0 

WITHOUT GRAVITY: 

Average Gap = 0.081w 

Maximum Gap = 0.159i» 

WITH GRAVITY: 
Average Gap = 0.027ui 
Maximum Gap = 0.045ty 

Side view (YZ) 

A 
Fig. 5 Long plate results 

digitizer had a capability of recording Cartesian XYZ coor­
dinates to within 0.001 mm (0.0004 in.). We defined the coor­
dinate axes such that X lay in the line of the clamp, and Z 
aligned with gravity. See Fig. 3. 
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Two test configurations will be described: 
1. A "short plate" with a centerline length of 198 mm (7.8 

in.), clamp angle of 30 deg, skew angle of 22 deg, and a 
normal follower force of 2.45 N (0.55 lb). 

2. A "long plate" with a centerline length of 304 mm (12.0 
in.), clamp angle of 73 deg, skew angle of 45 deg, and a 
normal follower force of 1.96 N (0.44 lb). 

The short plate configuration was chosen to deemphasize 
the influence of gravity, thereby to provide a fairer test of the 
original Simmonds-Libai (1979) plate theory which discounted 
distributed loading in the overall equilibrium equations. The 
long plate configuration was chosen to emphasize the con­
tribution of gravity, thus to serve as a check on the modifica­
tions made to the S-L theory by Darmon and Benson (1985). 

Experimental results for the short plate and long plate are 
compared with numerical results in Figs. 4 and 5, respectively. 
Three orthogonal views are shown. In the figures, a solid 
curve denotes a numerically predicted plate perimeter, taking 
into account gravity. A dashed line shows the same plate 
perimeter when gravity is neglected. Small crosses mark the 
experimentally obtained perimeter points from the three-
dimensional digitizer. 

The plot of the "gap" at the bottom of Figs. 4 and 5 is a 
measure of the discrepancy between the numerical and ex­
perimental results. The gap is defined to be the distance 
separating the experimentally measured and numerically 
predicted locations of the same material point on the 
perimeter of the plate. This value is then nondimensionalized 
by dividing by the width of the plate (152 mm in both test 
cases). The gap is plotted as a function of the perimeter 
distance around the three nonclamped sides of the plate. As 
before, a solid line takes into account gravity, and a dashed 
line does not. 

Discussion 

The short plate and long plate results that are presented here 
are the least favorable comparisons that the authors obtained 
in 10 experiments. Nevertheless the "gap" between the ex­
perimental measurements and the corresponding theo­
retical/numerical prediction is at no point greater than 5 per­
cent of the width of the plate. The authors believe that most of 
this error is due to experimental inaccuracy, particularly in the 
measurement of the clamp angle. Indeed a rigid-body rotation 
of 1 deg or 2 deg of the plate around the clamp line can reduce 
the maximum gap down to about 1 percent. Further statistical 
analysis of the experimental results leads to the same conclu­
sion (Darmon, 1985). 

It ought to be noted that incorporation of gravity in the 
model does not significantly reduce the gap for the short plate. 
This was expected as the effect of gravity was deliberately 
minimized. For the long plate however, the inclusion of gravi­
ty is a substantial improvement over the original S-L theory. 

In the opinion of the authors, the Simmonds-Libai theory, 
with the addition of distributed loading, has met its potential 
as a model for lightweight structures such as webs, film, 
paper, and thin metal plates. Comparison with experimental 
measurements has shown that the model is very accurate when 
applied to nearly inextensible plates. A worthwhile activity for 
future study would be a similar numerical/experimental com­
parison of orthotropic, inextensible plates. 
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A P P E N D I X 

Following is a list of equations needed for the extended S-L 
theory. Notation follows Darmon and Benson (1985). 

Angle of the generators: 
a ' = g , <*(0) = 0. (5) 

Cartesian coordinates of a point on the curve <3 in the 
undeformed plate: 

« '=cosa, w(0) = 0, (6) 
i>'=sina, t>(0) = 0. (7) 

Components of the torque T: 
T;=gTu + kTm-lm, r,(0)=7a.i, (8) 
T'u = -gTt +Pcm - Qm, T„(0) = ra-j , (9) 
T'm = -kT, -Pcu + QU +1„ rm(0)= 7a.k. (10) 

Geodesic curvature g: 

S A0A2-A\ LA 1-Vg - D(kJ f ° 

g(0) = ?. (ii) 
Angles needed to locate the direction of the force P: 

<j>'=k cos 7, 0(0) = 0o. (12) 
Y' = -g-k cot 4> sin 7, 7(0) = 7„. (13) 

Euler parameters: 

18,'= -^-(*03+g/32), /5,(0) = 0, (14) 

ft=—i-(*/* + *0,), 02(O) = O, (15) 

fr' = -^-(gr-WO, 03(O) = 0, (16) 

P'= y (*02-Sft). M0)=1. (17) 

Integrals of the distributed load: 

Q>^L = QX, Qx(0) = 0, (18) 

Q'y-^j*- = Qy. 6,(0) = 0, (19) 

G > - ^ - = ? z . Qz(0) = o. (20) 
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Curve (B: Derivatives of the rigidities: 

x ' = t , x(0) = 0. (21) Du=-4csg[c2Dx-(c
2-s2)(Dxy + 2Gxy)-s

2Dy] 

Angles 6. and 0_: r , / dDx dDx\ 
+ ( l - r /g) c4! cos a - + s i n a ——) 

0 ± = a - / 3 ± > (22) L I 9x 3y / 
fan R -df± m i „ ? , / a(£>x„+2Gx>) . d(Dxy + 2Gxy)\ t a n P ± - _ ^ r - (23J + 2c2s2 cos a ^ ^ - + sin a y ^—) 

«* \ dx dy / 
Relation for the u.-'s in terms of the e.'s: 

. / dDy . dDy\l 
n/ = e, + 2rt3xe / + 20S.e/)/J-20J.i8)e/. (24) + s4(^cos a -^- + sin a - ^ J J , (35) 

Distances along a generator from the curve (B to the free 
edges,«+and «_: r, A &DX dDx~\ 

6 ' '+ ' Dt „ = c4 - sin a —-— + c o s a — - — 
e ' ' L 9A: av J 

tl±cosct+v=f± {u — 7)±sina). (25) ' L 3A: dy 

r . lCD^+2^) d(Dv + 2G„)-\ 
+ 2clsz - sin a f- — + cos a =4 

L dx dy .1 

Normal curvature k in terms of the bending moment Tu: r 3 (Z>,v + 2G„V) 3 (Dxv + 2Gxy) 
m + 2c2s2 - sin a f- — + cos a =*-— 
Tu L 3x 3.y 

* = T~- (26) 
4 [ _ . j M ^ dDyl 

Direction cosines of the force P: +s I S l n a dx + c o s a dy J 

1 

(36) 

cu = sin 0 sin y, (27) 
cm = cos</>. (28) ^ . ^ - ^ ^ [ ( c 2 - * 2 ) ^ — — (c2-s2)(Dx+Dy-4Gxy) 

Integrals along a generator: I a generator: r 9 n 3 n -, 
„„ n , , +(c4+s4) cos a ^- + s m a — - ^ -

+ c ^ 
r a (Z>,+D,-4G w ) 
cos a 

— r -41 • i 

( 1 - « V + 1 

P+ Dtrfdt, T l - ° L dx 

. a ( D x + Z > , - 4 G v ) 
+ sin a — 

!«) = { »?(1-W)pdij, (31) 
"~ „ , T d£>xv dDxy~\ 

Z ? f ? M = ( c 4
+ 5

4 ) | - s i n c * - — f + c o s a — f \ 

Q(f)= d - W ) P * J . (32) d * ^ 

dy 

dDYV dD 

] , (37) 

— sin a 
9(D J+Z>„-4G JS ,) 

Rigidities: L 3x 

Di=c*Dx + 2c2sHDxy + 2Gxy)+s*Dy, (33) 3 ( ^ + ^ - 4 0 , , ) 
= M a . A n 4-̂ 2o2fr> j . n - i n i i^/n + c o s a D^=(c*+s<)Dxy + c2sHDx+Dy-4Gxy). (34) ™ ° " ^ 

(38) 
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Kinetoelastostatics of 
Axisymmetric Nets 
Intricately interrelated external loads, internal forces and equilibrium shapes of 
axisymmetric nets are studied. After developing the basic equations in a generic 
form, the most important particular types of nets are investigated—geodesic, 
Chebyshev, and orthogonal nets. Closed-form statical-geometric relations are ob­
tained for each type of net and, as a by-product, for a wrinkling axisymmetric mem­
brane. These allow a comprehensive investigation into the equilibrium configura­
tions of the above systems and their evolution in the course of loading. Load com­
binations studied involved edge loads and normal surface loads such as net-solid 
contact pressure, pneumatic pressure or pressure induced by an axial gas flow. 

Introduction 

A net is an underconstrained, multidegree-of-freedom 
structural system with intricately interrelated statics and 
geometry: the equilibrium shape of a net is uniquely deter­
mined by the applied load whereas, for a given geometry, 
equilibrium is possible under a whole class of loads 
(equilibrium loads). A systematic study of nets within the 
general framework of structural mechanics began about three 
decades ago [1, 7-9] although a few works on the analysis of 
simple shallow nets appeared long before. In a comprehensive 
work by Rivlin [9], an inextensible Chebyshev net is subjected 
to a large axisymmetric deformation followed by a small cyclic 
deformation. Read [8] found in numerical form the feasible 
shapes of axisymmetric geodesic nets under uniform pressure. 
The problem statement in Pipkin and Rivlin [7] was much 
more general and, in fact, reversed: sought was a layout with 
uniformly stressed fibers (an isotensoid design) for a given 
convex surface of revolution. For the case of geodesic isoten­
soid, the problem was reduced to an integral equation in the 
unknown distribution of the wound fiber inclinations to a 
reference parallel. Closed-form solutions were obtained for a 
sphere, cone, and ellipsoid of revolution. Interestingly, Pipkin 
and Rivlin [7], apparently unaware that their geodesic isoten­
soid design is the exhaustive solution to the problem, mention­
ed a nongeodesic isotensoid system. The latter, however, is im­
possible by virtue of the following proposition [3]. 

If, under a normal surface load and an edge load, the cable 
net meets one of the three conditions: 1) the net is geodesic; 2) 
cable intersections do not transfer tangential forces; 3) cable 
forces do not vary along the length; then all of the three condi­
tions are met. 

Thus, any isotensoid net under the above type of load is 
geodesic. For example, a yielding ideally plastic net is 
geodesic; in particular, if it is flat (edge loads only) all the 
cables are straight regardless of the initial geometry of the net. 
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Fig. 1 Skew axisymmetric net 

The object of this paper is an axisymmetric net generally 
lacking reflection symmetry relative to a meridian plane, i.e., 
a skew axisymmetric net (Fig. 1). The homogeneous problem 
for such a net (edge loads only) has been solved in [4] where 
the feasible equilibrium shapes of prestressed nets were 
established. The present study deals primarily with statical-
geometric interrelations for nets supporting normal surface 
loads. Such relations are necessary for determining the 
equilibrium shape for a given load, or, conversely, for finding 
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parallel 

Fig. 2 Net angles and forces 

the equilibrium loads for a given shape. The latter alternative 
underlies the concept of statically controlled geometry 
whereby a desired configuration of an underconstrained 
system is obtained by statical means and is subsequently fixed 
(by imposing additional constraints) or actively controlled (us­
ing some kind of feedback). 

Material properties are usually brought into the analysis 
after establishing the equilibrium shape attained kinematical-
ly. However, prestressed nets represent an exception: they lack 
kinematic mobility, hence, in their analysis constitutive rela­
tions cannot be decoupled. 

Generic Statical-Geometric Relations 

For a continuous model of an axisymmetric net with a me­
ridian r = r(z), the equilibrium condition in the normal direc­
tion is the same as the one for a membrane shell of revolution 

T1a1+T2a2=P (1) 

Here Tt and T2 are the meridional and hoop forces (per unit 
lengths ds2 = \ and dsl = l, respectively), o1 and a2 are the 
principal curvatures, and P is the normal surface load. 

When introducing the net forces, Ta and Tp, it is convenient 
to refer them to a unit polar angle, d<j> = 1, since it contains a 
certain constant number of cables from each array. Let a and 
/3 be the respective cable inclinations to the meridian with the 
positive direction shown in Fig. 2. Then the three membrane 
forces are related to the cable forces as follows: 

rT\ = Tacosa + Tpcosfi (2) 

rTn = Tasma + 7^sin/3 (3) 

and, by virtue of 

d<j}/dsi I „ = tana//-, d<j>/ds{ I g = tan/3/r (4) 

the hoop force 

rT2 = T^sina tana + 7^sin/3 tanj3 (5) 

After introducing the axial force resultant, Tz, and torque mo­
ment, Mz, 

Tz = 2itrT{ sin0, Mz = 2%r2 Tl2 (6) 

the cable forces are evaluated from equations (2) and (3) as 
follows 

2-wr sinco Ta = r7;sin/3/sm0 -Mzcos$ (7) 

lirr sinco Tp=Mzcosa — rTzsina/sind (8) 

Here 8 and a> are, respectively, the slope of the meridian and 
the net angle: 

ctn6 = dr/dz, u = 0-a (9) 

Note that torque Mz is constant throughout the net while the 
axial force Tz, in the presence of a surface pressure, varies 
along the z axis. 

The three membrane forces produced by a net are mutually 
dependent which allows the hoop force to be expressed in 
terms of the meridional and shearing forces 

T2 = r1 2(tana + tan/3) - r j tana tan/3 (10) 

Upon the substitution of equations (6) and (10), equation (1) 
becomes 

Tz(cn -ff2tana tan/3)/sin0 + MJff2(tana + tan/3)/r = 27rrP 

(11) 

Presenting the principal curvatures as 

ai = dsind/dr, a2 = sind/r (12) 

and employing the condition of axial equilibrium 

2-wrP = dTz/dr (13) 

enables equation (11) to be transformed into a first-order dif­
ferential equation 

d T7 TAtma tan/3 M7(tana + tan|3) 

dr sin0 rsin0 r 

The above equations interrelate the statical and geometric 
variables describing an axisymmetric net in equilibrium. In the 
absence of torque, Mz — Tn — 0, it follows from equations 
(11) and (12) that 

ax/a2 = 2irr2P/Tz + tana tan/3 (15) 

where, as is seen from equation (3), 

tana tan/3 < 0 (16) 

provided that both of the cable arrays are in tension. Accord­
ingly, in the state of prestress and under an external pressure 
(P<0) the meridian is always concave. Under an internal 
pressure, ax reduces in absolute value, and a point where it 
first reaches zero becomes an inflection point with 

2-Kr2P = - Tztana tan/3 (17) 

The axial force is given by 

TZ = TZ0+2TT\ZI P(Z) ctnd dz=Tzo + 2ir[ri P(r)dr (18) 

where Tzo is the axial force at the parallel z = z0. If pressure P 
is known as a function of r, the second alternative of equation 
(18) leads to an explicit expression for Tz (r). Such is the case, 
for example, of an incompressible gas flow (the normal 
pressure is proportional to r~4). For a uniform pressure, 

Tz = Tzo[l+p(r2/rl-l)] (19) 

where p is the normalized pressure 

P = irrlP/Tzo (20) 

There exist three invariant parameters associated with a seg­
ment of an axisymmetric net contained between the edge 
parallels, z0 and Z\. The first two invariants are the natural 
(unstretched) cable lengths: 

_ fzi dz _ fzi dz 
a Jz0 sinflcosa' " Jz0 sin0 cos/3 

The third invariant is the angular distance, $, (Fig. 3) at the 
terminal parallel, Z\, between an a line and a /3 line originating 
at one and the same point A at the initial parallel, z0. * is 
evaluated via the respective cable winding angles, <j>a and </>3. 
Although both <j>a and 0^ change in the net deformations, 
their difference preserves: 

fzi tan/3-tana 
* = <^-<Aa= ^-r-i—dz (22) 

J z0 r sint? 
La, Lg and $ are the only geometric invariants of a net; all 
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Fig. 3 Cable winding angles and angular invariant 

other parameters, including the axial length Lz =Z\—z0 and 
the radii of the edge parallels can, and generally do, change in 
the net deformations. 

Further investigation requires knowledge of the intrinsic 
geometric properties of the net obtainable only upon specify­
ing the net type. In what follows, the three most important 
particular types of nets are studied—geodesic, Chebyshev, and 
orthogonal nets. 

Geodesic Nets 

A geodesic net with the member intersections not fixed re­
mains geodesic in both kinematic (inextensible) and elastic 
deformations under any normal surface load and edge load. 
This is in spite of the fact that the form of an elementary cell 
as well as the overall shape of the net surface change in both 
deformations. An axisymmetric geodesic net on a given sur­
face of revolution r = r(z) is uniquely defined by specifying 
the constants a and b in the Clairaut formula [2] 

r sina = a, r sin)3 = 6 

After these formulas and their differential versions 

(23) 

(24) da etna = dfi ctnfi = — dr/r 

are introduced into equation (14) the latter admits an in­
tegrating factor leading to the solution 

Tz/smO-Mz(cosa + cosP)/(a+b)=Crsmw (25) 

where C is an arbitrary constant. By subtracting equation (8) 
from (7) and comparing the result with solution (25) it is found 
that 

C = 2w(Ta-Tfl)/(a+b) (26) 

Furthermore, expressing the cable forces in terms of the con­
stants C and M, confirms that the forces do not vary along the 
cable lengths: 

2*Ta=Mz/(a + b) + Cb, 2irTfi=Mz/(a + b) -Ca (27) 

The obtained equations allow some observations to be made 
on the evolution of the meridian shape for a geodesic net 
under a uniform pressure. As with any axisymmetric net, in 
the state of prestress or under an external pressure, the me­
ridian is concave. In accordance with equations (17) and (23), 
under a uniform internal pressure, inflection first sets in at the 
larger of the edge rings and gradually propagates toward the 
smaller ring. At this stage the meridian is S shaped and stays 
this way until the inflection reaches the smaller ring, 
whereupon the meridian becomes convex. A conical shape is 
not feasible, but a cylindrical one is possible if r0 = rx and oc­
curs when 

p = - ( t a n a tanj3)/2 (28) 

Curiously, a geodesic net is one of the few objects in struc-

ITzo 

^ i T zi 
Fig. 4 Geometric parameters and loads on net 

tural mechanics where the applicability of conventional 
analytical means, including the finite element method, is not 
obvious. One of the reasons is the necessity to satisfy the three 
preservation requirements (21)-(22). 

The following example is an analysis of a skew geodesic net 
for a 250 m high cooling tower [5] with two rigid edge rings of 
radii r0 = 75 m and r, = 100 m (Fig. 4). The net is torque free, 
i.e., no external torque is applied and the edge rings are not 
constrained against mutual rotation about the z axis. With Mz 

= 0, solution (25) yields 

ctnd = dr/dz = V \Cr smo>/Tz)
2 - 1 (29) 

whereupon the equilibrium configuration of a net is obtained 
explicitly by forward integration employing equations (9), 
(13), and (23). 

The analysis [6] starts with determining the prestressed 
state. In this case, P=0, Tz = T* and only three initial 
parameters are needed for forward integration: a, b, and 
C/T*. These are selected and then adjusted by trial-and-error 
until a satisfactory prestressed state (net shape and forces) is 
obtained. At this stage the invariants La, L& and $ are 
evaluated. In particular, 

L„—L* — T1/EA„, La • TS/EA. (30) 

where L* and Z,| are the pretensioned cable lengths obtained 
by integration, EAa and EAe are the cable stiffnesses. 

The deformed state of the net under an applied pressure P is 
determined by a set of four parameters, say, a, b, Ta, and Tp, 
all of them yet unknown. Their values must be such that the 
sought state is consistent with the three net invariants and the 
preservation of Lz, which is equivalent to 

••r„ + 
Jz„ 

ctnd dz (31) 

and is treated as a fourth invariant. This gives rise to a system 
of four simultaneous equations of the form (21), (22), and (31) 
in which the left hand side values are already known while the 
four unknown parameters figure implicitly under the sign of a 
definite integral. 

In solving this system of equations for several pressure 
levels, a shooting technique has been employed in conjunction 
with a fourth-order Runge-Kutta integration scheme. Using 
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Fig. 5 Rotation of edge ring under uniform surface pressure 

trial values of the unknown parameters, approximations for 
the four invariants are obtained. The errors in the invariants 
are then used to refine the unknowns iteratively. With pressure 
increments sufficiently small, the net forces and geometry 
change gradually so that the unknown parameters for each 
pressure level are fairly accurately predicted by extrapolation 
thus reducing the required number of iterations. To further 
the investigation, unlimited elasticity was assumed and the 
analysis was carried out beyond the realistic load levels using 
two different ratios of the elastic stiffnesses of the cables. 

The edge rings of a skew net mutually rotate under axisym-
metric loads including a uniform pressure. The effect is 
strongly nonlinear (Fig. 5) and in the absence of prestress the 
graph would have a vertical tangent at the onset of pressure 
loading. On the other hand, because of the polar symmetry of 
the net, there must be no edge ring rotation under any polar-
cyclic load. 

Under a uniform external pressure, the net equator shrinks, 
shifts downward and, for both ratios of cable stiffnesses, 
asymptotically approaches almost the same location at about 
0ALz from the upper ring. Under an internal pressure, the 
equator expands, shifts toward the smaller ring, reaches it and 
leaves the net. 

Quite unexpected was the evolution of the cable forces in 
loading. In conventional prestressed cable systems under a 
transverse load, the elastic deformation always causes tension 
to increase in one array of cables and to decrease in the other. 
The only way of preventing the unloading cables from 
disengagement is to increase the prestress, but this is counter­
productive for the load-carrying cables. Surprisingly, the 
geodesic net in consideration does not behave this way; under 
a uniform pressure, either internal or external, tension in­
creases in both cable arrays (Fig. 6). The explanation lies in the 
mutual rotation of the edge rings required by torsional 
equilibrium. Although very small, this kinematic displacement 
has a strong force-leveling effect offsetting the above un­
favorable outcome of the elastic deformation. As a result, 
both arrays share in supporting the applied load and the 
prestress requirement is appreciably reduced. 

Chebyshev Nets 

A Chebyshev net is one with rhombic cells. To preserve this 
characteristic property, all the intersections must be fixed 
which reduces the kinematic mobility of the net as compared 
with a geodesic net. It was proved by Chebyshev that due to 
the variability of the net angle the net is applicable to any 
smooth surface. The net is widely used as an analytical model 
of woven fabrics although fabrics usually allow some fiber 

Fig. 6 Axial force and cable forces in geodesic net 

slippage and ultimately, with unrestrained slippage, would 
become geodesic. 

A skew axisymmetric Chebyshev net is characterized by 

r cos/3/sinco = a, r cosa/sinco = b (32) 

so that 
da ctnfi = dp etna = - dr/r (33) 

and 
r = b sin|3 — a sina (34) 

It is assumed that parameters a and b are such that b > a > 0. 
Taking advantage of these formulas in treating equation 

(14) results in the following closed-form solution: 

Vsinfl -Mz (a2tan(3 - b2tana)/r(b2 -a2) = Cr/sinw (35) 

From here, the equilibrium shape of a Chebyshev net under a 
given load can be determined explicitly by forward integra­
tion. Eliminating Tz and Mz from equation (35) with the aid 
of equations (7) and (8) shows that 

2irr(TasinP+TpSma)/(b2-a2) = C (36) 
Finally, the net forces can be expressed in terms of constants C 
andM,: 

~ „ r ( . „ M7sina \ ,„„s 

2 ^ = - ^ - ^ # ^ - C s i n « ) (38) 
p sin2co \ b2 — a2 / 

wherefrom it is seen that these forces, unlike forces in a 
geodesic net, vary along the cable lengths. 

The evolution of the shape of a Chebyshev net in loading is 
also different from that of a geodesic net. According to equa­
tions (17) and (32), in a Chebyshev net subjected to a uniform 
internal pressure, meridian inflection first sets in at the smaller 
edge ring and then propagates toward the larger ring. Once 
again, a conical shape is infeasible while a cylindrical shape 
occurs under condition (28). In the latter case the net is 
simultaneously geodesic and Chebyshev which is possible only 
on developable surfaces. 

In contrast to geodesic nets, Chebyshev nets can be analyzed 
by conventional means, including an appropriately modified 
finite element method. As to the foregoing statical-kinematic 
equations, they are valid only in inextensional deformations, 
in which the net cells remain rhombic with unchanged side 
lengths. The following example is typical of the kind of a 
problem where these equations are useful. A long segment of a 
Chebyshev net suspended from a ring of radius r3 (Fig. 7) is 
under tension Tzo and supports an axisymmetric solid being 
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Fig. 7 Axisymmetric solid pushed through prestressed net 

pushed through. The net is reflection-symmetric (a = — /3 = 
— co/2, a = b) so that, according to equations (34) and (35), 

r = 2b sin/3, 26 = r3/sin/33 (39) 

and 

Tz cos/3/sin0 = const. (40) 

Treating the net as infinitely long implies that initially the 
net has the form of a parabolic pseudosphere [4] whereby 

sin0 = cos|8 (41) 

with 0o = v/2 and /30 = 0 at z -~ °°. Moreover, these are also 
the properties of the bottom segment (0-1) of the deformed 
net. As a result, 

Tz = Tzo sin0/cosj3 (42) 

for the entire net, regardless of its deformed shape and load 
pattern. Thus, in a contact problem with a solid of a known 
shape, the axial force is obtained explicitly from equations 
(42) and (39). For example, for a spherical solid, 

r = R sin0 (43) 

and the force Fp required for equilibrium is 

Fp = Tz2-Tzl = Tz0(ctanj32-l) (44) 

where 

c = tan0, = ctn/3 {=2b/R (45) 

The resultant Fp of the normal contact pressure P at the net-
solid interface does not account for friction. Since the contact 
zone geometry is known and fixed, the friction force, Fy, is 
not difficult to evaluate using formulas (13), (39), and (42). 
With / denoting the coefficient of friction, 

cos02 

</ 
f2 

= 2TT/ 
•>ri 

P tan0 rdr=JTzc 1 
/ c _ c o s M 
\ cos/3, / 

/33=60° 

Fig. 8 Resistance forces due to contact pressure and friction 

Finally, the axial distance, zs, between the support ring and 
the center of the sphere is evaluated as a function of net 
geometry 

f3 

zs = —Rcosd2 + \ dr tan0= —R cos02 

+ 2bk2 :»3 sm2ddd 

>h Vl-Ar2sin20 

where 

k2-

(47) 

(48) = (tan/3, /tan/32)2 = 1 + ctn2d2 - ctn26l 

Unlike Fp and Ff found in a closed form, the distance zs is ob­
tainable only numerically. The normalized axial forces due, 
respectively, to the contact pressure and to the corresponding 
friction are plotted versus zs in Fig. 8. 

Orthogonal Nets 

The generic equation (14) is specified for an orthogonal net 
by letting /3 — a = -ir/2 as follows 

d T, T, 2 
Mzctn 2/3 = 0 (49) 

(46) 

dr sin0 r sin0 r 

In contrast to geodesic and Chebyshev nets, further specifica­
tion of the intrinsic geometric properties of an orthgonal net is 
required in order to advance the investigation. An important 
subclass is a semigeodesic net, where one of the arrays (say, /3) 
is geodesic. After substituting r sin/3 = b, equation (49) yields 

bTz/sind-Mz cos/3 = C/sin/3 (50) 

and, according to equations (7) and (8), 

2irbTa = C, 2irbTe = C ctn$ + MZ (51) 

Thus, in a semigeodesic net under a normal surface load the 
nongeodesic array is isotensoid. It can be shown that the con­
verse is also true: an orthogonal net with an isotensoid array is 
semigeodesic. 

Orthogonality generally does not preserve in either 
kinematic or elastic deformations of the net. The significance 
of this class of nets lies in the obvious analogy between a 
material orthogonal net and a net of the principal stress trajec­
tories of a membrane. For a given membrane shape and sur­
face pressure, the axial force Tz is readily obtainable, allowing 
the angle /3 to be evaluated from equation (49), and the prin­
cipal forces in the membrane—from equations (7) and (8). The 
most interesting situation arises when one of the principal 
forces turns out to be compressive while the membrane is in­
capable of supporting any compression (a wrinkling mem­
brane). A condition for biaxial tension is obtained by setting 
Ta > 0 in equation (7) which leads to 
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tan (3>Mzo2/Tz (52) 

If this inequality is not satisfied by the value of tan j3 found 
from equation (49), the stress state of the membrane is uniax­
ial. Then Ta = 0 = C and, as is seen from equation (51), the 
force in the geodesic array, which is also the nonzero principal 
force in a wrinkling membrane, is constant: 

Tp =Mz/2irb (53) 

The statical-geometric relation (50) now acquires the form 

sin0 cos/3 = Z>7;/M, (54) 

from which the shape of the wrinkling membrane is obtainable 
by forward integration. Note that the foregoing equations are 
valid for an arbitrary normal surface load. It is also assumed 
that M C; a comprehensive treatment of reflection-
symmetric membranes (/3 = 0) under a uniform pressure is 
given in [10]. 

In the absence of surface loads, Tz = const and equation 
(54) describes a one-sheet hyperboloid of revolution with the 
i8-array as linear generators. Although this is the generic shape 
of a wrinkling axisymmetric membrane under edge loads [11], 
parameters of a particular hyperboloid depend on the original 
membrane geometry in a complicated way. The fact is that a 
linear generator is formed by one of the original membrane 
geodesies connecting the two edge rings. For a given 
magnitude of the mutual rotation of the edge rings, this 

geodesic is unique in that its length equals the distance be­
tween its end points after torsion; the lengths of all other 
geodesies exceed the respective distances between their ter­
mination points. 
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Introduction 

Large Deflection Stability of 
Spherical Shells With Ring Loads 
Large deflections of shallow and deep spherical shells under ring loads are studied. 
The axisymmetric problem is solved through a Newton-Raphson technique on 
discretized nonlinear shell equations. Comparison of computed load-deflection 
curves to experimental data from both thick and thin shells generally shows good 
agreement in peak loads and the type of instability. For a point load, the load in­
creases monotonically with deflection; as the ring radius increases, transition-type 
(snap-through) and then local buckling occurs. In addition, the pre- and post-
buckled mechanical behaviors of the shell are examined. 

Previous work pertaining to the deformation of spherical 
shells under ring loads has been rather limited. Experimental 
work was done by Evan-Iwanowski et al. (1963), who in­
vestigated buckling of thin, shallow, spherical shells with this 
type of loading. They found that if the ring diameter is less 
than some minimum value, the shell does not buckle. Other­
wise, the shell either snap-buckles or, for large rings, buckles 
locally (Fig. 1). Snap-through, or transition buckling (Fig. la), 
implies that past a critical point of a load versus deflection 
curve, a smooth, continuous transition takes place from 
relatively stiff ring-type to a softer point-load-type behavior, 
as a dimple of reversed curvature forms gradually. On the 
other hand, with ring deflection specified, local buckling (Fig. 
lb) exhibits a discontinuity at a critical point as the load jumps 
suddenly to a much smaller value, with the dimple forming 
abruptly. Since local buckling curves also include a deflection 
snap (for a specified load), we will refer to "snap-through" 
buckling as "transition" buckling herein. 

Taber (1983) presented experimental results for the deflec­
tion of both fluid-filled and empty hemispherical rubber shells 
due to solid cylindrical indenters. As the deflection increases, 
the load-deflection curves for an empty shell initially resemble 
those due to a flat plate but eventually fall back toward the 
point-load curve as the indenter becomes immersed within a 
dimple of reversed curvature, with the indenter now applying 
essentially a ring load. The deformation can occur with or 
without a peak in load, depending on the indenter radius. As 
found by Evan-Iwanowski et al. (1963), there is a minimum 
radius below which no peak occurs; yet this is a different situa­
tion in that the indenter acts as a ring load only after it is im­
mersed within the dimple. 

Pieces of the ring load problem have been studied 
analytically. Using an energy method, Chien and Hu (1956) 
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Fig. 1 Typical load-deflection curves and corresponding deflection 
shapes for ring load on spherical shell: (a) transition buckling; (b) local 
buckling 

computed the critical load for "oil canning," or transition 
buckling, of a thin spherical cap due to a ring load. With an 
implicit numerical technique, which involved a Newton-
Raphson scheme on integral matrices, Parnell (1984) solved 
Reissner's (1950) nonlinear shell equations for moderate rota­
tion. Limited application to shallow spherical caps deformed 
by ring loads showed only transition-type buckling. In other 
work, Wan (1984) constructed asymptotic solutions to study 
the fundamental behavior for polar dimpling of spherical 
shells with ring and other similar loadings, while Updike and 
Kalnins (1970, 1972) examined the related problem of a 
spherical shell compressed between rigid plates. 

In this paper, we will apply Parnell's (1984) method to steep 
and shallow, thin and thick, spherical shells. Both local and 
transition buckling will be studied, along with the mechanical 
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behavior of the shell around the critical points. Comparison 
with experimental data from Evan-Iwanowski et al. (1963) 
demonstrates the accuracy of the analytical solution. In addi­
tion, computed results are compared to new data from ex­
periments on deep shells deflected by solid indenters. 

Solution Technique 

In state-vector form, the nonlinear equations of Reissner 
(1950) for moderate rotation of a thin shell of revolution are 
(Parnell, 1984) 

dy 
ds 

= A«y + N(y) 

where the solution vector is 

yT=lrM^rH,rV,x,h,v], 

the linear terms are given by 

(1) 

(2) 

In these equations M^, H, V, x> h, v are the meridional 
bending moment, horizontal and vertical force resultants, 
rotation, and horizontal and vertical displacements, respec­
tively (Fig. 2). Also, v is Poisson's ratio, E is Young's 
modulus, and t is the shell thickness. 

Consider now a vertical ring load of radius r0 and 
magnitude P = 2irr0 V0 on a clamped spherical shell of radius 
R (Fig. 2). The appropriate regularity and boundary condi­
tions are 

rV=x = h = 0 at 0 = 0, (5) 

X = h = v = 0 at 0 = 0 e , (6) 

where <j>e is the edge angle. The numerical solution to equation 
(1) is obtained by splitting the shell into two regions separated 
by the ring load and enforcing the continuity conditions 

y + = y - + [ 0 , 0 , P / 2 7 r , 0 , 0 , 0 ] 7 ' at 0 = 0O (7) 
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the nonlinear contribution is 

X (rHcos<j> + r Ksin0) 

N(y) = 

0 

0 

0 

-X2cos0/2 

- x2sin0/2 

and surface load terms are deleted. 

Vo 

(4) 

Fig. 2 Geometry and force system for spherical shell with ring load 

where + and - denote the regions outside and inside the 
load, respectively. With the deflection v+ = v~ = A specified 
at 0 = 0O, the corresponding load P is computed. 

Each region is divided into N subintervals, and an initial 
solution is guessed. With a first-order polynomial employed to 
integrate the discretized shell equation (1), a Newton-Raphson 
method is used to converge on the correct solution. See Parnell 
(1984) or Cagan (1985) for more detail. 

Care must be taken to include an adequate number of 
subintervals within the boundary layers near the load, the dim­
ple edge, and the shell edge, where bending stresses change 
rapidly. Thus, the shell is actually divided into three regions 
(Fig. 2); regions I and II join at 0 = 0O, and, since the location 
of the dimple edge is not known a priori, regions II and III 
meet at some user-defined point <j> = a to allow for high ac­
curacy within the decaying boundary layers. The decay angle 
is approximated as 

4>dec = T ( — ) , (8) 

where 

c2=w^v (9) 

Load-deflection curves were found by starting at zero load 
with y = 0 and incrementing the deflection a small amount. 
After convergence, this solution became the initial guess at the 
next deflection, and so on. Based on the energy quantity 

WyW (s)\\E= OrM^ + \rH.h\ + \rV'v\), (10) 

convergence at each point of the shell is obtained when the 
relative difference between the new and old solutions 
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-THEORY 
-EXPERIMENT 

DEFLECTION-A/ t 
Fig. 3 Comparison of calculated load-deflection curves with ex­
perimental data of Evan-lwanowski et al. (1963): R = 254 mm; fl/t = 
666.7; r0 = 6.35, 12.7, 25.4 mm 

Fig. 4 Computed deformed configurations for shallow shell under ring 
load (r0IR = 0.1; Rlt = 666.7) for Art = 0, 0.967, 2.88, 19.5. Local buck­
ling occurs from configurations 2 to 3 at Alt = 2.88. 

_ lly<*+ 1>Cs)llg-lly<*>(*) ll£ 
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is less than a prescribed amount. 

Shallow Shell 

Evan-lwanowski et al. (1963) presented experimental data 
for ring loads on die-pressed, plastic, shallow spherical shells. 
Figure 3 compares their experimental and our analytical 
results for a clamped shell of radius R = 254 mm. 

As shown in Fig. 3, the load versus deflection curves for the 
smallest ring (r0 = 6.35 mm) agree in general with no in­
stabilities. Meanwhile, the experimental and theoretical results 
for the larger rings show similar trends, but the computed 
curves are steeper before the peaks. In addition, the calculated 
results peak at somewhat lower values of deflection than do 
the experimental results. This discrepancy is because the pres­
ent model does not allow for slippage under the load; thus, the 
arc length of the shell inside the ring is assumed to remain con­
stant. In reality there is not enough friction to maintain this 
constant contact and slippage does occur. Therefore, our 
model is slightly stiffer and buckles before the experimental 
shells. 

While the second smallest ring (/•„ = 12.7 mm) 
demonstrates transition buckling, the largest ring (/•„ = 25.4 
mm) illustrates local buckling with a discontinuity in the load. 
The analysis shows that these latter curves possess multiple 
equilibria over certain regions of deflection similar to the 
buckling of circular cylinders with axial load (Timoshenko 
and Gere, 1961). In order to obtain the section of the curve 
past the peak, the point-load solution at A/t = 8.2 was used as 
an initial guess for larger diameters at nearby deflections. 
Then the deflection was incremented (decremented) as before 
to obtain the remainder of the curve. 

Figure 4 shows the changing shape of the shell for the 
largest ring load (r0 = 25.4 mm). At A/t = 2.88, there is an 
abrupt change in shape. The dimple of reversed curvature 
forms suddenly during local buckling as the shell moves to a 
lower strain energy configuration. On the other hand, in tran­
sition buckling, the dimple forms gradually (see Fig. la). 

Figure 5 shows the nondimensional bending stress (aR/lcE; 
a = 6M$/t2) versus meridional angle for the same shell and 
deflections. The bending stresses for the first two deflections 
(curves 1 and 2), which occur before buckling, peak under the 
load and then decay to zero in both directions. After the dim­
ple forms during buckling, however, relatively constant bend­
ing stress develops inside the ring (curves 3 and 4). This 
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Fig. 5 Bending stress distribuitons along shallow shell with ring load 
(r0/fi = 0.1; Rrt = 666.7). Curve numbers correspond to configurations 
of Fig. 4. 

behavior agrees with the finding of Ashwell (1960), who 
studied the point-load solution to this problem and showed 
that a constant bending moment is necessary to hold the dim­
ple in a state of reversed curvature, i.e., as an applicable 
surface. 

The largest deflection (curve 4) shows peaks in stress under 
the load, at the dimple edge, and at the clamped shell edge. 
Just after buckling (curve 3) the trends are different; the peak 
at the dimple edge occurs, but the stress under the load is quite 
small. Here, the unstable shell transfers from a high energy 
state to a low energy condition, and so the load sees minimal 
restraint. The stress relaxes under the load until the shell 
stabilizes after buckling, and then additional load is applied. 

Deep Shell 

The behavior of deep shells under ring loads is similar to 
that of shallow shells. Taber (1983) presented experimental 
results for solid, cylindrical indenter loads on clamped, 
hemispherical rubber shells (R — 25 mm). Although the pre­
sent analysis is actually for pure ring loads, some conclusions 
can be made by comparing the results of the two problems. In 
Figs. 6(«)-6(c), new data is presented from those experiments, 
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Fig. 7 Computed deformed configurations for hemispherical shell 
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Fig. 8 Bending stress distribution along hemispherical shell with ring 
load (r0/R = 0-3; RIt = 12.9). Curve numbers correspond to configura­
tions of Fig. 7. 

along with calculations from our model. Relatively thick to 
thin shells {R/t = 6.0, 9.6, 12.9) deformed by indenters of 
various radii are considered. As with the shallow shell, small 
indenters show no buckling. The discrepancy in load 
magnitude may be due to shear deformation, which was not 
included in the analysis. As the indenter size increases, transi­
tion buckling appears; the curves initially follow the relatively 
stiff behavior of a flat plate and then approach the limiting 
point load case. 

Note that the computed solution does not begin at the 
origin. When the ring load forms, its point of zero deflection 
occurs at A = R (1 - cos0o) as measured from the apex, 
which was taken as the experimental reference point. Thus, 
the load initially is lower analytically than experimentally. But 
after the indenter makes full contact with the shell, forming a 
ring load, the solution approaches the experimental data. 

Figure 7 shows the ring load representation for the indenter. 
Physically, a ring allows the shell inside the load (</> < <j>0) to 
penetrate above the point of load application. The solid in­
denter, however, obstructs this penetration and forces the en­
tire area within the indenter radius to form a dimple from the 
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start. Thus, the experimental results show transition-buckling 
at smaller loads than do the analytic results, and local buck­
ling does not occur under solid indenters. 

The theoretical results from the thinner shells show local 
buckling for the larger indenters (Figs. 6b, c). For the thickest 
shell, however, this type of instability does not occur (Fig. 6a); 
due to the high bending stiffness, the ring forces the dimple to 
form from an early deflection, similar to the solid indenter 
case. The sharpness of the peaks during the transition buck­
ling is also lost as the shell becomes thicker, approaching a 
three-dimensional solid, which does not buckle. As the deflec­
tion increases to large values, the theoretical and experimental 
curves diverge. The calculations are limited to moderate rota­
tions and small strains, but at very large deflections, the 
physical shells undergo large rotations and large bending 
strains. In addition, the effects of material nonlinearity 
(Taber, 1985) may contribute to the difference. 

Figure 7 demonstrates the calculated deflected shape of the 
thinnest shell {R/t = 12.9) with a 7.5 mm radius indenter. 
Since this indenter shows only transition buckling, these 
results illustrate a smooth formation of the dimple, unlike the 
abrupt change found in local buckling (Fig. 4). 

Figure 8 displays the bending stress for the same shell and 
deflections. A negative peak forms at the dimple edge and 
then the stress decays toward zero before increasing slightly 
near the clamped edge (<f>e = 7r/2). An abrupt change in slope 
occurs under the load. Again, as in Fig. 5, a relatively constant 
stress forms inside the dimple as the deflection increases. 

Conclusions 
The results of this study show that, for a given value of R/t 

for a spherical shell with a ring load of radius /•„, there exist 
characteristic ring load radii r, and r2 with r, < r2 < R such 
that: 

(1) For r0<ru no buckling occurs and the solution 
resembles that for a point load. 

(2) For /•] < r0 < r2, transition buckling takes place in 

which the load rises to a peak and then drops off 
toward the point-load curve. 

(3) For r2<r0<R, the shell buckles locally, with an 
abrupt change in shape and load at a critical deflec­
tion. 

In addition, the values of r, and r2 increase as the shell 
thickness increases. These conclusions apply to both shallow 
and deep shells with clamped edges. For a solid, cylindrical in­
denter, the behavior is similar, but local buckling does not 
occur. 
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Damped Response of Shells by a 
Constrained Visooelastio Layer 
Vibration absorbers are introduced into an asymmetric configuration of thin 
cylinders and tori enclosing an acoustic medium. The absorbers consist of thin axial 
strips bonded to the cylinder with a thin viscoelastic layer. The constrained layer 
dissipates the energy of relative motions between strip and cylinder. The absorber is 
most effective on response modes with two or more circumferential waves. The use 
of transfer matrices is extended to the coupled cylinder-absorber system. 

Introduction 
Constrained viscoelastic layers have been used to dissipate 

vibrational energy in beams (Kerwin, 1959, and DiToranto et 
al., 1965), thin rings (D. Toranto et al., 1973), and thin 
cylinders (Lu, 1977). The idea relies on deforming a thin 
viscoelastic layer sandwiched between the structure to be 
damped and a secondary oscillator with prescribed dynamic 
characteristics. In the case of the cylinder, thin strips of metal 
are bonded along generators at equal angular intervals about 
the circumference. Relative motions between strip and 
cylinder wall are reduced by a dissipation of vibrational 
energy. Most of the energy is lost by shear of the constrained 
layer. 

A viscoelastic material exhibits maximum damping when 
subjected to strain rates that fall within the transition regime 
between glassy and rubbery states. Its thickness can be op­
timized to produce this state for a given operating frequency 
and response amplitude. In some cases, however, the need for 
a thicker layer to optimize damping is opposed by the need for 
a thinner layer in order to raise the critical frequency of the 
single degree-of-freedom oscillator defined by the strip's mass 
and the layer's stiffness. Above the critical frequency, elastic 
waves propagate along the strip amplifying the response in 
resonance. The two requirements can be met by judiciously 
tuning the inertial properties of the strip. 

Previous work by Lu (1977) analyzed simply supported, 
thin cylinders where discrete absorbers are distributed along 
generators of each cylinder. The work described here extends a 
more general analysis to asymmetric configurations composed 
of thin cylinders and tori. This method requires the derivation 
of new transfer matrices of the damped system with vibration 
absorbers formed by strips bonded to a cylinder by a thin 
viscoelastic layer. Transfer matrices of the bare shells have 
been derived by El-Raheb and Wagner (1985a). Since the layer 
is sufficiently thin to be uniaxially stressed, forces at each 
point on its boundary are proportional to displacement of the 
same point relative to the opposite boundary. Each strip is ap­
proximated as a Euler beam. 

Computations proceed more quickly by assuming that each 
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strip is free from tractions at the two ends which reduces the 
size of the transfer matrix through partial elimination. 
Another step which accelerates computations is to treat the 
round-off error that arises with very long segments. A 
numerical method termed selective abbreviation is faster than 
the alternative of using more and shorter segments (El-Raheb 
and Wagner, 1985a, 1985b), especially for long systems with 
length to radius ratio greater than 50. 

Shell walls are coupled to an internal fluid through a low 
frequency approximation to the acoustic pressure and added 
mass. This approximation is acceptable for frequencies below 
cut-off of the first transverse acoustic wave in a cylinder with 
rigid walls. Finally, the effects on response of a damped ab­
sorber are studied for a symmetric Z,-shaped configuration 
made of two cylinders joined by a torus and excited 
mechanically. 

I Analysis 

Figure 1 illustrates the coupled system of cylinder-layer-
strip, and Fig. 2 establishes the convention on displacements 
and forces acting on an element. Subscripts s, c, and b denote 
strip, cylinder, and viscoelastic layer variables, respectively. In 

-viscoelastic layer 

cylinder 

Fig. 1 Cross section of cylinder and absorbers 
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order to show how equations for cylinders and strips, which 
are topologically very unlike, can be combined into a consis­
tent, general system, a skeleton of the derivation is now out 
lined. Details of the operators and variables must await 
specific treatments in the section on transfer matrices. 

Let Dc be the matrix of partial differential operators gov­
erning the cylinder's motion and gc = [uc, vc, wc, w^.}T the 
cylinder's displacement vector. Also let pc be they'th vector of 
surface tractions applied on the cylinder. Then dynamic 
equilibrium requires 

Dcgc=XJp</ (1) 

Furthermore let the reaction from the strip to the cylinder be 
concentrated as a line load FcJ acting midway of the strip's 
width at angular position 9j. The line load is equal to the stress 
in the layer 

Fc,=kwgc(0,.)-k62gsy (2) 

where g„- = {us, vs, ws, 6^, 6ys, 0 W ) / is the displacement vec­
tor of the y'th strip and k61, kM are matrices with coefficients 
that depend on bond geometric and material properties. Ex­
panding (2) in Fourier series about 6 gives a correspondence 
between the coefficients of Tcj and pcy 

D 0<MEC«'C 0 S n'dJ 
ra n, 

_ k w g s „ ' cos«'Sy)2J cos nd cos n'dj 

Fig. 2 Elemental forces and displacements 

(3) 

where gc„ and gsn are the displacement vectors in harmonic 
space. Expanding Dc in terms of its harmonics Dc„, 
substituting equation (3) in (1) and using orthogonality of cos 
nd yields 

DCTgc„ = — S ( k M g c „ ' - k M g j n ' ) I ] cos n'dj cos ndj (4) 
n' j 

Note that variable inter-strip spacing dsj couples the different 
harmonics as indicated by equation (4). If the strips are evenly 
spaced about the circumference, i.e., dsj and Adj are held con­
stant for ally, then 

\j COS n'dj cos ndj=-^-(5„„' +50„50„') (5) 

where Ns is the total number of strips and 5 is the Kronecker 
delta function. Noting that Ns/(2wa)=l/ds, equation (4) 
simplifies and uncouples as 

D c n gc«=-^-(kf , lgc- 'ib2&sn) (6) 

Furthermore the equation of the jth strip forced by the reac­
tion from the cylinder is 

D ^ y = k M g « - k w g c ( ^ ) (7) 
where Ds is the matrix of ordinary differential operators 
governing the motion of the strip. Ds applies to all dj. Ex­
panding gsj and gc(6j) in harmonic components 

g«= T,Ssn cos ndj, gc(0y)= £ g c „ cos ndj 
n n 

then substituting in equation (7) yields 

X)Dsgs„ cos ndj= D(kwgO T -k 6 ,gc«) cos ndj 

Since equation (8) is valid for all 8j then 

D.sgs„ = k62gin — ^61 Sen 

(8) 

(9) 

Equations (6) and (9) constitute a complete set in harmonic 
space with components gs„ and gcnY n>0. 

A Transfer Matrix of Damped Cylinder. The different 
terms (6) and (9) are now derived for the damped cylinder. In 
this section, all equations and variables are in harmonic space 
where subscript n has been omitted for shortness. 

The strip and layer are modeled by an Euler beam on visco-
elastic foundation. As expressed by equation (9) the stress in 
the layer is proportional to the relative displacement between 
cylinder and strip. For periodic motions in time, the 12th 
order set of equations is 

EA,u'' = 
, / h hs \ 

- psAsu
2us - k*bs (uc -us+—w'c —— w's) 

OOfl) 

EJavZ" = psAsu
2vs + k*bs (vc-vs + —-^-wc + -j- dxsJ 

EsIysWs"= PsAsw
2ws + kte(wc-ws) 

GSJS6^ = -psIxsu
20xs + k*bs^-(vc~vs + -

h n 

-f-°»)+* t(~VWc + fl")l2 

(106) 

(10c) 

(10d) 

where ( ) ' is the derivative with respect to the axial coor­
dinate x, n is the circumferential wave number of the cylinder; 
(Es, Gs) are the Young's and shear moduli; (7XS, Iys, 1^) are the 
cross-section moments of inertia about local orthogonal axes 
x,y,z\ ps,As,Js are the mass density, cross-sectional area and 
torsional rigidity; and {kbe, kbs) are the extensional and shear 
stiffness of the layer 

kte=E*bbs/hb,k*bs = Gtbs/hb 

where now {El, Gb) are the complex moduli of the viscoelastic 
material for periodic motions in time and are functions of fre­
quency and temperature. All other parameters and dependent 
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variables are depicted in Figs. 1 and 2. Since the viscoelastic 
layer is thin compared to the strip width, i.e., hb/bs< < 1, the 
approximation of uniaxial strain applies. Therefore the 
equivalent extensional modulus of elasticity El — (2(1 -vb)/ 
(\-lvb)) Gl where vb-0A9 for a typical viscoelastic 
material. 

Equations (10) can be rewritten as a first-order system 

S;=B,SS+BS , 

[ T, Qy, Qz, Mx, My, Mz, u, v, w, 

(11) 

.} J is the where Ss = ( T, Qy, Qz, Mx, My, Mz. 
vector of forces and displacements of the strip. Bs is a matrix 
of constant coefficients and Bsc is a vector coupling cylinder 
variables to the strip and is a function of gc, ĝ  and the layer 
properties. Similarly the cylinder equations can be written as a 
first-order system 

S,' = . =BCSC + BCS (12) 

where Sc= {A^, N^, Qx, Mx, u, v, w, w' ] J is the vector of 
forces and displacements of the cylinder. Bc is the matrix 
derived by Cohen (1964), and Bcs is a vector coupling strip 
variables to the cylinder. The components of Bcs are listed 
below 

Br,, = 

B„-> = 

*bs ( 

kbs ( 

h. 

la 

w' + -

n wr + -

* ) 

• ) • 

B„ 

B,., 

B„ 

Bcsj 

B„ 

lbe 
{wc-ws) + - Br 

h 

ds 2 

0 fory = 5,6,7,8 

d, ~12 

( h , hs , \ 

\ ^ - w^ + — w^+uc-usj 

/ n n \ k*bs h ( 
ft hs 

+ —— nwc + —-
la 1 •) 

(13) 

The derivation of the transfer matrix proceeds by the steps 
in El-Raheb and Wagner (1985b). The combined 
homogeneous set (11) and (12) can be expressed as 

S ' = B S (14) 

where S = {Sc, Ss j T is a vector of 20th order in each harmonic 
n and B is formed of B c , B r a , Bsc and Bs. Since equation (14) 
has constant coefficients, a solution exists in terms of ex­
ponentials e** where the X's are determined from the eigen­
value problem: 

( B - \ I ) S = 0 (15) 

where I is the unit matrix. Corresponding to each X; there ex­
ists an eigenvector A, satisfying equation (15). The 20 columns 
of distinct eigenvectors produce the matrix A. The general 
solution of S can now be expressed as 

S(x) = AeAjrA'1S(0) (16) 

where A is a diagonal matrix with coefficients (X,, X2, . . ., 
X20). Therefore 

S(l) = T(l)S(0),T(l) = AeA1A^1 (17) 

B Condensation. Since for each harmonic, T(l) of the 
damped cylinder is 20 x 20 while for the bare cylinder it is on­
ly 8 x 8, its inversion requires computational effort greater by 
a factor of (20/8)3 = 15.6. This onerous increase motivates 
restricting attention to the case where strips are free from trac­
tions at their ends which permits condensing T(l) back to an 8 
x 8 size. Fortunately, this case describes best what occurs in 
practice. Furthermore the contribution to cylinder stiffness 
from bending rigidity of the strip from its ends is minor 

beyond certain length of strip. Specifically, the effect on 
resonance and response of freeing the strip at its ends 
diminishes with strip length and becomes vanishingly small for 
lengths exceeding a characteristic size which depends on a/hs 

and axial wave length of the response mode. To demonstrate 
this sensitivity, computations were carried out for a steel 
cylinder with a/h = \\, \/a = 67, damped by 105 steel strips 
spanning the full length of the cylinder and distributed evenly 
along the circumference with hs/h = bs/h = 0.67 bonded to the 
cylinder by a layer with h„/h = 0.02 and \G*b I/E = 3 X 10~5. 
Results at u* = 300 Hz with 2, 4, and 8 equal divisions of the 
strips showed less than 2 percent difference on response 
amplitude between the first two cases and 17 percent dif­
ference between the last two cases. This observation suggests 
that for strip lengths having l / a>15 , freeing the ends is 
without consequence. 

Let [fc, gc] and (f̂ , g^) be the force and displacement vec­
tor dyads of the cylinder and strip, respectively. From equa­
tions (17) 

tn to t n t Ml 13 l14 

t,. l21 l22 l23 l24 

'31 t32 *33 t34 

*41 *42 *43 *44 

(18) 

where t,y are submatrices of T. When strips are free at both 
ends of the segment isl = f̂  = 0. The third equation in (18) can 
now be used to eliminate g^ from the first two equations in 
(18). A condensed transfer matrix for (fc, gc) can now be 
written as 

S c J l 

*11 ^14*34 *31 *12 *14*34 *32 

l21 — l 2 4 l 3 4 l31 l 22 "~ l 24 l 34 l 3 2 j 

fc 

ScJo 
(19) 

which is 8 x 8 and incorporates the effects of the damped 
absorber. 

C Selective Abbreviation. A drawback of the transfer 
matrix approach when applied to thin cylinders is the require­
ment that segment length be comparable to mean radius. This 
requirement is set by the emergence of complex roots X with 
large magnitudes when solving the dispersion relation. The ex­
ponential solutions e ^ lead to round-off error in the transfer 
matrix when 1X11 is large. 

Approximate expressions of the nondimensional roots 
X = \a are now derived for both axisymmetric and asymmetric 
motions of the bare cylinder. For axisymmetric motions, the 
coupled equations in the normalized axial and radial 
displacements (M, W) take the form: 

u"+co2u = vw' (20a) 

P-w"" +{\-&2)w = vu' (10b) 

where ( ) ' is the derivative with respect to x = x/a, w = OJ/OI0 , 
w0 = \E/p(\ — v1)a1]'A is the axisymmetric breathing frequen­
cy, r = /*/(Vl2 a) is the nondimensional radius of gyration of 
the cylinder wall. When n = 0, the eigenvalue problem in equa­
tion (15) gives 

^X6 + r ^ X 4 + (1 - v2 - oi2)X2 + di2(l - 52) = 0 (21) 

For IXI =0( l )anddi< < 1, the first two terms in equation (21) 
can be neglected leading to: 

co(l-co2)l/2 

X, ±al, a = - (22) 
(\-v2-(b2)Vl 

where/' = V - 1. The roots in equation (22) describe the axial 
wave number of extensional waves along the axis of the 
cylinder as determined approximately from equation (20a) 
when vw' is neglected. For large IXI =0(r~'A) and co< < 1 , 
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four complex conjugates are found when terms of 0(X2) are re 
tained in equation (21). 

( l - i ^ - f f l 2 ) * 

• ^ + , A 2
+ , (30a) 

X3i4 iSi6=±j8(l±i),j8 = 
{If)1' 

(23) 

The roots in equation (23) describe the axial wave number of 
bending waves of a strip of cylinder along the generator, sup­
ported by hoop stress serving as an elastic foundation. An ax-
isymmetric radial ring excitation at one end of the cylinder 
segment influences only a short span of cylinder which is 0(f'/2) 
near that end. This region is known as the bending boundary 
layer. Far from this region the cylinder's response decays ex­
ponentially with distance. 

For asymmetric motions, a simplified dispersion relation 
can be derived f or co < < 1: 

X8-4«2X6 + 6/24 + 
\-v2 

X4 

r , W2(2K2 + 3 + 2 * 0 1 - , r « co2«2(«2-l)1 
" |_4"6 — p "J X2 + [»8 Ji ~J = 0 (24) 
For X = 0(1), the first two terms in equation (24) can be 
neglected leading to the quadratic whose roots are 

n 2(n2 + l)co2 

(Af .Af , . . . ,A?,Af, 

as well as the corresponding A into 

( X f , X 2 - , . . . ,X?,X2°, . . . ,X,+ ,X2
+ , • • •) (306) 

according to the following rules: 

(0 Re(Xt") < 0 and Re(X^) < Re(X*+,) 

(;/) IRe(X£)l<(l«M)/l 

(Hi) Re(X# > 0 and Re(X# > Re(X^+ x) 

When ReCXj1"!) is sufficiently large, the usual procedure for 
computing T(l) fails for the purely numerical reason of round­
off error. The usual recourse has been to further divide the in­
terval (0,1) into a sequence [0,*], x2 * , - , . . . , 1) so that 
for each j , evaluation of a term such as [1-exp 
(-2\f(xj+i-Xj))] does not suffer from round-off error 
(Kalnins, 1964). 

An alternate procedure succeeds in computing T(l) because 
it is insensitive to the round-off even for large IX;1" 11. Its con­
ceptual rationale lies in the fact that contributions to S(x) 
from sets of eigenfunctions [A^~) and (A£j are small outside 
narrow regions near x = 0 and x = \, respectively, containing 

X2 = 

"2(2«4—^)±{n*(2n<-^-) + (-n* + ) ( ' 
6« 4 +-

l-V-U)'' 

)} 

(' 
6«4 + 

( l - ^ 2 - U 2 ) N 
(25) 

When n = 1, further approximation yields 

2* ai* 
M,2- ± a , X3>4 — ±/'af, a.- VR (26) 

The roots in equation (26) are proportional to o>Vl and in­
dependent of r and can also be derived from the dispersion 
relation of a Euler beam having the same cross-section as the 
cylinder's. Below the ring frequency, that is &<rn2, and for 
n >2 , (25) reduces to two complex pairs: 

1̂,2,3,4— ± a ( l ± 0 . a- V2(l-e2-co2) ' / 4 

Also, when n > 2 and co > rn2, (25) reduces to 
r,2 x / „2(„2 + 1 ) 5 2 

(27) 

boundary layers. The procedure simply approximates these 
contributions as zero outside the boundary layers. The validity 
of this approximation is backed by the requirement that S(x) 
remain bounded within 0 < x < l . To be specific, first define the 
transformed vector 

a(x) = A-^S(x) (3 la) 

in which set the redefined transfer matrix T(X) is now diagonal 

o(x) = T(X)O(0) , T(x) = eAX (316) 

The vector a has components {af, a2 , . . . , of, <rg, . . . , 
CT[+, ff2

+ , . . . ). To mark the selective boundary depths, define 
the set of ^-coordinates (xf, x2 , . . . , 1, 1, . . . , x,+, x}, 

X242(2^-f)±(^ 
such that 

(32a) 

-n^n/ ( l -K 2 -co 2 ) 
(28) 

(28) determines a pair of real roots X12 and a pair of im­
aginary roots X34. The imaginary pair represents the axial 
wave number of propagating waves and contains a part pro­
portional to r which accounts for bending anda part indepen­
dent of f which accounts for extension. When X is large and of 
order 0(f~'/!), retaining the first three terms in equation (24) 
yields 

5̂,6,7,8 = /3e'W+B"r'/2, m = 0,1,2,3 

Re( - \ixt) = Re(X*(l - xf)) = \nM 

These values are selected because based on (316) 

Iff^) I < M 0 ) I /M for x>x^ 

lotfx) I < lo#l) \/M for x<x£ (326) 

The approximation then consists of setting <j^(x) — 0 when 
x>xj; and setting o£(x)-Q when x<x£. The procedure 
therefore yields a different transfer matrix for a(x) 

rsa(x) = ^sa (33) 

where Asa is the diagonal matrix with components (X^xf, 
\2x2 , • • • » MU fyP> • • •> ^i+*i+> Mx2 > • • •) and hence a 
different transfer matrix as well for S 

, - ( 
v2-X2\ V< 

= 6/24+- 1 , i / ' = tan- 1 ( + —r— ) 
/ V 2 4F« 4 / 

Tsa(\) = Ae^aA- (34) 

(29) 
The complex conjugates in equation (29) are comparable to 
those in equation (23) and describe wave numbers in the 
bending boundary layer. 

Consider the expression for transfer matrix given by equa­
tion (17) 

S(l) = AeA1A-1S(0) = T(l)S(0) (17) 

Then for some large number M, it is convenient to classify and 
sort the column vectors A^ into 

which is now insensitive to round-off. The shortening of the 
lengths factoring some of the X^'s suggests the name "selective 
abbreviation" for this procedure. 

The choice of M will be motivated by two contrary con­
siderations. First, Mmust be small enough to ensure accuracy 
against round-off error. In other words, for calculations with 
L digits of precision, M< 10L. In fact, M = 10 i / 2 proved quite 
successful. Second, Mmust be large enough so that the actual 
boundary layers are contained in [0, *f ] U [xf, 1]. 

This approximation may also be applied to the case of the 
damped cylinder where \\s I becomes significantly larger. An 
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estimate of this root is made by solving the characteristic equa­
tion after neglecting wc in (10c). Where rs is the radius of gyra­
tion of the strip's cross-section normalized by a, and coic is the 
critical frequency of the layer . 

- a ( E" \ * > 1 

then 

X, = ± 
(coi-oi2)'' 

( l ± 0 (35) 
(2rs)'

/! 

As an example, let a/h =10, a/hs = 20, a/hb = 600, and 
Ej /E , = 3 x 10"3 . This yields to2

bc = 36. Comparing IXI in (23) 
with IXI in (35) reveals that IXJ=2.5 IXI. 

D Acoustic Fluid. An acoustic fluid within an oscillating 
cylinder responds by exerting pressure against the walls. The 
same effect may be accomplished by adding a suitable mass to 
the cylinder. The method of added mass is quite accurate when 
the cylinder is driven mechanically while its terminations are 
free from acoustic excitation. The acoustic pressurep(r,6,x) is 
governed by the Helmholtz equation which in cylindrical coor­
dinates gives 

(drr + -ydr + —dm + dxx + kfjp{r,d,x) = 0 (36) 

where (r,d,x) axe, the radial, circumferential, and axial coor­
dinates, kf = w/Cf and cf is the speed of sound in the fluid. The 
boundary conditions at the terminations and continuity of 
acoustic and elastic accelerations at the cylinder-fluid interface 

(37«) 

01b) 

p(r,6,0) = p(r,6,l) = 0 

drp(ahe,x) = -p^w^e^) 

where pf is the mass density of the fluid and a-, is the inner 
radius of the cylinder. Decomposing p and wc into cir­
cumferential harmonics and solving for/? in equation (36) with 
use made of equation (376) yields 

p„{r,x) = AnJn(yr/a)e*x/" 

Ane*<» = -P/a,.co2wc„(x)/(7^(7)) (38) 

where ( ) ' is the derivative with respect to the argument and 

y2 = KJ + ri2, Kf = kfa 

Jn(.y) = 
7„( 7) i f7 2>0 

/„ (7) i f 7
2 <0 

p„(a„x) = 

"2 « K2
f- IX? I 

J„ and /„ are Bessel functions and f2 = I721. If A„ is a con­
stant, p„ and wc„ must have the same dependence in x. For 
propagating waves and n > 1, r; assumes the largest imaginary 
root X3 in equations (26) and (28). Consequently 

2 J„(y) 

yJ!,(y) 
T - K}- IX21 (39) 

The expression for pn in equation (39) is approximate because 
it fails to satisfy the pressure conditions (37«) when wcn is 
finite. This approximation is acceptable when the configura­
tion is much longer than the radius beause end-effects lose im­
portance. Whenp„ in equation (39) forces the cylinder, it adds 
to radial inertia 3„ in the form of a mass factor fi„(y) 

$n = Vn(i)Pchw2wcn(x) 

M«(T) 1+- Pfii (40) 
yJ'nki) Pch 

The second term in /xn(y) is the ratio of mass added by the 
fluid to the mass of the cylinder. 

An approximation to ix„(y) can be made for 7 < < 1. From 
the Bessel equality 

,2 .20 

0.2 

"r -0.2 

-0.4 

1 1 1 1 

\ \ ^ - \ ^ n = 3 

\ ^^^L 
\ 

\ ^ 1 
1 1 1 

(c) 

" ~~-

-0.6 

Fig. 3 Variation of X3, -y2, and e, with kf 

yJ'n (7) = nJ„ (7) - yJ„ +, (7) 

in the limit as 7 ^ 0 and n> 1, J„(y) °c 7" and yJ'„(y) — nJn{y). 
Using this, equations (40) become 

/ " „ ( Y ) = 1 + -
1 Pj°i 

= Mo«» n>\ (41) 
n pch 

The error committed by the approximation in equation (41) is 
defined by 

^ = M„(7)/Mo»-1 

To compute the exact ix„(y), in equation (24) modify radial in­
ertia using mass added by the fluid as given by equation (40). 
The root X3 is determined by iteration on the transcendental 
equation. 

Figures 3a, b, c trace X3, 72 , and e^ with nf for a cylinder 
with a/h = 20, pc/pf=S.U and cc/cf = 4 where cc = (Ec/pc)

y'. 
For n=l, X3 is finite for «/>0 which is consistent with 
propagation of bending waves for all frequencies. As 
predicted by equation (26), X3 varies as K/A for small K} then 
becomes proportional to Kf for K{> 1. However, for n > 2, X3 is 
finite only when Kf> Kjr where K.JT = ur„ a/cf and co„, is the ring 
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Fr=\*pr{e)ade 

where the equivalent harmonic line load pr(9)=pro b(fi-6F), 
and 5(6-0F) is the Dirac delta function. Expanding pr(d) in 
Fourier series and truncating at TV terms results in 

E D 
Fig. 4 L-shaped configuration 

frequency. When «=1, y2 is vanishingly small up to «/ = 2 
then drops sharply to negative values. When «>2, 7 varies 
linearly with Kf for Kf>Kfn then drops to zero and takes on im­
aginary values for Kf>nfr. Negative y2 for nf> Kfr implies that 
transverse acoustic resonances for n>\ disappear when the 
acoustic fluid is excited only by the cylinder walls. This is 
because J'n (7) in the denominator of equation (39) has no 
purely imaginary roots. As the cylinder thickens, Kfr rises. 
Transverse resonances reappear once K/r increases above 
cutoff of the transverse acoustic waves in the rigid cylinder. 
For n= 1, e^ remains near zero for K / < 1.5 then drops sharply 
at the stage when X3 changes its dependence on Kf. For n > 2, 
e^ falls smoothly with nf for nf> nfr. Since e^ is negative for all 
Kf>Kfr, /n0„ serves as an upper bound on mass factor. Its use 
overestimates the mass added by the fluid for frequencies 
higher than the ring frequency. 

II Results 
The effect of vibration absorbers is studied using the L-

shaped configuration shown in Fig. 4. The material properties 
were carefully selected in order to be as close to practice as 
possible. The configuration consists of two steel cylinders each 
80 cm long connected by a 90 deg elbow with center line radius 
of 30 cm. The average radius of the cross section is 10 cm and 
the wall thickness is 0.5 cm. The vibration absorbers consist of 
120 steel strips each 80 cm long, evenly distributed about the 
circumference of the cylinders. Strips are rectangular in cross 
section with 6̂  = 0.5 cm and hs = 0.4 cm. They are bonded to 
the cylinders by a visco-elastic layer 0.01 cm thick. This 
thickness was selected without regard to optimization. The 
matter of optimization with regard to this quantity in the case 
of beams has been treated by Plunkett and Lee (1970). The 
properties of this layer are taken from Roscoe et al. (1966). 
Another source of properties as well as further information is 
Jones (1980). The configuration is clamped at one end and 
connected to a free ring at the other end. It is excited by a con­
centrated force Fr with periodic time dependence acting 
radially on the cylinder wall at point A. The two terminations 
are free from acoustic excitation while the interior is filled 
with water. Radial response is computed at points A,B,C as 
shown in Fig. 4. For frequencies up to 2000 Hz an expression 
for G% that fits experimental data is 

G*b = 1.6x 106(CJ*)064[1 + / 2(co*)~0A2]dyn/cm2 

Relative to a local cylindrical coordinate system let Fr act at 
some point (xF, 8F) on the wall of a segment. Then Fr can be 
decomposed into its harmonic components such that 

F C N ^ 
Pr{6) = ~2^ I 1 + 2 ^ C ° S n{6 ~ 6F)\ 

This expansion decomposes Fr into a set of harmonic line 
loads about the circumference at x=xP. 

Mobility at A, B, C and acoustic pressure at B, C were 
calculated for both the undamped and damped configura­
tions. The definitions of mobility Mj and pressure Pj are 

Mj= KwCJo>)/Fr\,Pj= \p/Fr\ 

where wcj and pj are radial displacement and acoustic pressure 
at sensor j caused by Fr at A. Figures 5a, b, c plot Mj as a 
logarithm relative to 1 cm/s/dyn versus u* in the range 
10<o)* <2000 Hz at 10 Hz intervals. Comparison between the 
undamped Mj (dashed lines) and the damped Mj (solid lines) 
reveals that the amplitude of the fundamental resonance with 
n = 1 at 20 Hz remains unaffected by damping. Vibration ab­
sorbers reduce only those motions dominated by modes with 
«>2. In this case, these modes appear starting at 300 Hz for 
« = 2, 1000 Hz for « = 3, and 2000 Hz for n = 4. Graphic 
evidence for these modes can be found in the cross sections in 
Fig. 6. The drop in Mj due to damping is larger within the 
cylinder (Fig. 5b) than at junctions (Figs. 5a,c). Although 
resonant peaks have shrunk, antiresonances remain sharp. 
This might be caused by the absence of damping in the elbow. 

Figures la,b plot Pj as a logarithm relative to 1 
dyn/cm2/dyn versus 0*. The effect on Pj of damping is small 
for motions dominated by n = 1 modes. This agrees with the 
proportionality between pj and wcj. However, the harmonic 
component of pj is inversely proportional to n. This means 
that n = 1 modes dominate pj up to frequencies even higher 
than they dominate wcj. Therefore damping begins to affect pj 
only when modes with n>2 already dominate the response, 
and for this configuration that means w* > 1000 Hz. 

A simple explanation exists for why the vibration absorbers 
damp with relatively greater efficacy when: (1) n> 1, or more 
generally, (2) at higher frequencies. In this model damping 
arises solely by deforming the visco-elastic layer. One class of 
deformations, dgwc, is proportional to n which explains obser­
vation (1). Another class, dxwc, is proportional to axial wave 
number m and only higher frequencies bring about higher n 
and m which can explain observation (2). Damping then seems 
to rely mainly on these two rotations, an exclusivity which is 
itself a subject for investigation. 

Conclusion 
The effect of vibration absorbers on damping response is 

studied on a general configuration of shells composed of 
cylinders and tori containing an acoustic fluid. Absorbers are 
applied to cylindrical segments only. Transfer matrices were 
derived that include coupling of cylinder and strip bonded to a 
visco-elastic layer. The method of selective abbreviation ex­
tends segment length beyond \/a= 1. The diminution in stiff­
ness from segmenting the strips has little effect on resonant 
frequency and response amplitude. Analysis proceeds to an L-
shaped configuration excited mechanically over a frequency 
range that includes modes with «<4. Damping affects only 
those motions with modes having n > 2 dominant, while beam-
type motions remain unaltered. Independent of whether vibra­
tion dampers have been added, some further findings apply to 
any acoustic fluid contained within an elastic shell in re­
sponding to an excitation of the shell. Under these conditions 
the fluid is indirectly excited and does not display any of the 
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<o*(Hz) 

Fig. 5 Mobilities of L-shaped configuration: ( 
( ) damped 

_) undamped; 

Fig. 6 Deformed cross sections of damped configuration 

acoustic resonances it would have displayed if excited 
acoustically. Also its acoustic pressure is inversely propor­
tional to n. 
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1 Introduction 

Clamped Plates on Pasternak-Type 
Elastic Foundation by the 
Boundary Element Method 
A boundary element solution is developed for the analysis of thin elastic clamped 
plates of any shape resting on a Pasternak-type elastic foundation. The plate may 
have holes and it is subjected to concentrated loads, line loads, and distributed 
loads. The analysis is complete, i.e., deflections, stress resultants, subgrade reac­
tions, and reactions on the boundary are evaluated. Several numerical examples are 
worked out and the results are compared with those available from analytical solu­
tions. The efficiency of the BEM is demonstrated and discussed. 

Biparametric elastic foundation models have been 
developed to overcome the inadequacy of Winkler's model in 
describing the real soil response and the mathematical com­
plexity of the three-dimensional continuum. They are 
characterized by two independent elastic constants and they 
are derived either as an extension of the Winkler model by 
assuming interaction between the spring elements (Filonenko-
Borodich, 1940; Hetenyi, 1946; Pasternak, 1954; Kerr, 1964) 
or by simplifying the three-dimensional continuum (Reissner, 
1958; Vlasov and Leontiev, 1966). Among them, the 
Pasternak-type foundation model is the most natural exten­
sion of the Winkler model for homogeneous soil deposit and 
the next higher approximation to the foundation response 
(Kerr, 1964). Although this foundation model can adequately 
approximate the soil-structure interaction, the analysis of 
plates resting on it must overcome practically insurmountable 
mathematical difficulties when a general analytical solution to 
the governing boundary value problem is sought. Thus, only 
plates with simple geometry and loading have been treated 
analytically, such as circular plates with axisymmetric loading 
or rectangular plates with uniform loading. On the other hand 
approximate methods (Galerkin's, Ritz's) and numerical 
methods (finite difference, finite element) have also been used. 
However, the application of these methods has been restricted 
to simple geometries. An extensive and lucid literature on the 
subject at hand is found in Vlasov and Leontiev (1966) and 
Selvadurai (1979). Recently (Balas et al., 1984), a boundary in­
tegral equation formulation of the problem has been presented 
with application to a circular plate under a concentrated force 
at the center. 

In this investigation a boundary element solution to the 
problem of thin elastic clamped plates resting on a Pasternak-
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type elastic foundation is developed. The shape of the plate is 
arbitrary and it may have holes while its boundary may have 
corners. The plate may be subjected to any kind of loading 
(concentrated loads, line loads, distributed loads). The 
analysis is complete in the sense that deflections, stress 
resultants, and subgrade reactions at interior points as well as 
reaction forces and moments on the boundary are fully 
evaluated. The numerical technique presented herein for the 
solution of the coupled boundary singular integral equations 
and for the computation of all the field quantities is very effi­
cient. In case of linearly varying loading, the efficiency of the 
method is improved by converting the domain integrals into 
line integrals, thus reducing drastically the required computer 
time. Numerical results are obtained for circular plates, rec­
tangular plates, and plates with a composite shape. They are 
compared with those obtained from existing analytical solu­
tions. The accuracy of the results is very good, notwithstand­
ing the complexity of the kernel functions, which, in this case, 
are real and imaginary parts of Hankel functions with com­
plex argument. Finally, the solution to plates resting on a 
Winkler foundation as well as to plates not resting on a 
subgrade are obtained as special cases for appropriate values 
of the elastic constants. 

2 Formulation of the Boundary Value Problem 

Consider a thin elastic plate of thickness h, occupying the 
two-dimensional multiply-connected region R of the plane, 
bounded by the M+1 curves C0, Cu C2, . . . , CM and 
resting on a Pasternak-type elastic foundation with subgrade 
reaction modulus k and shear modulus G. The curves C; 
(; = 0, 1, 2, . . . M) may be piecewise smooth, i.e., the bound­
ary of the plate may have a finite number of corners (Fig. 1). 

Assuming that the plate maintains contact with the 
subgrade and that there are no friction forces at the interface, 
its deflection w(P) at any point PeR satisfies the following dif­
ferential equation (Kerr, 1964) 

Lw=f{P)/D (1) 
where/(P) is the transverse loading, D is the flexural rigidity 
[D=Ehi/\2(\ - v2)] of the plate and L is an operator defined 
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G . k 
- ^ V 2 + — — 
D D 

"=£ + £. V4 = (V2)2 
(2) 

In this case the interaction pressure p between plate and 
subgrade is given as 

p = kw-GV2w (3) 

Moreover, the deflection of the plate must satisfy the 
M 

following conditions on the boundary C=\jCi of the plate 

dw 
w = 0, 

dn 
- = 0 (4a,b) 

where dw/dn denotes the directional derivative along the out­
ward normal to the boundary. 

The bending moments Mn and Mt, the twisting moment 
Mnl, and the effective shear force V„ acting on the boundary 
of the plate are related to the deflection w by the following 
relations (Katsikadelis and Armenakas, 1984a). 

M„ = -Dv2w M, = -uDV2w (5a,b) 

M„t=0 V„ = -D—V2w (5c,d) 

3 Integral Representation of the Solution 

The integral representation of the solution can be obtained 
by using the Green identity for the operator L and the fun­
damental solution to equation (1). 

The Green identity for the self-adjoint operator L is: 

i \ (vLw — wLv)do= I \v -V^w-

d . dw , 
•w—v^iH v 2 y -

on dn 

dn 

G dw 

~~D~V dn 

dn 

G 

~D~ 

-V2w 

dv 

~~dn~ 
\ds (6) 

where d/dn denotes the outward normal derivative. 
Relation (6) is readily obtained by combining the Rayleigh-

Green identity (Katsikadelis, 1982) for the biharmonic 
operator with the classical Green identity for the harmonic 
operator (equation (Al) in the Appendix). Relation (6) is valid 
for any two functions w and v, which are four times con­
tinuously differentiable inside the region R and three times 
continuously differentiable on its boundary C. 

The fundamental solution to equation (1) is a singular par­
ticular solution of the following differential equation 

Lv = b(Q-P)/D (7) 

in which 8(Q—P) is the Dirac 5-function, Q is the field point, 
and P is the source point. The nature of the solution to equa­
tion (7) depends on the quantity /x = G2/4kD. In this investiga­
tion only the case n < 1 is considered which seems to be valid 
for usual foundation materials (Kerr, 1964). For these values 
of fi the solution to equation (7) is given as (Vlasov and Leon-
tiev, 1966): 

v = v(P,Q) = v{Q,P) = 
4Dsin20 

•Re[/*y>(fc>)] 

where 

(3 = cosd + ismd, 20 = a rc t an ( -Vl / j t -1 ) 

(8) 

(9a,b) 

(9c,d) 

r=\P-*Q\ is the distance between the points P, Q and 
Re[H^(fip)] denotes the real part of the zero order Hankel 
function of the first kind. Notice that when G approaches 0, it 
can be shown that v(P,Q) reduces to - (P/2'wD)kei(p) which 
is the fundamental solution to the equation governing the 
plate resting on a Winkler-type elastic foundation (Kat­
sikadelis and Armenakas, 1984a, 1984b). 

From equation (8) it can be shown that 

Fig. 1 Two dimensional region ft occupied by the plate 

dv e 
dn 4£>sin20 

V'(p)costp 

V Z D = 
1 

4Z>sin20 

1 

U(p) 

V4u = 
dn 4£Dsin20 

U' (p)COScp 

(10«) 

(106) 

(10c) 

in which ( ) ' denotes differentiation with respect to the argu­
ment p, <p is the angle between r and n (see Fig. 1), and 

V(p)=Re[H2>tfp)] (Ha) 

V'(P)=Re[-PH[iHl3p)] 

= -cosdRelHYHMl+sindlmlH^iPp)] (lib) 

U(p)=Re[-(32m»Wp)] 

= - cos26RelH$m3p)] + sin20//«[.ff<,»(/3p)] (1 lc) 

t/'(p) = R e [ W ( f t o ) ] 

= cos30Re[#V>(/3p)] - smMm[H[»Wp)] (1 Id) 

The real valued functions Rt[H^^p)], Im[H^Wp)], 
Re[H\l)(ffp)], Im[H\l'>(fip)] involved in the aforegoing relations 
(11) are evaluated, for both small and large arguments, from 
their series expressions which are given in Zinke (1959). 

It can be shown that for p^O it is 

amV(p) = l-20/Tr, 

RmU(p)~lnp, 
p-0 
emfpV'(p)] = 0, 
/.-0 

toiV'(p) = 0 (\2a,b) 
p-0 

UmU'(p) (12c,d) 
P-O p 
2im\pU'(p)}=2sm2d/ir (12eJ) 
p-0 

Applying equation (6) for the deflection of the plate w and 
the fundamental solution v, which satisfy equations (1) and 
(7), respectively, using relations (8, 10a, 11a) and the boun­
dary conditions (4a, b) the integral representation for the 
deflection w(P) is obtained as 

W(P) = IL v(p'QV(&daQ-D\c ["(̂ .?)*(<?) 

dv(P,q);l 

dn„ Hg)] dsn 4sin20 
[F(P)-Jl(P)+J2(P)] (13) 

where the following notation has been introduced for 
conciseness 

910/Vol. 53, DECEMBER 1986 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



$(q) = V2w(q), ¥ (? )=-—V 2 w(q) (Ua,b) 
dng 

F(P)=~\\RV(pPQ)f(Q)daQ (15) 

Ji(P) = \cV(pPq)V(q)dsq, 

J2(P)=\ pPqV'<j>Pq)$>(q)dwq (16a,b) 

PPq = IP— q \/l, oj = JO" 

Notice that in equation (166) the relation cos<pds = rdu has 
been used (Katsikadelis, 1982). In the aforegoing relations, 
points inside the region R are denoted by uppercase letters, 
while points on the boundary C are denoted by lowercase let­
ters. Moreover, the subscript of the elements da, and ds in­
dicates the point that varies during integration. Furthermore, 
alonq denotes that the normal derivative is taken with respect 
to point q. 

From relations (5) it is seen that the boundary quantities 
V2w and d/dnv2w appearing in the line integral of equation 
(13) have a direct physical meaning. 

4 Derivation of the Boundary Integral Equations 

In equation (13) the loading function/(Q) is given at every 
point in R. Moreover, the function v(P,Q) and its derivatives 
are obtained from equations (8) and (10). However, the func­
tions y(q) and #(#) are not known at the points of the 
boundary C. These two unknown boundary quantities are 
established from the solution of two coupled boundary in­
tegral equations which are derived using the procedure 
presented in Katsikadelis and Armenakas (1984a). Thus, the 
first boundary integral equation is established from equation 
(13) by letting point P approach a point p on the boundary C 
The existence of the line integrals in equation (13) for P=peC 
and their continuity as P-~peC can be easily concluded from 
relations (12a,b). Consequently, taking into account that 
w(p) = 0 the first boundary integral equation is obtained as 

- ^cPpqV'ippq)i(q)dwq+ j c V(Ppq)*(q)dsq=F(p) (17) 

The second boundary integral equation is obtained by ap­
plying the operator V2 on both sides of equation (13) and by 
letting point P approach a point p on the boundary. Thus 

V2w(P) = \\R V2v(p,Q)AQ)daQ 

-Diim \ V2v(P,q)*(.q)dsa 
P~p JC 

+ Dlim [ -^-V2v(P,q)$(q)dsa (18) 
P-P JC dn v 

By virtue of equations (10b,c) and (I2c,d) it is seen that, the 
first line integral on the right-hand side of equation (18) 
represents a single layer potential due to a mass distribution 
y(q), while the second line integral represents a double layer 
potential due to a mass distribution $ {q). Hence, both line in­
tegrals exist for P=peC. Moreover, the first line integral is 
continuous, while the second line integral exhibits a discon­
tinuity jump as P—peC (Courant and Hilbert, 1953) which is 
equal to 

f a , 
Urn -—•V2v(P,q)$(q)dsq 
P_ P Jc dn * 

{ d 2ir — a 

— V2v(p,q)<l>(q)dsq=——$(p) (19) 
c dn v

 2-KD 

Fig. 2 Discretization of the boundary 

where a is the angle between the tangents at point p (see Fig. 
1). It is a = 7r when the boundary is smooth at point p. Taking 
into account equation (19), the second boundary integral 
equation is obtained from equation (18) as 
2asin20 f N T , , , 

*(/>)+ U(PpqW(q)dsq 
it Jc 

-\cPpqU'(ppq)$(q)do>q = G(p) (20) 

in which 

G(p)=-^-^RU{ppQ)f(Q)daQ (21) 

For any given geometry of the clamped boundary of the 
plate, the functions *(5) and ¥(s) may be obtained from the 
solution of the coupled boundary integral equations (17) and 
(20). Once the functions *(s) and *($) are known, the solu­
tion to the boundary value problem (equations (1) and (4)) 
may be obtained from equation (13). 

5 Numerical Analysis 

The numerical solution of the coupled boundary singular in­
tegral equations (17) and (20) is accomplished using the 
boundary element approach. In this approach the boundary is 
divided into N intervals, not necessarily equal, referred to as 
boundary elements. The end points of each element are refer­
red to as extreme points. Each boundary element is approx­
imated by a given curve (straight line, parabolic arc, etc.) and 
the unknown boundary functions <&, ^ are approximated by a 
polynomial (constant, linearly varying, parabolically varying, 
etc.). The points on which the unknown functions are 
evaluated are referred to as nodal points. 

In this investigation each boundary C,- is divided into A/, 
elements (i = 0, 1,. . . ,M) not necessarily equal. The center of 
the elements or other points near them are taken as their 
nodes. The elements on the external boundary are numbered 
consecutively counterclockwise while on the internal bound­
aries clockwise (Fig. 2). The values of $ and ^ are assumed 
constant on each element (step function assumption) and 
equal to their values at the nodal point of each element. 
Moreover, the curved elements are approximated by parabolic 
arcs (Katsikadelis and Sapountzakis, 1985). This approxima­
tion reduces appreciably the error due to the approximation of 
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curved boundaries by straight line elements. Denoting by $y 
and ¥j the values of $ and ^ at they'th nodal point (i.e., the 
nodal point of they element), the integral equations (17) and 
(20) are transformed into the following system of 2N 

(N= 2JNJ) simultaneous algebraic equations 

N N 

D ««*, + L WJ=F
k (*=i,2,... ,AO 

y = i y = i 

N / 2 \ N 

y = l 

(£=1,2 , . . . ,iV) 

in which 5^ is the Kronecker delta and 

aki =-\.PkQV'(Pkq)duq, bkJ = J V(Pkq)dsq 

CkJ= z\PkiU'<J)kq)d^q, dkJ = J U(pkq)dsq 

(22a) 

(22b) 

(23a,b) 

(23c,d) 

Gk=~^RU(pkQ)f(Q)daQ (23eJ) 

Pkq=\Pk-l\/l, PkQ=lPk-QM> QeR,pkeC, 
#ey'-element 

In relations (23a, b, c, d), the symbol denotes integration 

on the y'-element; point pk is a nodal point. 

Evaluation of Line Integrals akJ, bkJ, ckJ, and d^. When 
k^j (p^O), these integrals can be evaluated using any of the 
known numerical techniques for the evaluation of line in­
tegrals. In this investigation the curved boundary element is 
approximated by a parabolic arc passing through its nodal and 
extreme points and its value is computed using eight-point 
Gaussian quadrature. When k=j, the argument p vanishes for 
q=pk. From relations (12a), (12e), and (12y0 it is seen that the 
line integrals akk, bkk, and ckk are not singular and conse­
quently they are evaluated as in the case k^j. However, as it is 
seen from relation (12c), the line integral dkk has a logarithmic 
singularity and it is evaluated using the technique presented in 
Katsikadelis and Armenakas (1985). 

Evaluation of Double Integrals F^ and Gk. We may 
distinguish the following four cases: 

a) The plate is subjected to a concentrated load P a t a 
point Q0. In this case, the loading function f(Q) can be 
represented as 

XQ)=P6(Q-Q„) (24) 
Using relation (24) the values of the integrals (23eJ) are 

" *-v(P*Qo')> Gk=-^U(Pk0J (25a,b) 
D D 

where pkQo = \pk-Q0\/t 
b) The plate is subjected to a line load p(s) distributed 

along a curve L*. In this case the double integrals (23eJ) are 
evaluated using relations (25a, b) from the following line in-. 
tegrals along the curve L* 

Fk=-^-\L*P(Q)V(PkQ)dsQ, 

Gk=~\L,p(Q)U(PkQ)dsQ (26a,b) 

where pkQ = \pk-Q\/t, QeL *. 

c) The plate is subjected to a uniform or a linearly varying 
load distributed over an area R* ^Rof the plate bounded by a 
curve C*. In this case, it is V2f=0 and by virtue of relations 
(A6), (AT), (AS), and (A9) in the Appendix the double in­
tegrals (23e, f) can be converted into the following line in­
tegrals on the curve C*. 

Fk= -cos26Gk — 
sin20 r 

[ef(Pk) D 

+ \c* PkqI'(Pkq)f(q)d0>q - ] c„ I(pkq )-Q^-dso\ (27°) 

G * = " D " L ] C * PkqV'(Pkq)f(Q)d^q 

-I (21b) 

wherepkq= \pk-q\/2, qeC; I(p) =Im[H^)(l3p)]; e is given in 
the Appendix. 

The substitution of the domain integrals by line integrals 
reduces drastically the required computer time. The line in­
tegrals (27a, b) as well as (26a, b) are evaluated numerically 
employing the technique presented in Katsikadelis and 
Armenakas (1985). Thus, the curve C*, L*, respectively, is ap­
proximated by a finite number of parabolic elements. On each 
element the line integral is computed and the resulting partial 
values are summed. 

d) In the general case where/(Q) is an arbitrary function, 
the domain integrals (23e, f) are evaluated using the method 
presented in Katsikadelis and Armenakas (1983). 

6 Evaluation of the Deflections, Stress Resultants and 
Subgrade Reactions 

When the integrals akj, bkJ, ckj, dkj, Fk, and Gk are 
established, the system of simultaneous algebraic equations 
(22a, b) is solved and the values $, and ^ of the functions 
$(s) and ty(s) at the nodal points are obtained. These values 
can be used to obtain the deflection w(P) and the stress 
resultants at any point P in the interior of the plate. 

The deflections w(P) is obtained from its integral represen­
tation (13). The line integrals Jl (P) and J2(P) are computed 
from the relations 

Ji(P)=H%\.V(PPq)dsq, 
y = l Jj 

h(P) = 2 > , P?iV'(PPq)duq (28a,6) 
; = i Jj 

For the computation of the double integral F(P) in relation 
(15) we distinguish again four cases as for the integral Fk in the 
previous section. 

Referring to relations (5) and (14) it is apparent that the 
bending moments M„, M, and the reaction force V„ on the 
boundary of the plate are readily computed from the values of 
$ and ^ . 

The bending moments Mx, My, the twisting moment Mxy 

and the shear forces Qx and Qy at any point of the plate are 
equal to 

d 
Mr=-

My = 

~ » ( -

- - » ( . 

d2W d2W 

lx2~ + V 
dy2 ) . Qx=-D-

dx 
-Vzw (29a,b) 

d2 

dy2 

w d2w 
+ v-dx2 Qy=-D—V2w (29c,d) 

dy 

Mxy=-M=D(\-v) 
d2w 

(29c) xy yx -"- 'dxdy 

The second and third order derivatives of the deflections in 
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equation (29) may be evaluated from the computed values of 
the deflections with sufficient accuracy using numerical dif­
ferentiation. However, the accuracy is increased and the com­
puter time is considerably reduced when they are evaluated by 
direct differentiation of relation (13) using the following com­
binations of derivatives. 

d,=-
1 

4sin20 ll>\lK> (p)fda 

- {c^,(p)*ds + ^ - j c A,(p)<f>ds 

(/= 1,2,3,4,5) (30) 

where 

< / . = -
d2w d2\ 

dx2 dy2 -, d2=-
d2w d2w 

dx2 dy2 ' 

d,=Z 
dxdy' 

d4=-e-—v2w, ds=-e—v2w 
ox dy 

K1(p) = U(P), K2(p) = C(p)cos2a>, 

K3(p) = C(p)sin2u 

K4(p) = U'(p)cosoo, K5(p) = U'(p)sinu 

Al(p) = U'(p)cos<p, 

2 
A2(jo) = £/'(p)cos<pcos2co C(p)cos(2u-ip) 

P 

A3(p) = U' (p)cos^sin2o C(p)sin(2o>-<p) 
P 

A4(p) = - U'(p)cos(o)-ip)+V(p)cosa)Cos<p 
L P 

- 2£/(/t>)cos20coscocos(o 

(3\a,b,c) 

(3W,e) 

(32a,b,c) 

(32d,e) 

(32/,g) 

(32A) 

+; (320 

A5(p)= - U'(/j)siri(co - <p) + K(p)sincocosv 
L p 

+ 2£/(p)cos20sinwcos<p (32/) 

C(P) = U(p) V'(p) 
p 

(32k) 

For an arbitrary loading function/(Q) the double integrals in 
equation (30) may be evaluated using the technique presented 
in Katsikadelis and Armenakas (1983). 

When the loading is due to a concentrated force P at some 
point Q the double integrals in relation (30) can be directly 
evaluated from relations analogous to (25). Moreover, when 
the loading is due to a line load along a curve L*, the double 
integrals in relation (30) are reduced to line integrals on the 
curve L* and they are computed from relations analogous to 
(26). Finally, when the plate is loaded by a uniform or a linear­
ly varying load distributed over a region R*cR bounded by a 
curve C* the double integrals in relation (30) can be converted 
into line integrals. Thus, using integration by parts and 
employing relations (AS) and (AS) in Appendix, we obtain 

IJ R'J\dx2 dy2 

1 

•) V(p)do 

= — 1 tfV'(p)cos(2o) + <p)ds 

Table 1 Percent error in the deflection w, bending moment 
Mr, and reaction force V„ in a clamped circular plate with 
radius a, resting on an elastic foundation (X = 10, s = 13), and 
subjected to a uniform load q 

Number 
of BE 

Error 
in w 

r=.5a 

Error 
in Mr 
r=.5a 

Error 
inK„ 
r = a 

- f 

10 
20 
30 
40 
50 
60 
70 
80 

cns( 

.051 

.006 

.002 

.001 

.000 

.000 

.000 

.000 

Cj} + iO) SI 

1.056 
.137 
.041 
.017 
.009 
.005 
.003 
.002 

niiii + ca^ V 

.836 

.117 

.036 

.015 

.008 

.005 

.003 

.002 

OW.T (33a) 
ic* La? dt, r'i 

f df 
+ <p)ds- J c„ —— V(p)sin(u + <p)ds 

\\R*f^2V(p)do=~^c9fU(p)cos(u + <p)ds 

(33b) 

t h 
df 

- -V (p)cos<pds 
ic* d£ 

\\Rf-^-V2V(p)da=-~^ctfU(p)sm(o> + <p)ds 

1 f df 

(33c) 

(33d) 

where x, yeR and £, ijeC*. 

7 Numerical Results 

A computer program has been written for the numerical 
evaluation of the response of clamped plates resting on a 
Pasternak-type elastic foundation by integrating the boundary 
integral equations (17) and (20) using the numerical technique 
described in Section 5. Numerical results have been obtained 
for circular plates with or without holes, rectangular plates 
and a plate of composite shape subjected to concentrated 
loads, uniform, and linearly varying loads. The obtained 
results are in excellent agreement with those obtained from 
analytical solutions or other numerical solutions. When G—0 
the solution for the plate resting on a Winkler-type elastic 
foundation is obtained, while when both constants, G and k, 
are small, the solution for the plate not resting on an elastic 
subgrade is obtained. 

For the presentation of the numerical results the following 
dimensionless parameters are introduced which are established 
by writing equation (1) in a dimensionless form 

s = a/-/D/G, X = 

where a is a characteristic length of the plate (e.g., the radius 
of a circular plate, the length of one side of a rectangular 
plate, etc.). The shear modulus G may vary between 0 to 
40MN/m, while the subgrade reaction modulus k may vary 
from 0 to 200MN/m3. Thus, for usual engineering applica­
tions it is 0<5<30 and 0<X<20. In computations, it may be 
set s = Q. However, the value X = 0 must be excluded because it 
raises computational difficulties. A small value of X (say 
X = 0.1 to 0.5) and s = 0 give accurate results for the plate not 
resting on subgrade. 

In Table 1, the percent error in the numerical results obtain-
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Table 2 Deflections w = w/(Pa2/D) in a clamped circular plate with radius a subjected to a concentrated 
force P at its center 

r/a 
X=.134,^ = 0 

analytic BEM 
X=12,5 = 0 

analytic BEM 
X = 12, 5=15 

analytic BEM 

0 
0.2 
0.4 
0.6 
0.8 

.19894E-

.16537E-

.10878E-

.54154E-
J4797E-

-01 
-01 
-01 
-02 
-02 

.19894E-

.16537E-

.10877E-

.54150E-

.14795E-

-01 
-01 
-01 
-02 
-02 

.86806E-

.13953E-
-.12264E-
-.22695E-

.35712E-

-03 
-03 
-04 
-05 
-06 

.86806E-

.13953E-
-.12264E-
-.22695E-

.35711E-

-03 
-03 
-04 
-05 
-06 

.59681E-

.11590E-

.10507E-

.51292E-
-.12968E-

-03 
-03 
-04 
-06 
-07 

.59681E-

.11590E-

.10507E-

.51292E-
-.12965E-

-03 
-03 
-04 
-06 
-07 

Table 3 Deflections, bending moments and shearing forces in a clamped circular ring-shaped plate with 
an inner radius b and an outer radius a = 36 subjected to a uniform load q 

r/b 

1.4 
1.8 
2.1 
2.6 

X=.134, 
analytic 

.21740E-01 

.44073E-01 

.40622E-01 

.16895E-01 

5 = 0 
BEM 

.21741E-

.44073E-

.40622E-

.16894E-

-01 
-01 
-01 
-01 

X=12,5 = 0 
analytic BEM 

Deflections w = w/(qa4/D) 

.54455E-04 .54455E-

.52551E-04 .52551E-

.52518E-04 .52518E-

.54912E-04 .54912E-

Bending moment Mr =Mr/qa2 

-04 
-04 
-04 
-04 

X=12, 5 
analytic 

.51193E-04 

.52615E-04 

.52617E-04 

.50906E-04 

•=15 
BEM 

.51188E-

.52615E-

.52617E-

.50906E-

-04 
-04 
-04 
-04 

1.0 
1.4 
1.8 
2.2 
2.6 
3.0 

1.0 
1.4 
1.8 
2.2 
2.6 
3.0 

-.44861E + 00 
.80839E-O2 
.15789E + 00 
.13134E + 00 

- .24062E-01 
-.28612E + 00 

.14684E + 01 

.70599E + 00 

.19355E + 00 
-.20528E + 00 
-.54293E + 00 
-.84387E + 00 

-.44861E + 00 
.80860E-02 
.15789E + 00 
.13134E + 00 

- .24065E-01 
-.28612E + 00 

.14685E + 01 

.70598E + 00 

.19354E + 00 
-.20528E + 00 
-.54293E + 00 
-.84387E + 00 

- .73420E-02 
.14935E-03 

- .24074E-05 
- .35616E-05 

.17698E-03 
- .68067E-02 

Shearing force Qr 

.12489E + 00 
- .34146E-02 

.95462E-04 
- .13524E-03 

.40313E-02 
-.11555E + 00 

- .73420E-02 
.14935E-03 

- .24073E-05 
- .35623E-05 

.17701E-03 
- .68074E-02 

= Qr/w 
.12489E + 00 

- .34146E-02 
.95463E-04 

- .13525E-03 
.40316E-02 

-.11556E + 00 

- .74249E-02 
.19618E-03 
.55076E-06 
.81261E-06 
.22293E-03 

- .67599E-02 

.16905E + 00 
- .19353E-02 
- .14228E-04 

.20057E-04 

.22448E-02 
-.15316E + 00 

- .74715E-02 
.19677E-03 
.55478E-06 
.81279E-06 
.22296E-03 

- .67623E-02 

.16960E + 00 
- .19402E-02 
- .14296E-04 

.20061E-04 

.2245 I E - 0 2 
-.15318E + 00 

Table 4 Deflection w — w/(qa4/D) and bending moments Mx =Mx/qa2 My=My/qa2 in a clamped rec­
tangular (axb) plate subjected to a hydrostatic l oad /= <7*/a, 0 < * < a , 0<y<b, for various side ratios 
b/a ([X = 0.134, s = 0, v = 0.3). The analytical results are obtained from Timoshenko and Woinowsky-
Krieger (1959) 

b/a = 0.5 
analytic BEM 

b/a =1.0 
analytic BEM 

b/a= 1.5 
analytic BEM 

w(a/2,b/2) 
Mx(a/2,b/2) 
My(a/2,b/2) 
Mx(a,b/2) 
Mx(0,b/2) 
M (a/2,b) 

.080E-03 

.198E-02 

.515E-02 

.115E-01 

.028E-02 

.104E-01 

.079E-03 

.198E-02 

.513E-02 
-.115E-01 
-.028E-01 
-.104E-01 

.630E-03 

.115E-01 

.115E-01 

.334E-01 

.179E-01 

.257E-01 

.630E-03 

.114E-01 

.114E-01 
-.336E-01 
-.179E-01 
-.257E-01 

.110E-02 

.184E-01 

.102E-01 

.462E-01 

.295E-01 

.285E-01 

.109E-02 

.183E-01 

.101E-01 
-.463E-01 
-.295E-01 
-.286E-01 

Table 5 Influence coefficients for a clamped rectangular (la X 2b) plate with side ratio b/a = 1.2 resting 
on an elastic foundation with X = 5, s = 7 

position 

x/a 
y/b 

0.8 
0.6 
0.4 
0.2 
0 

x/a 
y/b 

0.8 
0.6 
0.4 
0.2 
0 

0 

.5162E-04 

.2121E-03 

.6331E-03 

.1664E-02 

.3197E-02 

Influence coefficients for w = w/(Pa^/D) at x = 0, ^ = 0 

0.2 

.4602E-04 

.1858E-03 

.5314E-03 

.1261E-02 

.1920E-02 

Influence coefficients for Mx -

0 

- . 2 9 7 0 E - 0 4 
.1802E-O3 
.2578E-02 
.2081E-01 
.1000E + 31 

0.2 

- . 6 9 3 5 E - 0 4 
- . 1 2 2 4 E - 0 3 

.3950E-03 

.2087E-02 
- . 4 0 8 9 E - 0 2 

0.4 

.3248E-04 

.1261E-03 

.3287E-03 

.6620E-03 

.8765E-03 

=MX/P at x = 0, y~-

0.4 

- . 1 2 3 6 E - 0 3 
- . 5 1 5 1 E - 0 3 
- . 1 7 5 0 E - 0 2 
- . 5 6 8 4 E - 0 2 
- . 1 0 2 5 E - 0 1 

0.6 

.1727E-04 

.6504E-04 

.1558E-03 

.2796E-03 

.3465E-03 

= 0(c = 0.3) 

0.6 

- . 1 0 9 9 E - 0 3 
- . 4 8 7 8 E - 0 3 
- . 1 5 6 5 E - 0 2 
- . 3 7 9 3 E - 0 2 
- . 5 3 9 2 E - 0 2 

0.8 

.5126E-05 

.1970E-04 

.4547E-04 

.7735E-04 

.9330E-04 

0.8 

- . 4 1 9 3 E - 0 4 
- . 1915E-03 
- . 5783E-03 
- . 1241E-02 
- . 1641E-02 

914/ Vol. 53, DECEMBER 1986 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



ed using the BEM as compared with those obtained from 
analytical solutions (Selvadurai, 1979) is presented versus the 
number of boundary elements for a clamped circular plate 
resting on an elastic foundation (X= 10 and s= 13), subjected 

subgrade 
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deflections w(x10" ) 

to a uniform load. It is apparent that only a few boundary 
elements (20 to 30) are sufficient to obtain accurate results. 

To demonstrate the accuracy of the BEM three more ex­
amples are worked out for which results from analytical solu­
tions are available. Thus, in Table 2 the deflections along the 
radius of a clamped circular plate subjected to a concentrated 
load P at its center are tabulated. They are obtained on the 
basis of analytical solutions and also using the BEM with 32 
elements. Three characteristic cases are considered: (a) plate 
not resting on an elastic foundation (X = 0.134, s = 0)\ (b) plate 
resting on a Winkler-type foundation (X = 12, s = 0); (c) plate 
resting on a Pasternak-type foundation (X=12, 5=15). The 
analytical solutions are obtained from Timoshenko and 
Woinowsky-Krieger (1959), Schleicher (1926), and Selvadurai 
(1979), respectively. 

Moreover, in Table 3 the deflection, the bending moment 
and the shearing force along the radius of a clamped circular 
ring-shaped plate with an inner radius b and an outer radius 
a = 3b are presented when it is subjected to a uniform load q. 
The numerical results are obtained using the BEM with 32 
boundary elements on each boundary and they are compared 
with those obtained from the analytical solutions (as in Table 
2). Furthermore, in Table 4 the deflection and bending 
moments in a clamped rectangular plate (a x b) not resting on 
an elastic foundation (X = 0.134, 5 = 0) and subjected to a 
hydrostatic load are presented. The results are obtained using 
44 boundary elements and they are compared with existing 
results from the analytical solution (Timoshenko and 
Woinowsky-Krieger, 1959). 

a/4 . a/4 

33 

Fig. 3 Uniformly loaded clamped plate of composite geometry resting 
on a Pasternak-type elastic foundation (A = 15, s = 18): (a) Perspective of 
the deflection surface of the plate; (b) deflections w = w/(qai>/D), 
subgrade reactions p = p/q and directions of principal bending 
moments; (c) boundary reactions and stress resultants 
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In Table 5, the influence coefficients for the deflection 
w = w/(Pa?/D) and for the bending moment MX=MX/P at 
point x=y = 0 of a clamped rectangular plate (2ax2b) with 
side ratio b/a— 1.2 for various positions of the concentrated 
load P are presented (X = 5, 5 = 7). The obtained values differ 
considerably from the corresponding values for a Winkler-
type foundation (see Katsikadelis and Armenakas, 1984a). 

Finally, in Fig. 3 results obtained on the basis of BEM using 
74 boundary elements for a clamped plate of composite shape 
resting on elastic foundation (X = 15,5 = 18) and subjected to a 
uniform load q are shown. These results are considered ac­
curate because they differ negligibly from those obtained us­
ing twice as many boundary elements. 

Conclusions 

The following conclusions can be deduced from this 
investigation: 

(a) The BEM solution to the problem of bending of thin 
plates on a biparametric elastic foundation developed herein is 
well suited for computer-aided analysis. 

(b) Plates having a composite shape including holes and 
subjected to any kind of loading are efficiently and completely 
analyzed; i.e., their deflections, bending, and twisting 
moments, shearing forces, boundary reactions and subgrade 
reactions can be established with good accuracy. 

(c) The conversion of the domain integrals into line in­
tegrals reduces drastically the computer time and renders BEM 
a powerful tool for analyzing difficult plate problems. 

(d) For plates with relatively smooth boundary the con­
stant element yields good results. The results are considerably 
improved if curved boundaries are approximated by parabolic 
arcs. 

(e) The evaluation of the kernel functions, which are real 
and imaginary parts of Hankel functions with complex argu­
ment, are accurately computed from real valued series 
expressions. 
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A P P E N D I X 

In this Appendix certain formulae are derived which are 
used to convert the double integrals (23e,f) and (33a, b, c, d) 
into line integrals when the loading function f(Q) varies 
linearly over a region R*^R bounded by a curve C*. 

Consider the differential equation 

d2w 1 dw 
- + ; rW = 0 dz2 dz 

(A\) 

When z = fip, with p=\P-Q\/l and P = ew a complex-
constant, equation (A\) reduces to 

d2w 1 dw . 
- + — + 02w = O dp2 dp 

(A2) 

Equation (A2) is satisfied by the Hankel function 
(Abramowitz and Stegun, 1972) 

HiiHM = V(p)+iI{p) (A3) 

where V(p) and I(p) are, respectively, the real and imaginary 
part of //<„»(&>). 

Substituting equation (,43) into equation (A2) and 
separating real and imaginary parts, the following two 
simultaneous differential equations are obtained 

V2F(p)=sin20/(p)-cos201/(p) (A4) 

V 2 / (p) = - cos20/(p) - sin2dV(p) (A5) 

where V 
d2 1 d 

- + -dp2 p dp' 

Elimination of I{p) from equations (AA) and (A5) yields 

V(p)= - cos20V 2 K(p)-s in20V 2 / (p ) (AS) 

For any two functions w and v which are two times con­
tinuously differentiable in the region R* and one time con­
tinuously differentiable on its boundary C* it is valid 

J L « (vV2w-wV2v)da=\^ ( » 
dw 

dn 

dv 

In •)efe (Al) 

Applying the Green identity (Al) for the pair of functions 
v=f, w=V(p) and noting that V 2 / = 0 we obtain 

1L* v2y^f^d,7Q 
df(Q) dV(p)_ 

tq v,tq 
'L-fe^-^iiri*. •]• (AS) 

Similarly, applying the same identity for the pair of functions 
i>=/and w = I(p) we obtain 

JL, v2i(p)f(Q)do-Q 

^K>+!,h>^>^fh} <A9) 
where in double integrals it is p = \P — Q \/l, QeR* while in line 
integrals, it is p= IP—q \/l, qeC*. 
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The additional term ef(P) in equation 049) is due to the fact 
that the line integral behaves like a double layer potential. The 
value of the constant is established by a limiting process. 
Thus, isolating point P by a small circle centered at point P, 
when P is inside R*, or by a small circular sector when point P 
is on C*, applying Green's identity 047), letting the radius of 
the small circle or of the circular sector, respectively, shrink to 
a point and taking into account that for small values of the 
argument p it is 

—-— = —-I'(p)cos<p = 
dn ( ~lsm6Re[H\lHM] 

1 2 
+ cosdIm[H\i1(Pp)]}cos<p— cosy 

I irp 

we obtain 

e = — 4 when P is inside R* 

e = — 2(2 — a/7r) when P is on C* 

Note that 

6 = 0 when P is outside R* 

0410a) 

(A 10b) 

(A 10c) 

a is the angle between the tangents at point/? of the boundary. 
For smooth boundaries it is a = ir. 
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Modal Parameter Analysis of 
Gyroelastic Gontinua 
This paper builds on the theory of gyroelastic dynamics presented in a recent paper 
by the authors. An elastic continuum with a continuous distribution of stored 
angular momentum {called gyricity) is considered. We introduce the modal 
parameters (coefficients) thereof, including integrals of the mode shapes, and show 
they must satisfy a number of useful identities. In addition to the coefficients (p„ 
and h a) associated with momentum and angular momentum which also arise in the 
dynamics of a purely elastic body, there is a third coefficient (ga) wholly at­
tributable to the gyricity distribution. The modal parameter analysis presented here 
is an extension of that for purely elastic continua. The analysis concludes with a sim­
ple demonstration of the theoretical results using a spatially discretized model of a 
cantilevered rod. 

1 Introduction 

In a recent paper [1] the authors developed a theory for the 
dynamics of gyroelastic structures—that is, structures 
represented by a continuous distribution of mass and elasticity 
and that contain, as well, a continuous distribution of stored 
angular momentum, or gyricity. The equation of motion for 
such a structure (denoted E in Fig. 1) was shown to be 

3TCu + Su + 3Cu = f e ( r ,0 (1) 

a form that is suggestive of its better-known discrete counter­
part [2], Here u(r,/) is the small deformation of .Eat position r 
and time t. The symbol 3C denotes a stiffness operator (nor­
mally a differential operator); it is Hermitian and positive 
definite [1], The mass operator 911 is just r/(r) 1 where a is the 
mass density at r and 1 is the identity operator; clearly 311 is 
also Hermitian and positive definite. The focus of attention, 
however, is the gyric operator 9 given by 

8 = - V x h * V ! (2) 

where V is the gradient operator and the gyricity function 
hs(r) represents the angular momentum stored within an ele­
ment dVolE at r. The notation V x simply refers to the com­
ponents of the curl operator, and it can therefore be 
demonstrated [1] that 8 is skew-Hermitian. The only remain­
ing symbol in equation (1), fe, represents the external force per 
unit volume at r. 

The equation of motion (1) can be derived using the prin­
ciples of Newton and d'Alembert or, alternatively, from 
Hamilton's (extended) principle. A third derivation can be ob­
tained from the balance laws of continuum mechanics [3]. 
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This approach uses the concepts developed by Eringen and 
others [4, 5, for example]. 

Elastic structures (large space structures, perhaps) contain­
ing a very large number of small spinning wheels furnish an 
excellent example of a system that could profitably be model­
ed using a partial differential equation of the form (1). Thus 
systems of the type characterized by equations (1) and (2) are 
of practical, as well as theoretical interest. 

The free motions of continuous gyroelastic systems lead to 
gyroelastic modes, as derived and discussed in [1]. Although 
each mode is a sinusoidal vibration (as with nongyric elastic 
systems) one must now associate two mode shapes with each 
mode (as compared to one mode shape for the nongyric case). 
These mode shapes can be shown to satisfy certain orthonor-
mality conditions which are, as expected, generalizations of 
the familiar nongyric conditions. 

^undeformed-^ 

Cantilevered at 0 
Fig. 1 Constrained elastic body 

918/Vol. 53, DECEMBER 1986 Transactions of the ASME 

Copyright © 1986 by ASME
Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



The object of this paper is to extend the theory of 
gyroelastic structures by certain integrals of the mode shapes 
(these integrals arise naturally in the dynamics) and to state 
and prove a number of modal identities which these modal in­
tegrals must satisfy. In addition to their mathematical interest, 
these identities provide useful checks on analysis. They also 
provide a rational basis for model order reduction. 

2 Gyroelastic Vibration Modes 

In some of the following proofs it would be advantageous to 
write the motion equation (1) in an equivalent first-order 
form: 

Sx + §X = 7 (3) 

where 

" 911 

o 
„A 
x = 

0 " 

3C 

li 

u 

; § 4 

• „A 
. y-

' 8 
-JC 

f. 
e 

0 

3C " 

© 
S 4 ; § ^ (4) 

(5) 

and 0 is the null operator. It can be shown that S is Hermitian 
and positive-definite, and S skew-Hermitian. The equivalent 
eigenvalue problem, 

XaSx„ + S x a = 0 (6) 

has the properties that A„ is purely imaginary (we shall set X„ 
= joia) and that 

Xa(r) = < 6 a ( r ) + ^ a ( r ) (7) 
where the six-tuples <f>a and \pa are of the form 

<t>a ia = (8) 

with u a(r) and v a(r) being the two mode shapes associated 
with the ath gyroelastic mode. In fact, the motion of that 
mode is expressed as: 

u(r,/) =u„(r)cos<V-v a ( r )s in<V (9) 
For nongyric modes, ua and \a are identical. 

It will prove indispensable to associate an inner product 
with the space of real six-tuples. Thus define 

ri=\E<t>T(rMr)dV 

The r-operator may be regarded as a generalization of the 
transpose operator. For a detailed explanation of the T-
notation as pertaining to both inner and outer products, see 
the Appendix. 

In [1] it has been shown that the orthonomality conditions 
satisfied by the (j>a and \pa are 

KG+p = 2*45.,, (10) 

An additional family of conditions, neither proved nor stated 
in [1] but needed below, is this 

^ 8 ^ = 0 (alla,0) (11) 

The proof may be found in [6]. The equivalent conditions in 
terms of the mode shapes ua and v„ are 

u;3Cv<, = «B«flv;3ttn/5 (all«,0) (12) 

Written without the inner-product notation, equation (12) 
takes the form 

\E <Kv?dV= W a U j \E y^dm (13) 

Note that without gyricity, in which case 

u a = v „ = u a 0(r) (14) 

both the left and right sides of equation (13) vanish when a ?± 
/3. When a = /3, equation (13) reduces to a2

a = wj|. 

3 Modal Momentum Coefficients 

We shall now introduce the modal momentum coefficients 
for the gyroelastic continuum E. The momentum and angular 
momentum (the latter about O) are given by 

p ( 0 = j £ n(r ,0dm (15) 

and 

h ( 0 = f C(r,t)hs{r)dV+[ rxu(r,t)dm (16) 

where 

C(r, /)=l-0><(r,O (17) 

is the (first-order) rotation matrix from a local reference frame 
at r, in which h^ is expressed, to an inertial frame. The quanti­
ty 6 is the column of corresponding (first-order) rotational 
displacements at r and may be expressed as 

«(') = 4 ~ Vxu(r) 

Substituting for 6 in equation (16) yields 

1 

(18) 

h ( 0 = h r + — ( h i
x ( r )V x u(r ,0 t?K+ ( rxu(r,t)dm (19) 

2J J E J E 

where 

A\EK(r)dV (20) 

is the total angular momentum stored in E. The general 
displacement of E may be expanded as follows: 

u ( r , 0= YJ [»/3(f)'/„3(0+Vp(r)rj„ |3(0] (21) 

Upon insertion of this expression, equations (15) and (19) 
become 

P ( ' ) = Yj iPuffVvfi+Pv^vp) (22) 

and 

h(t)=hT+ J J [h„0i7«0 + nu/3 'ii0-gu0i/«/3-g10V] @3) 

where 

P«/3 = \ Ufidm, p„ 3 4 y dm (24) 
J E Jc 

shall be called the modal momentum coefficients, 

h„ 34J £rxU / 3rfm, h ^ j ^ r X v f l d / H (25) 

the modal angular-momentum coefficients and 
8 " ' 4 " - T L h * v X u " r f K ' 8 * 4 " ~ r ! * h / v x v K ( 2 6 ) 

the modal stored-momentum coefficients. 
The body E is constrained at O and thus its motion must be 

resisted by a reaction force Ffi and a reaction torque (about 
O) GR on E at O. The reaction force and torque are given by 

and 

- F * ( 0 = [ i(t,t)dm 
JE 

-GR(t)= \ rxi(r,t)dm 

(27) 

(28) 
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where f(r,t) is the sum of all force fields, inertial, gyric and ex­
ternal, acting on E, that is 

f(r,0 = - 9 H u - g u + f e ( r ,0 (29) 

The expansion for li analogous to equation (21) is 

u(r,0= X) ^ K ( « - ) ' ? ^ ( 0 + v | 3 ( r ) r ; „ 3 ( 0 ] (30) 

which may be obtained by considering the general expansion 
for x(r.O [!]• Substituting equation (30) into equations (27) 
and (28), and integrating by parts (see [1]) where required, we 
have 

-FR(t)=Fe(t)- ]j wa[p„„rim + pvayua] (31) 

In the interest of completeness, we note that S ' (S is non-
singular) can also be expanded in forms of the eigenfunctions: 

S - , = 4 - £ «-3[*«lfc+ *«*£] (41) 
Z a 

Moreover, it can be shown by induction that 

(S - , 6)"S - 1 (88 - 1 ) - = i ^ ^ < l ) » X) « _ 2 " " 2 L « « + * - ^ ] 

(42) 

(s-is)"s-1(S8-,)"=-^- I ] <o-2n-3[*«*;+*„*;] (43) 

- G ^ ( / ) = G e ( 0 - £ I,1«o,'?i«+hM(i7«a-gBO[»/tw-gMli?„a] 

where 
(32) 

F e ( < ) i | f(r,0df, G e ( 0 4 ( r'fCr.OdK (33) 

are the total external force and torque on E. 
Before proceeding onward we note that the modal coeffi­

cients can be expressed using the (inner product) r-notation, 
namely, 

p„, = r3Kv0 

h„ ,= - ( r T 3 t t v a 

Sua \ * / a^a 

(34) 

p„a = r9Ku a , 

I V = - ( r * ) T9TCua, 

g u a = - ( r x ) r 8 u „ , 

These forms will prove useful. 

4 Modal Expansion for S _ 1 

The proof of the identities for the modal momentum coeffi­
cients, to be presented in the next section, rests on the fun­
damental result that S " ' can be written as a modal expansion. 
As stated earlier the operator 8 is positive-definite; hence 8 " ' 
exists and, in fact, is given by 

5 Modal Identities 

Having established the results (38-40), we can proceed with 
great facility in proving a series of modal identities which are 
reminiscent of Parseval. Let us begin with equation (38), 

Of 

This is an operator equation and so we can operate on tr(r)l to 
give 

3H-i(ffl) = 4 - D K K ( f f l ) ) + u a K ( < 7 l ) ) ] (44) 

Recalling the definition of 911, it follows that 

(45) 

8 " ' = 
3K-

3C" 
(35) 

We assert that 8 ~' can be expanded in forms of the eigenfunc-
tions as follows: 

6-1 = 4 " ^ M«2l*«*« + *«*a (36) 

Hence, the right-hand side of equation (44) reduces to the 
identity matrix 1. Now, taking the inner product of equation 
(44) with (r(r)l leads to 

(aiyi=-L £ [ { ( f f D ' u J W a l ) } 
Z a 

+ [ ( < 7 i r v J K ( c r l ) ) ] (46) 

But (<T1)1 is just the matrix ml, where m is the mass of E. 
Finally, upon realizing that 

(ffl) *ua = r 9ttu„ = p„a, (at) 'y„ = V 3TCva = pva 

and 

u;(ffl) = (3rcua)a = p L ,v ; ( f f l ) = (3TCva)-l = p ^ 

we achieve the desired result, 

1 
]C fouaPL +PmPL] = ml (/,«) 

(The reader is reminded that the outer-product r-notation is 
explained in the Appendix.) One can be convinced of the 
verisimilitude of this identity by noting that, upon substitu­
tion, it satisfies the eigenvalue problem when written in real 
terms as 

-w„^„ + S - 1 S * a = 0 

For a rigorous proof, however, consult [6]. Combining equa­
tions (35) and (36) with (8) it is clear that 

9TC-1 

(37) 

(For clarity, new identities will be labeled with Roman 
numerals as they are cited.) These then are the essential steps 
in the proof of the modal identities. 

In the absence of gyricity recall that [1] 

u„(r) = v a(r) = u o a(r) (hs^0) (47) 

and so 

Pua=Pv* = Po* (A ss0) (48) 

Hence, Identity (I,a) reduces to 

= ~2~ E Ku« + V^] 

© = £ « - , [ u a v ; + vBiia 

3C-1 

920 / Vol. 53, DECEMBER 1986 

= ~2~ E M«2K<+V«] 

(38) 

(39) 

(40) 

T, PocPL =ml (hs = 0) (49) 

which is the familiar result for (nongyric) elastic continua [7]. 
Additional identities for the modal coefficients may be 

derived by replacing a (r)l with o^r* and/or gr* in the two 
appropriate steps, leading to equations (44) and (46) of the 
foregoing proof. Thus, the complete set of identities born of 
equation (38) is 
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~ T E iPucPua + P 1 ) a P « ] = W l 
L a 

-z- E [hua
hL +h„„h^]=J 

4 " E [ g - 8 - +%m%lA=\\E (V*K)T(VxK)<r~ldV 

-j- E [Pu«
hL + P « h ^ ] = - c (/,«-/) 

2 ^ IgwaPwa """gyaPual " 

where 

^ i dm, c= \ rc?/w, J= - I xxtxdm 
JE JE JE 

are, respectively, the zeroth, first, and second moments of in­
ertia (about O) of E. The proofs of (I,cef) require integration 
by parts as well as observing, for (IJ), that hs vanishes on the 
surface of E. In the limit as hs-~0, Identities (I,bd) also reduce 
to those established for (nongyric) elastic continua [3]. 

The identities derived above involve the modal coefficients 
exclusively. We now present six more identities which involve 
the modal frequencies oia as well. These are derived in the 
same fashion as those above but with the null operator 0, as 
given by equation (39), replacing 9TC-1. Clearly, the value of 
the sums will be O, the (3 x 3) zero matrix. The end results are 

E 0>allPUaPL +PvaPua]=0 

a 

E " a ' f g ^ g L + g M g » J = 0 
a 

E " a ' IPuaK* + PvcKa ] = O 
a 

E ^'[h^gL +Kas,L] = o 

(II,a-f) 

Li "« ' [g««PL +gTOP«« ] = O 
a 

All of these identities become trivial when hs = 0. 
One may well anticipate by now that another family of iden­

tities can be generated by using the modal expansion f or 3C ~', 
given by equation (40), in the same manner as the 3H"1 and 0 
expansions have already been exploited. These identities will 
have a more attractive form if we can find an interpretation of 
3C "' that is somewhat analogous to the interpretation (45) for 
9K~'. To this end, we note that, since 3C is typically a differen­
tial operator, 3C "' is typically an integral operator which may 
be written as 

3C- ,(.)=j i JF(r,«(.)rfK(tt (50) 

where F(r,£), a (3 x 3) matrix function of r and £, is known as 

the flexibility kernel. Note that because 3C is symmetric and 
positive-definite, F(r,£) is symmetric, 

Fr(£,r) = F(r,£) (51) 

and positive-definite 

f fT(r)¥(r,£)f(,£)dVdV>0 
J E 

(52) 

for f(r) in the domain of 3C~' and not identically zero. 
Perhaps the best known of the flexibility kernels is that for a 
slender, uniform cantilevered rod: 

F(x,H) = 
x2(3£-x)/6B, 

eOx-H)/6B, 0<t<x<l 
(53) 

where B is the rod's flexural stiffness and I is its length. 
The identities thus wrought from (40) are 

~Y E «a2[P«aPL +PwJ>£j=] ] F(r,S)d/Hdm 
a 

\ E «a 2 [h„X, + h K X j = - \E j r*F(r,{)r Awdm 
a 

-IT E "«2tg«agL + g « g £ j 
L a 

= ^ f L L [V?hf(r)]rF(r,«[V|hs
x {S)\dVdV 

(///,«-/> 

-y E w* 2lPuaKa +PvJtfa ] = - \E \E nr,Z)rxdmdm 

"T~ E wc,2lKagL + h M g ^ ] 

= 4 " L L rXF(r'^[vfh
S

X (Z)]dV(!-)dm(r) 

"T" E W«2[g«aP«a + g|«J>£,] 
L a 

= 4 ~ L L [ V * h * (r)]Tmt)dm(!:)dV(r) 

Taking advantage of these identities is more challenging than 
employing the earlier ones since in general they require a sex­
tuple integration (quadruple for two-dimensional structures 
and double for one-dimensional structures). On the other 
hand, the weighting coefficients for these identities are oi~2 

and therefore convergence would tend to be much more rapid. 
There is certainly something to be said for any nontrivial iden­
tity that involves the modal frequencies because they are well 
known to be of the greatest importance. 

6 Sum of Squares of Modal Periods 

For a nongyric elastic structure, the modal frequencies obey 
the following identity [7]: 

E av2 = frjBF(r,r)tfm (54) 

The subscript (•)„ is a reminder that the natural frequency o>oa 
is for the same structure as is wa but containing no gyricity, 
i.e., hs s 0 . Because the period of Mode a varies inversely with 
ua C"a = 2ir/wa), identities of the form (54) can be regarded 
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h s (x ) 

Fig. 2 Slender cantilevered rod 

as expressions for the sum of squares of the modal periods. 
The generalization of equation (54) to constrained 

gyroelastic systems may be written as 

£ ( « - * - w ^ ) = - i - tr\E \E [h* (r)F r {(£,r)r 

\f*(Ul)K(VJ\dVdV 

where 

F£ t t . r ) = F t ,(r,{) = — Vf
x Fr

r(r,£) 

(/K) 

(55) 

F r ( r , | ) = — v * F(r,{) 

The derivation of (/JO is, unfortunately, much longer and 
more subtle than its nongyric counterpart and thus is not in­
cluded but is available in [6], 

Identity (IV) brings to light three new flexibility kernels 
related to the kernel F(r,£). The physical interpretations of 
these new kernels are noteworthy: (1) Fr(r,i-) is the kernel re­
quired to express the local angular deformation caused by a 
force distribution; (2) FjT(r,i;) relates the local translational 
deformation to its corresponding torque distribution; and (3) 
Fjr(r,£) is the kernel appropriate for determining the local 
angular deformation due to a torque distribution. 

7 Numerical Example 

As an example of the preceding results we return to the 
slender cantilevered rod (Fig. 2) considered in [1]. The sense of 
the gyricity is parallel to the rod, everywhere along the rod, 
thus reducing the problem to two dimensions. The rod is taken 
to have a constant linear mass density p and constant bending 
stiffnesses B{ and B2. Let us choose the gyricity distribution to 
be 

1 IT . / 1 \ 
hsM=—hT — sin l^— x) (56) 

where hT is the total angular momentum stored in the rod. 
For this system, Identities (/) are 

i0(PP) = pl 

i0(hh) = -^-Pen 

U g g ) = 
7T4 h\ 

T pi3 

(57) 

t0(ph) = -

i0(hg) = hT 

t«(gp) = 0 

0 1 

-1 0 

0 1 

- 1 0 

wherein we have introduced the abridged notation, 

a 

for the left-hand sides of the identities. (The identity matrix 1 
and the null matrix O above are, of course, 2x2 . ) Further­
more, noting that the flexibility kernel for the cantilevered rod 
is 

F(x,{) = 
Br 

0 

and defining 

1 0 " x 2 (3£-x ) /6 , 0 < * < £ < £ 

£ 2 (3x-£) /6 , 0 < £ < * < * 

B^(BxB2y^ Vk(Bx/B2yn 

and identities involving co^2, (//), are calculated to be 

0 0 

0 - / 3 " 1 

(58) 

(59) 

t2(PP) = 

i 2 (hh) = 

'2(gg) = 

i 2 (ph) = 

p 2 l 5 

205 

l lp 2 l 5 

4205 

T,h\l 

85 

13p2l6 

3605 

/J"1 0 

0 0 

P o 

0 0" 1 

0 |8 

-B~l 0 

(60) 

/ 1 1 1 \ 1 \ phT(A 

B 

t2(gP) = l l 2 + 27r2/ 

1 \ phT(3 

B 

13 0 

0 0" 1 

Finally, the identity involving only frequencies, namely (IV), 
becomes 

E« ' \ 8 7T4 / B2 (61) 

To verify the above identities numerically, the vibration fre­
quencies and the gyroelastic modes of the system were deter­
mined [1] using a finite element method with 10 elements (40 
degrees of freedom). The modal coefficients were then 
evaluated according to equations (24)-(26). A comparison be­
tween the theoretical and numerical results is charted in Table 
1. For brevity we shall consider only the numerical coefficients 
appearing on the right-hand sides of the modal identities. The 
"discrepancies" in Table 1 are due to the finite number of 
modes taken in the series and, of course, to numerical error in 
the finite element approximation. (Calculation of the 
discrepancy in i„(gp) should be based on 7r2/V8, obtained 
from the geometric average of i0 (pp) and i0 (gg), and thus is 
4.2 percent. As expected, this lies between the discrepancies 
for i0(pp) and t0(gg).) Agreement among the second set of 
identities is much better than among the first set owing to the 
presence of co~2. 

It is useful to define a completeness index that measures the 
degree to which the modal identities are satisfied by a finite 
number, N, of modes. An inertial completeness index has been 
suggested for nongyric elastic structures [8], To extend the 
concept to gyroelastic structures, consider 
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Table 1 Modal identities: A comparison between theoretical 
and numerical results 

.0 

Identity Coefficient on Right-Hand Side 
Theoretical Numerical 

Discrepancy 
(%) 

I 

(a) i0(pp) 

(b) i 0 (hh) 

(c) t„(gg) - 5 -

(d) «D(ph) 

(e) «0(hg) 

0 0 <0(gP) 

0.97060 

0.33333 

11.460 

0.49966 

1.0017 

-0.14509 

2.9 

< 0.001 

5.9 

< 0.003 

-0 .17 

III 

(a) i2(pp) 

(b) i2(hh) 

(c) i2(gg) 

(d) i2(ph) 

(e) i2(hg) 

00 <2(gP) 

1 
l6 + 

1 
12 

20 

11 
420 

3 
8 

11 
360 

l ^ r 2 ^ " ^ 

^ 

0.050000 

0.026190 

0.037500 

0.036111 

0.098096 

0.13399 

< 0.002 

< 0.004 

< 0.003 

< 0.003 

< 0.001 

< 0.008 

IV 

= («; ; > c -5 0.71236 < 0.002 

*~ 

^ 

" Puce' 

"UU 

_ Sua „ 

Pua 

n « c 

_ fewa _ 

T 

+ 

Pirn 

bva 

_ Sua _ 

" P ™ 

•v 
_ Sua _ 

r^v 

^ 

ML 

(62) 

and M„ 4 lim MN. The matrix MM is positive-definite 
N - 0 0 

for nonzero gyricity and therefore we can define 

/„ (N) 4 - L [ £ tf(M~ "2MNMm
I/2)]"2 (63) 

(where n is the dimension of M„ and /*,- are eigenvalues) as a 
completeness index for gyroelastic structures. As A7—00, fJ,j 
— 1 and hence I0 (00) = 1, which means the system is 
"complete". It should be noted that this definition differs 
from its nongyric counterpart in that equation (63) is a root 
mean square average of ,̂- whereas the inertial completeness 
index is just the smallest /x;. The eigenvalues /it, can be easily 
solved using the form (/^M^ - MN)x = 0, for which many 
computer algorithms exist. 

A similar completeness index for the modal identities in­
volving w~2 can be defined as follows: 

I2(N) 4 [ - i - 1 MKH~ 1/2H*2-1/2)1 '/2 (64) 

where 

x 
<U 
-a 

U) 
<D 
c 
<u 

OL 

E 
o o 

0.5 

0 

H 

If 

^ I o ( N ) 

^ - I 2 ( N ) 

1 1 1 

0 10 20 30 40 

/-

-̂

P«a 

h » a 

_ Sua _ 

" p I r a 

Ka 

_ Sua _ 

7" 

+ 

Pua 

"ua 

_ Sua . 

" p « " 

Ka 

_ Sua _ 

r ^ l 

^ 

Number of Modes, N 
Fig. 3 Completeness indices for the slender cantilevered rod 

1 

Z a = l 

andH„ 4 lim SN. 
N - 0 0 

The indices /„ (AO and 72 (N) are plotted in Fig. 3 for the 
cantilevered rod example. As would be expected, the identities 
involving a>~2 as monitored by I2(N) converge much faster 
than the others. 

8 Concluding Remarks 

As the preceding development indicates the concept of 
modal coefficients is a natural extension of eigenvalue 
analyses traditionally performed on vibration structures. The 
practical importance of our analysis lies in the potential ef­
ficacy with which gyricity can be used to control very large 
flexible space vehicles. A dense distribution of momentum 
wheels and control moment gyros over the structure may be 
advantageously represented by a continuous gyricity 
distribution. 

The modal coefficients constitute a dynamical description 
of a gyroelastic body and are known to be of great significance 
[7], Apart from their academic appeal, the theoretical results 
obtained here are very useful in verifying the accuracy of 
spatially discretized models and, more important, in supplying 
a rational basis for model-order reduction schemes. It should 
also be emphasized that while we have focused on an elastic 
continuum containing a gyricity distribution, the results are in 
fact applicable with minor modifications to any system which 
can be described by equation (1). 

The equation of motion (1) can be derived using the prin­
ciples of Newton and d'Alembert or, alternatively, from 
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Hamilton's (extended) principle. A third, and consistent, 
derivation can be obtained from the balance laws of con­
tinuum mechanics [3], This approach uses the concepts 
developed by Eringen and others [4, 5, for example]. 
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A P P E N D I X 
Inner and Outer Products 

We begin with two matrices, X(r) and Y(r), whose dimen­
sions are nx x n2 and n3 x «4, respectively. The inner prod­
uct (over E) of X and Y, denoted here by X T , is defined to be 

X T = X'(r)Y(r)4f Xr(r)Y(r)c?K (.4.1) 

This definition of course requires n{ = n3. Note that the inner 
product XTY is an n2 X n4 constant matrix. 

The outer product over E of X and Y, denoted here by XYT 

= X(r)YT(£) is defined such that, for any n5 x n6 matrix 
* « ) • 

(XY') t iX(r ) (Y ' t ) (,4.2) 

This definition of course requires n3 = n5 and n2 = «4. Note 
that the outer product X YT is an «, x n3 matrix operator; 
thus, in (A.2), *(£) is mapped into X(r). 

As a final observation, we note that if a fourth matrix, *(r) 
is introduced (n7 x n8, say), then the inner product between # 
and (X Yr)\p is given by 

# ' (r)[X(r)Y' ({)]*«) - (*TX)(Y'*) (A3) 

(One must have n2 = n4, n3 = «5,andn7 = «,.) Note that the 
result is a n8 X n6 constant matrix. 
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Beams on Variable Winkler Elastic 
Foundation 
A stiffness approach is presented for computing the solution of beams on variable 
Winkler foundation. The solution may be achieved using only a small number of 
elements along the beam. Accuracy is dependent only on a preset user criterion. A 
numerical example demonstrates the efficiency and accuracy of the procedure. 

Introduction 
The analysis of beams on Winkler foundation is very com­

mon in engineering. Other foundation models are reviewed by 
Kerr (1964). The Winkler foundation model consists of an in­
finite number of closely spaced springs uniformly distributed 
along the beam. When the spring constant, also called founda­
tion modulus, is constant along the length of the beam, the 
differential equation of the beam has constant coefficients, 
and the solution can be given as a linear combination of 
elementary functions (Hetenyi, 1946). If the foundation stiff­
ness varies along the beam, the differential equation in most 
of the cases cannot be solved exactly, and numerical methods 
should be applied. This situation occurs in the case of buried 
structures, in particular in piles driven into soil. 

Exact stiffness matrix for beam member on constant 
Winkler elastic foundation has been derived previously 
(Eisenberger & Yankelevsky, 1985). Franklin and Scott (1979) 
presented a closed-form solution for a linear variation of the 
foundation modulus, using contour-integrals. For a higher 
order of variation in x (the coordinate along the beam), they 
present a partial solution, which is applicable to infinite beams 
(or piles). Lentini (1979) presented a finite difference method 
to solve the problem when the foundation stiffness varies 
along x as a power of x. 

In this work we present a solution for finite beams resting 
on a Winkler elastic foundation with stiffness variation that 
can be presented as a general polynomial of x. A stiffness for­
mulation for the solution of the deflection curve, moments, 
and shear is presented and demonstrated in a numerical 
example. 

The Differential Equation 

The differential equation for the deflection curve of a beam 
of constant flexural rigidity EI supported on a variable elastic 
foundation is: 
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d4y k(x) p(x) 
-+ „ y-dx4 EI EI 

(1) 

If we represent the foundation modulus and loading as two in­
finite series 

k(x) = \jkjX' 
1 = 0 

Co 

and introduce 

we get 

a new variable 

d4y 

dx4 

k(x) 

*=T 
1 

L4 

d4y 

dt 
Oo 

/>(*)= E M ' € ' 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
;=o 

Substitution of these expressions into the differential equa­
tion, equation (1), yields 

d4y 
d£4 

where 
k;U 

EI 

P,Li+4 

EI 

If we choose the general solution of equation (8) as 

1 = 0 

(8) 

(9) 

(10) 

(11) 
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Fig. 1 Beam on elastic foundation: stiffnesses 

then y(0) = a0 

d*y 
IJ/(/-!)(/-2)(i-3)fl,f- »(0) = 

1 dy _ 1 

(18a) 

(18ft) 

= £ (i + 4)(i+3)(i+2)(/+ l)fl,+4f (12) 
/=o 

which, on substituting into equation (8), gives 
oo 

£(/+4)(;+3)(;+2)(/+i)fl / + 4r 
1 = 0 

+(E**0(E«,*')=5>S' ( i3 ) 

\ = o ' i=o ' i=o 

The multiplication of the two series in the second term can be 
written as 

\ ' = 0 ' \ = 0 ' ,=0 \ = 0 ' 

and equation (13) becomes 
Oo 

£ ( / + 4)(/+3)(i + 2)(i+l)a /+4$' 
1 = 0 

00 I OO 

+ E(E^W>'=E/>?S' ' 

and the first two at are found. The next two a, are found from 
the boundary conditions at x = L (£ = 1). 

From equations (11) and (17), we can express the deflection 
y, for each £, as a linear combination of the first four a,'s and 
the terms pf, as all the other coefficients are linearly dependent 
on them. In particular, for £ = 1, we can write: 

00 

y{x=L,S = l) = C0a0 + Clal + C2a2 + C3a3+Ecplpr (19) 

e(x=L,$ = 1) = Cia0 + C[ax + C{a2 + C.'a, + £ C'plpf (20) 

The C coefficients are functions of the kf terms and can be 
evaluated using equation (11) and (17). C0, for example, is the 
value of the function y (equation (19)) at £ = 1, when a 0 = 1 
and a, = a2 = a} =pf= 0, and therefore it can be calculated us­
ing equations (11) and (17) with the preceding values. 

In general we can write all the C coefficients as follows: 

(15) 
i=0 J=0 Q=.y{ = i = I > , = l + I > ; 

j = 4 

00 r 
E (/ + 4)(i+3)(/ + 2)(»+l)fl/+4 
( = 0 L 

; - n J 

j ' = 0 y = 4 

(21) 

(22) 

(16) 
7 = 0 

both with dj (from equation (17)) based on a,- = l, a^,- =0; 
p*=0;i,k = Q, 1,2, 3, « = 0, 1,2 

To satisfy this equation for every value of £, we must have 
Oo oo 

T,cPiP?=y i=i= E«y=E«/ 
pf- E k*ai-j 

i^o 
' ( / + 4)(i+3)(i + 2)(i+l) 

j = 0,1,2 oo (17) 

J = 0 y = 

OO 0 0 

E c'PiP*=yU = E > ; = E>y 
1=0 ; = 0 y = 4 

(23) 

(24) 

so that in equation (11) we have all the a, coefficients, except 
for the first four, which should be found using the boundary 
conditions. 

Boundary Conditions 

All boundary conditions are assumed to be displacement-
type because of the intended application of the result in 
developing a displacement based stiffness matrix. At £ = 0 we 
have 

both with a, (from equation (17)) based on «„ = « ,= 
a2 = ai=0, using the values of pf for the particular loading. 
Knowing all the terms in equations (21)-(24), the values of a0 

and o, (equations (18)), and the boundary conditions BXX = L 
(£ = 1), we can solve equations (19) and (20), for the two 
unknowns, a2 and a}. Thus, for any given variable foundation 
k(x) and loadingp(A-) (equations (2), (3)), we can find all the 
a, coefficients in the expression fory(x) (equation (11)), from 
equations (17)-(20). 

926 /Vol. 53, DECEMBER 1986 Transactions of the AS ME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



n Table 1 Results for example beam 

IO.OOON 
EI = 4X |0 4 Nm 2 

K(x | )= (4x | -3x f+x^ ) l0 6 KN/m 

K(x 2 )= ( l 2 - l 3x 2 +6x2 -x | ) l 0 6 K N / m 

Fig. 2 Example: cantilever beam on variable elastic foundation 

Stiffness Matrix and Member End-Actions 

The terms in the stiffness matrix are defined as the holding 
actions at both ends of the beam, due to unit translations and 
rotations as shown in Fig. 1, where there is no load on the 
beam (i.e., p , =0). For the solution^,-, /= 1, 2, 3, 4 of the four 
cases shown in the figure, one can use the boundary conditions 
and get a,-,- (/ = 0, 1, 2, . . .oo). 

Then, the terms in the stiffness matrix are: 

S„ = Q(0) = 
EI d^i EI 

d? 
EI d2yi EI 

s3/ = G(i)=-

L1 d? 

EI d3yi 

TF~W 

L2 

EI 

(25a) 

(256) 

-£ . / ( / ' - ! ) ( / ' -2 )0 ,7 (25c) 
y=3 

EI cPy, EI 
s^mn-Z-m—Z-Eju-Daj, i? L1 

d? - J=1 

As an example, the first column of the matrix is found using 
the deflection curve .y,, for which the an coefficients may be 
found using the following boundary conditions: 

J»i(0)=l (26a) 

yi(0)=yl{L)=y[(L)=0 (26b) 

Member end-actions for any loading are found using equa­
tions (25), but the solution y is found using the loading data, 
Pj for fixed-end boundary conditions, i.e., 

y(.0)=y'(0)=y(L)=y'(L)=0 (27) 

Examples 

Considering the case of a constant Winkler foundation, 
k(x) =k0, for p(x) =0 , then 

= - fcfo 
i+A ( i + 4)(/+3)(/ + 2)(/+l) 

segments 

1 

2 

3 

5 

10 

20 

40 

80 

160 

320 

1 

-10Ya[m] 

.11735 

.22180 

.26558 

.33354 

.40509 

.43212 

.43970 

.44166 

.44215 

.44228 

.44232 

1 0 9 a [ r a d ] 

.25820 

.39362 

.44105 

.52619 

.63440 

.67869 

.69135 

.69464 

.69546 

.69567 

.69574 

Rb[N] 

51 .65 

100 .47 

145 .07 

176 .00 

219.41 

2 3 5 . 4 6 

2 3 9 . 9 3 

241 .08 

241 .36 

241 .44 

241'.46 

-MbtNm] 

15 .596 

26 .788 

25 .577 

26 .507 

32 .789 

35 .201 

35 .882 

36 .058 

36 .102 

36 .114 

36 .117 

CPUts] 

0 .58 

0 .67 

•0 .75 

0 .74 

1 .10 

1 .50 

2 .50 

4 . 4 9 

8.41 

17 .05 

0 .77 

and, if i = 4*n + m (/?= 1, 2 and for each n, m = 0, 1, 2, 
3) we get 

(-KYm\ 
«/ = j , am (29) 

And considering the case of linearly varying Winkler founda­
tion, k(x) = kx x, then, forp(x) = 0 

~^"* g i~ l , ,«•. 
1+4 (i+4)(i+3)(i + 2)(i+l) K ' 

and we get the same series as Hetenyi, (1946, p. 109). In this 
case, if i=5*l+m (1= 1, 2 and for each t, m = 0,1,2, 3) 
then 

(~kt)'\ TT (5j-4 + m)]ml 

am m = 0,l,2,3 (31«) 

a 5 f_ 1 =0 1= 1,2,3 (316) 

In both cases, y can be expressed as the sum of four series, that 
correspond, for £ = 1, each one with the C coefficients, in 
equation (19). 

In these two cases convergence is evident. In the general 
case, the series always converge for finite/? and A: polynomials. 
It can be seen easily from the two examples or directly from 
equation (17) that the number of terms needed to obtain con-
vergency depends only on the values of k*, for finite p 
polynomials. 

(25c?) Using the beam stiffness matrix and member end-actions we 
can solve any general continuous-beam using the direct stiff­
ness method (Weaver and Gere, 1980). A continuous beam 
program was modified to include the possiblity of variable 
elastic foundations, and the results are demonstrated in the 
example. 

The cantilever beam shown in Fig. 2 was analyzed using the 
proposed stiffness formulation. The beam rests on a variable 
Winkler elastic foundation and was solved using one section. 
For comparison, the same problem was solved using the exact 
stiffness matrix for beams on constant Winkler foundation 
(Eisenberger and Yankelevsky, 1985). The beam was divided 
into equal segments with constant foundation, in such a way 
that the total foundation reaction of each segment is equal to 
that of the original foundation reaction. The results of these 
cases, and of the proposed solution, are given in Table 1, for 
the deflections, rotations, and reactions at A and B. 

It can be seen that the solution converges to the results ob­
tained using only one section, that obviously required much 

(28) shorter computation time. In the last column of the table the 
CPU time for each case is shown, and the big saving in com-
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566095.5645341235 

216162.5595999295 

-6109.791883136082 

-87.20392045799123 

Table 2 Stiffness matrices for example beam 

K{xl) = (4xl - 3x] + x])W6 KN/m 

216162.5595999291 -6109.791883247904 -87.20392055978066 

137425.1141049063 

-413.7380018381857 

-574.5602668704000 

-413.7380016882916 

3534622.215303887 

-597666.9091349448 

-574.5602670603874 

-597666.9091349428 

212550.3891939011 

3534622.215303817 

597666.9091349084 212550.3891938803 

-6109.791493126612 87.20395761805602 

413.7379749021453 - 574.5602715076991 

K(x2) = (12- 13x2 + 6x\ -x\)W6 KN/m 

597666.9091349144 -6109.791883247865 413.7380016883045 

87.20392055986304 

566095.5645341776 

-216162.6696999461 

-574.5602670603734 

-216162.5596000219 

137425.1141048908 

Table 3 First column of stiffness matrix 

EPS 

l . E - 0 1 

l . E - 0 2 

l . E - 0 3 

l . E - 0 4 

l . E - 0 5 

l . E - 0 6 

l . E - 0 7 

l . E - 0 8 

l . E - 0 9 

l . E - 1 0 

l . E - 1 1 

l . E - 1 2 

l . E - 1 3 

l . E - 1 4 

l . E - 1 5 

l . E - 1 6 

l . E - 1 7 

l . E - 1 8 

S M t l . l ) 

5 8 5 5 2 9 , 2 3 4 0 1 1 7 4 2 1 

5 6 7 9 6 5 . 7 6 4 7 2 65322 

5 6 5 8 6 4 , 6 1 0 2 763164 

5 6 6 1 0 0 . 1 1 7 6 6 5 1 4 5 6 

5 6 6 0 9 8 . 6 7 2 7 5 6 5 4 7 4 

S 6 6 0 9 S . 4 9 6 3 7 8 3 3 3 2 

5 6 6 0 9 5 . 5 6 6 3 3 9 2 797 

5 6 6 0 9 5 . 5 6 4 2 9 2 0 3 9 1 

5 6 6 0 9 5 . 5 6 4 5 8 1 3 7 5 9 

5 6 6 0 9 5 . 5 6 4 5 3 4 3 2 0 6 

5 6 6 0 9 5 . 5 6 4 5 3 4 3 7 1 4 

5 6 6 0 9 5 . 5 6 4 5 3 4 3 4 7 4 

5 6 6 0 9 5 . 5 6 4 5 3 4 1 1 9 9 

5 6 6 0 9 5 . 5 6 4 5 3 4 1 2 3 5 

5 6 6 0 9 5 . 5 6 4 5 3 4 1 2 3 5 

5 6 6 0 9 5 . 5 6 4 5 3 4 1 2 3 5 

5 6 6 0 9 5 . 5 6 4 5 3 4 1 2 3 5 

5 6 6 0 9 5 . 5 6 4 5 3 4 1 2 3 5 

S M ( 2 , 1 ) 

2 1 4 3 3 5 , 3 6 5 8 0 0 6 0 4 7 

2 1 5 1 7 6 . 2 6 8 2 1 3 6 9 9 9 

2 1 6 2 8 4 . 1 7 0 8 2 42434 

2 1 6 1 5 3 . 4 2 5 5 4 4 0 0 6 9 

2 1 6 1 6 2 . 9 2 9 7 5 2 1 7 2 1 

2 1 6 1 6 2 . 5 3 2 7 3 1 3 8 3 7 

2 1 6 1 6 2 . 5 6 9 0 0 0 2 1 0 6 

2 1 6 1 6 2 . 5 6 0 4 1 7 4 4 1 4 

2 1 6 1 6 2 . 5 5 9 7 0 3 0 2 9 3 

2 16162 .5596051972 

2 1 6 1 6 2 . 5 5 9 6 0 0 0 1 4 7 

2 1 6 1 6 2 . 5 5 9 5 9 9 9 2 3 3 

2 1 6 1 6 2 . 5 5 9 5 9 9 9 2 7 5 

2 1 6 1 6 2 .55959992 96 

2 1 6 1 6 2 . 5 5 9 5 9 9 9 2 9 4 

2 1 6 1 6 2 . 5 5 9 5 9 9 9 2 9 5 

2 1 6 1 6 2 . 5 5 9 5 9 9 9 2 9 5 

2 16162 . 5 5 9 5 9 9 9 2 9 5 

S M { 3 , 1 ) 

-142 6 3 1 0 0 . 1 8 4 8 2 9 3 0 

-23622 8 3 . 9 4 3 8 3 7 8 6 9 

2 8 3 8 4 9 . 7 9 0 6 1 8 1 9 4 3 

- 1 9 5 0 5 . 3 2 4 2 4 4 0 8 1 / 1 8 

- 7 7 2 5 . 9 8 4 7 6 3 5 5 1 7 7 0 

- 6 0 9 5 . 7 2 62 6 9 1 7 2 0 1 4 

- 6 1 0 0 . 2 6 1 7 9 4 3 3 2 0 9 4 

- 6 1 0 8 . 7 0 1 3 9 3 8 6 9 5 8 4 

- 6 1 0 9 . 7 0 5 3 5 8 5 3 4 0 8 7 

- 6 1 0 9 . 7 8 6 0 0 7 8 9 2 2 3 8 

- 6 1 0 9 . 7 9 1 9 4 6 3 6 8 5 7 9 

- 6 1 0 9 . 7 9 2 0 3 7 0 6 3 1 5 9 

- 6 1 0 9 . 7 9 1 8 8 2 7 3 5 0 9 0 

- 6 1 0 9 . 7 9 1 8 8 3 3 4 7 6 6 9 

- 6 1 0 9 . 7 9 1 8 8 3 5 2 5373 

- 6 1 0 9 . 7 9 1 8 8 4 5 4 5 3 5 3 

- 6 1 0 9 . 7 9 1 8 8 3 1 3 6 0 8 2 

- 6 1 0 9 . 7 9 1 8 8 3 1 3 6 0 8 2 

S M ( 4 , 1 ) 

31782 62 .2 36744432 

6 1 4 5 0 7 . 2 3 2 1 7 5 5 5 5 5 

- 7 6 0 5 4 . 1 3 0 7 7 7 3 9 5 9 1 

4 0 2 9 . 2 6 7 7 9 0 1 0 0 8 8 6 

1 5 4 . 7 6 8 6 1 1 1 9 6 5 0 7 5 

- 8 5 . 2 1 9 4 3 7 9 6 5 5 2 0 5 6 

- 9 0 . 6 3 4 4 4 1 1 6 1 1 0 3 4 1 

- 8 7 . 5 5 1 8 0 5 2 6 0 1 2 9 0 7 

- 8 7 2 3 8 1 3 7 2 8 8 6 5 5 8 9 

- 8 7 . 2 0 5 9 4 4 0 5 6 1 6 2 1 6 

- 8 7 . 2 0 3 9 2 2 9 4 7 2 1 1 9 0 

- 8 7 . 2 0 3 8 9 0 0 3 6 5 6 1 2 5 

- 8 7 . 2 0392 041662 6 8 3 

- 8 7 . 2 0 3 9 2 0 5 9 5 9 8 4 7 6 

- 8 7 . 2 0 3 9 2 0 4 3 0 7 7 5 2 6 

- 8 7 . 2 039202 0609712 

- 8 7 . 2 0392 0 4 5 7 9 9 1 2 3 

- 8 7 . 2 0 3 9 2 0 4 5 7 9 9 1 2 3 

37 

43 

47 

5 1 

54 

58 

61 

64 

67 

70 

73 

76 

79 

8 1 

83 

85 

88 

8 8 

TERMS 

- 54 

- 6 1 

- 67 

- 75 

- 80 

- 82 

- 85 

- 87 

- 89 

- 92 

- 94 

- 97 

- 99 

- 101 

- 104 

- 106 

- 108 

- 108 

puter time is evident. To check the accuracy, the same 
problem was solved by introducing the data referred to the 
new axes x2 (Fig. 2). The stiffness matrices in both cases are 
presented in Table 2. 

We used the series as an analytical solution of the differen­
tial equations. Then, the series were truncated checking that 
the errors (ratios of a, to £«,- equations (21) and (23)), jcij to 
Ljcij (equations (22) and (24)), j(J- l)a, to Lj(j- 1)«,. (equa­
tion (25c?)) and j(j- \){j-2)aj to Lj(j~ l)(/'-2)a, (equation 
(25c)) were less than a fixed value "EPS" (in this example, 
EPS=le-17). 

In Table 3 the values of the first column of the stiffness 
matrix and the number of terms needed to obtain convergency 
are presented as a function of the prefixed value EPS. No 
significant differences in the CPU time were observed. It can 
be seen that better accuracy is achieved in the first two rows in 
the stiffness matrix, clearly because these require only coeffi­
cients a3 and a2 (equations (25a,b)), rather than a series as 
given by equations (25c,d), for the last two rows. The problem 
is limited to the terms Si3, S34, and S44 because of the sym­
metry of the stiffness matrix. 

Taking into account symmetry, the 16 series which are need­
ed to calculate the member stiffness matrix (4 for each Ch C(, 
S3,, and SA! in equations (21) (22), (25a), and (25b)) can be 
reduced to 11 series, thus saving CPU time. The number of 
terms which are needed to obtain convergency (the minimum 
and maximum in the above mentioned 16 series), as a function 
of EPS are also given in Table 3. 

In general, then, just the upper part of the stiffness matrix 
should be calculated, and eventually, a check program should 
be incorporated for calculating the matrix by a change of axis, 

although for the example shown, with EPS= l.e— 17, there is 
no practical need for it. 

Conclusions 

The paper presents a stiffness formulation for the solution 
of beams on variable Winkler foundation. The accuracy of the 
solution is dependent only on our computer precision, i.e., 
better than 10 figures accuracy. The solution may be achieved 
by using only a small number of elements, thus reducing also 
the data preparation time. The procedure can be incorporated 
into a standard beam analysis program. Big savings in com­
puter time are achieved, with even better accuracy. 
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Post-Buckling Behavior of a 
Circular Rod Constrained Within a 
Circular Cylinder 
An axially loaded weightless circular rod buckles helically when constrained within a 
circular cylinder. The effects of pinned and fixed-end conditions are investigated. 
Both end conditions locate the rod end on the cylinder axis, and are found to perturb 
the helix in an exponentially decaying manner for a distance of less than one helix 
pitch length. Far from the end, the rod behaves as an undisturbed constant-pitch 
helix. The distance from the rod end to the point of initial contact with the cylinder 
wall is calculated. Closed-form analytical solutions are obtained for the deflected 
shapes and internal reactions of the end sections. The solution procedure applies to 
rods of either finite or infinite length. 

1.0 Introduction 

An analysis by Lubinski et al. (1962) established the helical 
post-buckled configuration of an axially loaded weightless cir­
cular rod constrained in a right circular cylinder. This analysis 
addressed the post-buckled, torque-free, static rod benavior 
away from the rod end and assumed frictionless constraint. 
The relationship between the pitch of the helix, p, and the ax­
ial compressive force, W, was found to be 

8ir2EI 
(1.1) P2=-

W 
where EI is the rod bending stiffness. Analyses by Paslay and 
Bogy (1964), Dawson and Paslay (1982), and Paslay and 
Dawson (1982) considered the buckling problem using elastic 
stability theory, and investigated the effect of rod weight on 
buckling initiation and behavior. 

With the exception of works by Lubinski (1950), Lubinski 
and Woods (1953), and Woods and Lubinski (1955), which 
considered planar buckling only, and an investigation by Mit­
chell (1982), previous buckling analyses have concentrated on 
rod behavior remote from ends effects. The purpose of this 
paper is to describe the effect of end conditions on the helical 
post-buckled configuration of an axially loaded circular rod 
constrained in a circular cylinder. 

This problem has been of interest to the oil industry for 
many years and applies to the buckling of drill pipe near the 
drill bit and buckling of tubing at a packer. The post-buckling 
equilibrium analyses which follow assume that the constant 
diameter circular rod is weightless and static, and that 
displacements are small. Contact between the rod and the 
smooth cylinder wall is frictionless. The effects of torque and 
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axial variation in the axial force are neglected. Results are 
presented for both a pinned-end case and a fixed-end case. 

2.0 Analysis of a Pinned-End Helically Buckled Rod 

The deflected centerline of a helically buckled rod with a 
pinned-end condition is shown schematically in Fig. 1. The 
pinned-end condition positions the rod end on the cylinder 
axis and allows axial translation and rotation about all three 
axes. The effective radius, r, of the circular cylinder on which 
the rod centerline lies is equal to the difference between the 
radii of the constraining cylinder and the rod. The centerline 
of the continuous circular rod is described by three sections: 
an end section, a transition section, and a contact section. The 
end section is that portion of the rod from the rod end to the 
point of initial wall contact at A. The transition section is an 
intermediate portion of the rod which is not on the cylinder 
wall and connects the end section at A to the contact section at 
B. The contact section is on the right circular cylinder wall 
everywhere along its length. 

It is found that the force system which acts on the end sec­
tion is incompatible with the internal reactions of a rod 
deformed into a simple helix. This suggests that the end sec­
tion connects to a perturbed helix with a variable helix angle. 
Analysis of a helically buckled rod with a variable helix angle, 
however, results in wall contact forces which act to pull, rather 
than push, on the rod near the initial contact point at A. This 
behavior further indicates that an intermediate transition sec­
tion, which does not contact the wall, is present as shown in 
Fig. 1. 

2.1 Analysis of the Contact Section. The governing dif­
ferential equations for a three-dimensionally buckled beam-
column subject to the assumptions specified above reduce to a 
set of standard beam-column equations applied in the x — z 
and y — z planes: 

EI**L 
dz4 

d2vi 
-q, = 0 (2.1) 
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where 6j describe the position of the rod centerline with j = 1 
for the x direction and j = 2 for the y direction. 

The distributed lateral forces q, and q2 which act on the rod 
are the x and y components of the wall contact force and are 

qx = — w cos 6 (2.2a) 

and 

q2 = — w sin 0 (2.2b) 

where w is the wall contact force per unit length acting radially 
inward on the rod, and 6 is the circumferential position of the 
rod centerline measured from the x axis as shown in Fig. 1. 

Incorporating equation (2.2), equation (2.1) can be rewrit­
ten in a nondimensional format as 

+ v"+ w cos = 0 (2.3a) 

u2"" + U;T+wsin0 = O, (23b) 

where Vj = 6j/r is the nondimensional position of the rod 
centerline in the x (j = l)and.y (j = 2) coordinate directions; 
w = w/a2 Wr is the nondimensional distributed wall contact 
force; f = az is the nondimensional position along the z axis; 
a = [W/EI\ln; and a prime designates differentiation with 
respect to the new independent variable f. 

The equation for a curve lying on the surface of a circular 
cylinder is written parametrically in the nondimensional for­
mat as 

(2.4a) V, = COS i 

sin 0 (2.4b) 

r = 8(9) (2.4c) 

Substitution of these relations into equations (2.3) results in 
two equations for 8(1;): 

0"" + [ l - 6 ( 0 ' ) 2 ] 0 " = O (2.5) 

and 

w+(8')4-(d')2-48'6'" - 3 ( 0 " ) 2 = O (2.6) 

Equation (2.5) is the governing differential equation for 
0(f) in the contact section. Once 0(f) is determined by solu­
tion of equation (2.5), equation (2.6) can be solved separately 
for the wall contact force w (f) . 

Note that it is not possible to linearize equation (2.5) by 
neglecting the 6(6')2 term relative to unity. The solution for a 
helically buckled rod away from the end gives values of 0.707 
< 0 ' < 1.0 (Lubinski et al., 1962, and Cheatham and Pattillo, 
1984), such that 3 <6(0')2 <6 , which is clearly not small 
relative to unity. 

The internal reactions of the rod in the contact section are 
expressed in terms of the rod deflections: 

and 

Vj=-(v/"+vJ), 

M, 

(2.7) 

(2.8) 

where Vj = Vj/aWr is the nondimensional internal shear 
force corresponding to the dimensional shear force Vj\ Mj = 
Mj/Wr is the nondimensional internal bending moment cor­
responding to the dimensional bending moment M}; and j = 1 
for the x-direction component, and j = 2 for the j-direction 
component. 

2.2 Analysis of the End and Transition Sections. Since 
there is no distributed force acting on the end and transition 
sections, w = 0 and the governing differential equations 
become 

(2.9) 

where Uy = u^/r is the nondimensional position of the rod 
centerline in the end (;' = 1) and transition (/' = 2) sections, 
and j = l and 2 for the x and y directions as before. 

•'+u;;=o 

T r a n s i t i o n 
t a c t i o n 

End 
s e c t i o n 

C o n t a c t 
s e c t i o n 

A - F i r s t c o n t a c t po in t 

B - S e c o n d c o n t a c t po in t 

Fig. 1 Pinned-end rod geometry and nomenclature 

The general solution of equation (2.9) is 

uu = au + bu t+cU c o s f + du s i n f (2-10) 
where au, by, ciJt and dy are unknown constants. 

2.3 Boundary Conditions. Boundary conditions at the rod 
end are those for a pinned connection in the x—z and y—z 
planes located on the cylinder axis: 

«u(0) = 0 (2.11) 

"i"(0) = 0 (2.12) 

The boundary conditions at the first contact point, f = (j>l 

= aLit require the rod to contact the cylinder wall tangent to 
the wall surface. Continuity of position, slope, curvature, and 
tangential shear between the end and transition sections is also 
required: 

«nW> 

«12(* 

"nW> 

«i'2W> 

"21 W l 

«22(*1 

"21 (01 

"22 Wl 

"l"l(01 

"l'2(01 

"n (0 

) = cos 0, 

) = sin 0[ 

)= -0!'sin 0! 

) = 0,'cos 0! 

) = cos 0, 

) = sin 0( 

)= — 0isin 0, 

) = 0(cos 0! 

) = "2l(0l) 

) = «22(0l) 

)sin 0, -U12 (0i)cos 6x 

= "2" (0i)sin 0]-W22 (0,)cos 0, 

(2.13a) 

(2.136) 

(2.14a) 

(2.146) 

(2.15a) 

(2.156) 

(2.16a) 

(2.166) 

(2.17a) 

(2.176) 

(2.18) 
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where 0, and B[ are constants; 0i = 0(0i), and 0,' = 0' (</>[). A 
discontinuous radial shear force is allowed since a concen­
trated radial contact force can occur. 

The boundary conditions at the second contact point, f = 
02 = <xL2, require that the rod contact the wall at a position of 
0(02) = 0 and that there be a continuity of position, slope, 
curvature, and tangential shear between the transition and 
contact sections: 

dn = 
sin 0, -0,0, 'cos 6, 

(2.26b) 

u2i(4>2) = l 

"22(02) = 0 

"2lW>2) = 0 

W22(</>2) = ^2 

« 2 1 « > 2 ) = - ( 0 2 ) 2 

«22(*2) = *2 

- ( " 2 2 +«22) = (02')3 -02-0: 

(2.19a) 

(2A9b) 

(2.20a) 

(2.20b) 

(2.21a) 

(2.21b) 

(2.22) 

where 02\ 62, 02™ are unknown constants; 02 = 0' (02), 02' = 
0" (02), and 6? = 0'" (02). The specification of 0(02) = 0 is 
arbitrary since the rod is assumed weightless. 

An additional boundary condition is necessary in the con­
tact section. The problem being solved is either that of a finite 
length rod loaded axially at both ends, or that of a semi-
infinite rod. For the semi-infinite case it is required that the 
pitch of the contact section be some constant value far from 
the rod end; i.e., 6" (oo) = 0. This requirement is also the 
midlength condition for the finite length rod. The final bound­
ary condition is, therefore, 

0" (0 , )=O (2.23) 

where £=4>s is the half-length of the finite length rod, or is in­
finity for the semi-infinite rod case. 

2.4 Solution Method. The solution procedure is comprised 
of two major parts: 1) solution of the set of simultaneous 
nonlinear algebraic equations resulting from application of 
the boundary conditions for the end and transition sections at 
f = 0, f = 0] , and f = 02; and 2) solution of the nonlinear 
fourth-order differential equation of the contact section such 
that 0" (0j) = 0. The first part is accomplished by assuming a 
value for 0, and using the first 22 boundary conditions, equa­
tions (2.11)-(2.22) to solve for the remaining 22 unknowns. 
This calculation generates values for 02, 02', and 02'" for a given 
value of 0!. These are then used in the second part of the solu­
tion as initial values, along with 0(02) = 0, for the numerical 
integration of the nonlinear equation (2.5). Integration is con­
tinued along f to f = 0j , and the results are checked to deter­
mine if 0"(0S) = 0. 0, is adjusted until 0 " ( 0 J = 0 is 
satisfied. The overall approach is, therefore, a shooting 
method for the solution of the nonlinear boundary value pro­
blem on 0 in the contact section. The adjustment of 0, is per­
formed using an interval halving procedure. 

Treating <j>{ as known, applications of equations (2.11) 
and (2.12) shows that 

fory = 1, 2. 
Equations (2.13) and (2.14) give 

- cos 0,cos 0i-0, ' s in 0,sin 0, 
11 Sin 0j — 0jCOS 0j 

- s in 0[Cos 0!+0!'cos 0]Sin 0! 

(2.24) 

(2.25a) 

dn 

sin 0, -0jCos 0! 

cos 0, +0!0isin 0, 

sin 0, - 0 , c o s 0, 

sin 0i - 0 i cos 0i 

Equations (2.16) through (2.23) require that 

a2i +b2]4>i +c2]Cos 0i + d21sin 0! - c o s 0i =0 (2.21a) 
ai2 + b224>i +c22cos 0, +rf22sin 0 , - s i n 6l=0 (2.21b) 

b2i -c2 !sin 0j +e?2iCos 0i +0i'sin 0] = 0 (2.27c) 

b22 - c22sin 0i + d22cos <j>{ - 0,'cos 6, = 0 (2.21 d) 

sin 0i 
(cos 0j -0,0,'sin 0,)— 

(sin 0, -0,0,'cos 0i)— 

sm 0, - 0 , c o s 0i 

c2,cos 0, -c?2isin 0i = 0 

sin 0i 

sin 0i -0 j cos 0i 

-c2 2cos 0, -d22sin 0, =0 

sin 0i 

sin 0i -0(COS 0i 

+ &2isin0i — b22cos d1=0 

a2, + b2l 02 + c2i cos 02 + d2l sin 02 — 1 = 0 

«22 + b22<l)2 + c22cos 02 + d22sin 02 = 0 

6 2 i -c 2 , s in 02 + tf2,cos 02 = O 

b22 - c22sin 02 + rf22cos 02 - 02' = 0 

c2, cos 02 + d21 sin 02 - (02')
2 = 0 

02'+ c22cos 02 + e?22sin 02 = 0 

622+(02)3 -02-02" = O 

(2.27e) 

(2.27/) 

(2.27*) 

(2.27h) 

(2.27/) 

(2.27y) 

(2.21k) 

(2.211) 

(2.21m) 

(2.27n) 

Solution for the unknowns of equation (2.27) requires 
simultaneous solution of the set of 14 nonlinear algebraic 
equations. This is accomplished numerically using the 
Modified Quasilinearization Algorithm (MQA) (Miele and 
Iyer, 1971). 

Integration of equation (2.5), once the values of 02\ 02", and 
02'" are determined from the solution of equations (2.27), is 
performed numerically using a fixed-step fourth-order Runge-
Kutta integration procedure. 

3.0 Analysis of a Fixed-End Helically Buckled Rod 

The fixed-end analysis is identical to that for the pinned-end 
case except that the boundary conditions at the rod end are 
modified to require the rod end to be tangent to the cylinder 
axis. 

Boundary conditions at the rod end are those for a built-in 
end in the x—z and y — z planes located on the cylinder axis: 

H„(0) = 0 (3.1) 

«{/(0) = 0 (3.2) 

All other boundary conditions, equations (2.13)-(2.23), re­
main the same as for the pinned-end case. 

The problem solution procedure of Section 2.4 is also used 
for the fixed-end case. 

Equations (3.1), (3.2), (2.13), and (2.14) require that 

cos 0,(1 - cos 0i) + 0,'sin 0((0i - s i n 0,) 

(2.256) bn •• 

2 — 2 cos 0, —0isin 0[ 

-0i'sin 0j(1 —cos 0 i ) - s i n 0icos 0i 

2 - 2 cos 0i - 0 i s i n 0i 

(2.26a) 
dn 

(3.3a) 

(3.36) 

(3.3c) 

(3.3c?) 
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j(l - c o s 4>])-0]'cos 61(^>1 - s in • 
9 -— 9 r n c rh. — rh. c i n r/>. 

> i ) sin 0;( 
ff12= 

2 — 2 cos (f>l — (^sm 0! 
fl/cos 9^1-cos < î) — siiid^in 0j 

D\2 = 

2 - 2 cos cj)l - 0 , s i n ij)i 

C12 = ^a\2 

dn= ~bl2. 
Equations (2.15)-(2.21a) require 
a2\ +b2i(t>i + c21cos 0j + c?21sm (j>1 - cos 0] =0 
fl22 + ^22^1 + c 2 2 c o s $1 + <^22sin 01 — SHI 0] = 0 

62i -c21sin 0, + d2lcos 0j + 0,'sin dt = 0 

622 - c22sin </>, + c?22cos 0, - 0,'cos 5, = 0 

c21cos 0j + cf21sin 4>\ 

rcos 0,(1 - c o s 01) + 01'sin 0j(sin 0, -0[Cos 

L 2 —2cos 0, —0!sin 0j 

(3 .4A) 

(3.46) 

(3.4c) 

(3.4c?) 

(3 .5A) 

(3.56) 

(3.5c) 

(3.5c?) 

)S 01) + 01'sin 0j(sin 0 , - 0 1 c o s 0 , ) ] 

2 — 2cos 0, — ^[Sin <j>{ J 

(3.5c) 

c22cos 0, + rf22sin 0, 

rsin 4>i(l - c o s (/>!)-0(cos 0](sin 0j - t ^ c o s 
L 2-2cos 0 t — 0,sin 0, 

= 0 

(3.5/) 

— (c2)sin 6, -c2 2cos 0,)sin 0j +(c?2]Sin 6S -d22cos 0])cos 

(1 — cos </>! — 0!sin 0,) 
- = 0 (3.5g) 

(3.5/!) 

(3.5/) 

(3.5y) 

(3.5*) 

(3.5/) 

(2-2cos </>! - 0 , s i n 0,) 

a2l + b21 <j>2+c2j cos 02 + d2i sin 02 - 1 = 0 
a22 + b22(j>2 + c22cos 02 + c?22sin 02 = 0 

b21-c2i sin <j>2 + d21 cos 02 = 0 

622 - c22sin 02 + c?22cos 02 - 02' = 0 

c21cos 02 + c?21sin 0 2 - 0 2 ' 2 = O . 

Equations (2.216) and (2.22) are used to solve directly for 
02' and d'{: 

02 '=-c2 2cos 02-c '2 2sin 02 (3.6a) 

e;=b22 + (9tf-ei (3.66) 

Solution for the 12 unknowns of equation (3.5) and integra­
tion of equation (2.5) were accomplished with the same tech­
niques as described in Section 2.4. 

4.0 Results 

Figures 2 through 5 present the key results of both the 
pinned-end and fixed-end analyses. The geometry of the 
buckled rod is shown in Fig. 2. For the pinned-end case, initial 
wall contact occurs at f = 0 , = 2.46867, and a second contact 
point occurs at f = 0 2 = 4.38105. The pinned-end rod is in 
contact with the cylinder wall everywhere along its length for 
f>4.38105. For the fixed-end case, the initial wall contact oc­
curs at f = 0 ! = 3.81729, and a second contact point occurs at 
f = 0 2 = 5.24273. The fixed-end rod is in contact with the-
cylinder wall everywhere for f> 5.24273. The deflected shape 
of the end section for the pinned-end rod is planar. 

In Fig. 2a, the radial position of the rod in the transition 
section for both the pinned and fixed cases appears to be on 
the wall. The numerical results (Sorenson, 1984) show that the 
transition sections are actually off the wall by a very small 
amount. The maximum clearance for the pinned-end case is 
approximately 0.002 r and for the fixed-end case is 0.0005 r. 

Figures 2 and 3 show that away from the rod end, the rod is 
buckled into a constant pitch helical configuration with 0' = 
1/V2 = 0.70711. This is the result obtained by Lubinski et al. 
(1962) for a helically buckled rod away from any end effects. 
It is interesting to note that while the present analysis does 
force the contact section solution to a constant value of 0' by 
requiring that 0" (0S) =0 , it does not force the solution to any 
particular value of 8'. The fact that the solution converges to 
the value predicted by Lubinski provides corroboration of 
these results. 

The contact section of the rod can be described by two 
subsections: a perturbed helix section and a helical section. 
The perturbed helix section is defined as that portion of the 
rod from the second contact point at f = 0 2 to the point f=4>h> 
defined such that 6' (0,,) = 0.999/V2 where the choice of the 
factor 0.999 is arbitrary. The helical section is defined as the 
portion of the rod at f >0/,. Using these definitions, the total 
nonhelical length of rod from the rod end to the beginning of 
the helical section can be expressed as a fraction of the helix 
pitch,/?, by (0AAy?)pinned = 0.760; (4>h/oip)nxe6 = 0.877. 

As shown in Fig. 4, the pinned-end maximum bending mo­
ment occurs in the end section at f (Mmaxpinned) = T / 2 = 
1.57080 and is M, •••-•. 

max,pinned = 0.59727, which is 19.5 percent 
greater than the bending moment in the helical portion of the 
rod. The maximum bending moment in the fixed-end rod also 
occurs in the end section, at f (MmaXifixed) = 2.99229, and is 
Mnax.fixed = 0.50491, which is only 1 percent greater than in 
the helical portion. The bending moment at the fixed rod end 
equals that of the helical portion. 

The maximum shear force occurs in the helical portion of 
the rod and is Fmax = 0.35355 for both the pinned-end and 
fixed-end cases. 

The wall contact force is shown in Fig. 5. The pinned-end 
contact force is vt> (02)pinned = 0.14672 at the beginning of the 
contact section. The fixed-end force starts at ve(02)fixed = . 
0.12050. For both cases, the contact force increases along the 
length until it reaches a maximum value of wmax = 0.25 in the 
helical portion. 

The pinned-end radial force acting at the rod end is 
F(0) pinned = 0.32670, where F = F/aWr is the nondimen-
sional force corresponding to the dimensional force F. Con­
centrated radial contact forces associated with the radial shear 
discontinuities at the first and second contact points are 
^(•Mpinned = 0.61028, and F(02)pi„„ed = 0.04726. The fixed-
end rod has an end force and moment of F(0)(ixed = 0.19187, 
and M(0)fixi.d = 0.50000, and concentrated radial contact 
forces of F(0,) f ixed = 0.38202, and F(02) f ixed = 0.02557. 

The analysis of Sections 2 and 3 was formulated to produce 
closed-form solutions for the deflected shapes of the end and 
transition sections for both the pinned-end and fixed-end 
cases. The rod geometry is described by 

Ujj = ay + bm + cucos f + dysin f 

The internal rod reactions are 

(2.10) 

and 

Va=-(uf + us) = -b(i 

Mu = uu= -c,yCos f-rfysin f. 

Parameter values for the pinned-end problem are: 

0 a , ,= 0 

Cll 
dn 

«21 

b2l 

C21 

= 0.22147 
= 0 
= -0.26884 
= 0.57127 
= -0.00994 
= -0.14423 

c?21 = -0.44980 

ai2 

b12= -0.24017 

dn= -0.53335 
a2 2= -1.39407 
622 = 0.32454 
c22= 0.35197 
d22= -0.09174 
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Fig. 3 Local helix angle results: rate of change of angular deflection, 
$' =y/ar versus distance from rod end, i" = az, where tan 7 = 2irr/p 
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Fig. 2 Rod displacement results in R-0 Coordinates: (a) Rod 
centerline dimensionless deflection from hole centerline, R = R/r, ver­
sus dimensionless distance from rod end, _f = «z; (b) Rod centerline 
angular deflection from x axis, 0 (radians) versus distance from rod end, 

Parameter values for the fixed-end problem are: 

a , ,= -0.12662 
bu= 0.19104 
cn= 0.12662 
du = -0.19104 
a21 = 0.78238 
b2l = -0.04708 
c2, = 0.27556 
d2i = -0.37685 

a1 2= -0.48370 
612= 0.01782 
cn= 0.48370 
rf12 = -0.01782 
a22= -1.62402 
b22= 0.31654 
c22 = 0.29687 
tf22 = 0.21527 

Summary 
The effect of pinned and fixed-end conditions on the post-

buckling behavior of a circular rod constrained within a cir­
cular cylinder has been investigated subject to certain idealiza­
tions. The rod is found to buckle into a helical configuration 
far from the end, with the helix pitch given by Lubinski et al. 
(1962). Both end conditions are found to perturb the helix 
near the rod end in an exponentially decaying manner for a 
distance of less than one helix pitch length. The pinned-end 
condition is more severe than the fixed-end condition. The 
maximum bending moment increases by 19.5 percent due to 
end effects for the pinned-end condition, and increases by less 
than 1 percent for the fixed-end condition. 
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Fig. 4 Bending moment results: dimensionless bending moment, 
M = fil/Wr versus dimensionless distance from rod end, f = «z 
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Fig. 5 Wall contact force results: dimensionless contact force, 
w = w/a2 Wr versus dimensionless distance from rod end, i=az 
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Comparison of the pinned and fixed-end results shows that 
the general behavior is very similar for the two cases. Both can 
be described by an end section, a transition section, and a con­
tact section. Both have the same helix pitch far from the rod 
end. The rod first contacts the wall farther from the rod end 
for the fixed-end case, and the transition section is shorter. 
The distance from the rod end to the beginning of the helical 
section is longer for the fixed-end case than for the pinned-end 
case. The magnitudes of the concentrated contact forces for 
the fixed-end case are approximately 60 percent of those for 
the pinned-end case. The maximum bending moment occurs in 
the end section for both cases. The maximum shear force and 
maximum wall contact force occur in the helical section and 
are the same for both cases. Closed-form analytical solutions 
are obtained for the deflected shape of the end portions of the 
rod. 
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An Experimental Study of the 
Rapid Flow of Dry Cohesionless 
Metal Powders 
This paper studies the rapid shearing flow of dry metal powders. To perform this 
study, we built and used an annular shear cell test apparatus. In this apparatus the 
dry metal powders are rapidly sheared by rotating one of the shear surfaces while the 
other shear surface remains fixed. The shear stress and normal stress on the sta­
tionary surface were measured as a function of three parameters: the shear-cell gap 
thickness, the shear-rate and the fractional solids content. Stresses are measured 
while holding both the fractional-solids content and the gap thickness at prescribed 
values. The results show the dependence of the normal stress and the shear stress on 
the shear-rate. Likewise, a significant stress dependence on both the fractional solids 
content and the shear-cell gap thickness was observed. Our experimental results are 
compared with the results of other reported experimental studies. 

I Introduction 

Traditionally, a granular material is defined as an assembly 
of discrete solid components. When these solid constituents 
are in static equilibrium, substantial contact with their near 
neighbors occurs. We examine the flow of such a granular 
material. In these flows the individual particle motions 
dominate the dynamics of motion. The material's behavior is 
governed by interparticle cohesion, friction, and particle colli­
sions. In general, the motion and flow of the individual beads 
are very complex. 

Granular materials form one member of the class of 
materials known as dispersed two-phase systems. These 
systems consist of solid and fluid components. An example of 
one such system is dilute suspension. Granular flows are en­
countered in industrial situations in the following two ex­
amples: mineral and powder processing in both chemical and 
pharmaceutical industries, and the storage, handling and 
transport of particulate materials. Granular material flow also 
occurs in the environment. Two additional related examples 
are rock slides and debris flows. Likewise, some analogous 
flows are snow avalances, mud slides, and subaqueous sedi­
ment flow. These latter examples have close affinities with the 
motion of granular materials. An understanding of the 
mechanics of granular material flow is essential for the 
understanding and solution of a wide range of technological 
and scientific problems. 

The motivation for this study arose from the process of 
xerography. In this process a dry powder image is formed 
upon a xerographic plate by optical and electrostatic 
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mechanisms. Toner, a dry, thermoplastic powder, is used and 
the powder image is then transferred to a sheet of ordinary 
paper. This process relies upon the use of both a magnetic 
field and the use of flow of metal powders to transport the 
thermoplastic powder. The results reported here are for the 
rapid flow of carbon steel beads without a magnetic field. The 
results we obtain for the flow of other metal powders and car­
bon steel beads with a magnetic field are to be reported in 
another publication. 

The understanding of granular flow situations has evolved 
over time. Early experimental investigation of granular 
material by Reynolds (1885) shows that a closely-packed 
assemblage of solid particles tends to expand when deformed. 
Later, Hvorslev (1936, 1939) developed the first annular shear 
cell to consider the behavior of soils. Subsequent to his study, 
other studies were performed at low strain-rates. Bulk solids 
are then experimentally considered by: Novosad (1964); Carr 
and Walker (1968); Scarlett and Todd (1968, 1969); Scarlett et 
al. (1969, 1970); Mandl et al. (1977); and Stephens and 
Bridgwater (1978). However, very low rates-of-deformation 
are used in the above mentioned studies. Consequently, the 
measured stresses are found to be independent of the shear-
rate. However, experiments to test dry, coarse, granular 
materials at high shear-rates are then developed by Novosad 
(1964), Bridgwater (1972), Savage and Sayed (1984), and by 
Hanes and Inman (1985). All of the latter experiments use 
the annular, shear-cell test apparatus. Novosad (1964) is the 
first to study departure from quasistatic deformation. He does 
not observe that the measured stresses depend on shear-rate. 
In another study, Bridgwater (1972) develops an annular shear 
cell to operate at shear-rates that are larger than the ones 
reported by Novosad. Savage and Sayed also developed a 
shear-cell test apparatus to operate at high shear-rate; they 
configured their test apparatus to allow a prescribed, frac­
tional solids content. Similar tests are reported by Hanes and 
Inman. In a theoretical study, a computer simulation of two-
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dimensional granular flow is presented by Campbell and Bren-
nen (1985). Their two-dimensional results can be extended to 
three-dimensional shear-flow experiments by using ap­
propriate scale factors. Surveys of granular flows are made by 
Spencer (1981), by Mroz (1980), and by Savage (1985). 

One of the central issues related to the prediction of 
granular material flow is characterization of its material 
properties. One view, the one adopted in this paper, is a con­
tinuum approach. Another angle of vision could consider the 
dynamics of the individual particles. The continuum 
mechanics point-of-view to describe the granular flow involves 
determining an appropriate constitutive equation. Therefore, 
we focus on the issue of stress as a function of shear-rate. The 
purpose of this experiment is to study the stresses associated 
with the shearing motion of metal powders. The results ob­
tained can guide the theoretical development of constitutive 
equations for metal powders. Stress measurements are obtain­
ed that are analogous to the type obtained in rheological tests 
of both viscous fluids and solid suspensions. 

It is essential to control as many of the independent 
parameters as possible. One of these independent parameters, 
the fractional solids content, is maintained at a prescribed 
constant value for a range of experimental conditions. The 
average stresses are then measured as functions of shear-rate. 
The importance of holding the fractional solids content fixed 
is first pointed out by Savage (1978). Fractional solids content 
changes because volumetric expansion occurs during the 
shearing of dry granular materials. Therefore, it is necessary 
that special care be taken in the design of the shear cell test ap­
paratus. The experimental apparatus used here is designed 
such that the fractional solids content can be controlled. The 
first flow data obtained under conditions of fixed fractional 
solids content for high density metal powders are given. 

II Description of Experimental Apparatus 

The apparatus, as shown in Fig. 1, has two concentric 
horizontal aluminum disks that are mounted on a rotating ver­
tical stainless steel shaft. The bottom disk has an annular 
channel 19.05 mm wide. This channel is 19.05 mm deep at a 
mean radius of 68.26 mm. The granular material to be tested is 
contained in this annular channel. The top disk has an annular 
protrusion that fits into the channel of the bottom disk. The 
top disk must be free to rotate in order to measure the torque 
caused by the shearing action of the granular material. It must 
also be free to translate in the vertical direction, so as to allow 
for expansion or contraction of the granular material under 
shear. The translation of the upper shear surface is ac­
complished by using a linear, ball-bearing mounting. The re­
quired tolerances are met and the apparatus performs excep­
tionally well. The annular protrusion of the top disk does not 
contact the side walls of the bottom disk channel. The 
clearance between these two surfaces is approximately 50 
microns. A small clearance is needed to prevent the jamming 
of the granular material being sheared. The top disk is kept 
from rotating by a torque arm that is connected to a force 
transducer. The rotation rate of the bottom disk is determined 
by using an optical tachometer. The displacement of the top 
disk relative to the bottom disk is measured by using a dial in­
dicator. Thus, the fractional solids content can be determined. 
The side walls of the annular channel are hard-coated both for 
abrasion resistance and reduced friction. The top and bottom 
horizontal surfaces of the annular channel are the shear 
transmission surfaces. The top surface is stationary, and the 
bottom one is rotated about the vertical axis. Thus, a nearly 
simple shearing type flow of metal beads is expected to occur 
in the annular channel. The beads are driven into motion by 
contact with the moving surface. 

Both the moving and stationary surfaces are coated with the 
carbon steel beads being tested. Spherical particles of the 

BEARING ASSEMBLY 

FLEXIBLE COUPLING 

5:1 GEAR REDUCTION UNIT 

MOTOR 

SPEED CONTROLLER 

^ _ 

' : MAIN SHAFT 

Fig. 1 Sketch of the shear flow test apparatus 

material tested are bonded onto two, thin-aluminum annular 
rings. A high temperature epoxy is used to attach a dense 
monolayer of beads to the annular aluminum rings. These 
aluminum rings are then secured to the top and bottom of the 
annular channel by very thin, high-shear-strength, double-
sided adhesive tape. The rings can be replaced as different 
materials are tested. During the testing no particles were 
observed to be dislodged from the shear transmission surfaces. 
Nor did the rings slip during the tests. Particle jamming in the 
gap between the side walls of the annular channel and the up­
per shear transmission surface was avoided. A recess is cut in­
to the top disk so that approximately a half particle diameter 
layer can protrude from the top disk. Forces are applied to the 
top disk by using a system of weights and counterweights. This 
system is used to change the applied normal stresses. 

Il l Metal Powders Tested and Testing Procedure 

Several different types of materials and bead sizes are being 
tested. This study reports the results for carbon-steel 1018 
spherical beads. The carbon-steel, bead diameter range tested 
is 0.85 mm to 0.71 mm, and the bead density is 7.86 gm/cm3. 

The experimental apparatus is designed to study the normal 
and shear stresses as a function of shear-rate. Prescribed 
values of both the fractional solids content and shear-cell gap 
thickness are used. The fractional solids content is measured 
using the method described below. The top disk is fixed into 
position and the vertical displacement reading, without 
powder in the annular channel, is used as a reference. Then, 
the carbon-steel particles are placed into the annular channel 
of the bottom disk. The top disk is then placed back into its 
position. A prescribed normal load is applied to the metal 
powder. The bottom disk is then placed into rotation. This 
bottom-disk rotation causes the granular material to expand 
so as to lift the top disk. The rotation rate is increased until a 
desired fractional solids content is achieved. The fractional 
solids content is determined from the total mass of the beads 
in the annular channel, the density of the beads, and the 
volume of the annular shear region. The latter is calculated 
after determining the relative positions of the top and bottom 
disks from the vertical displacement reading. We measure the 
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Fig. 2(b) Dimensional plot of average shear stress versus average 
shear-rate for carbon-steel beads; (fi/d)avg = 7.38 

normal stress, the shear stress, and rotation rate, corre­
sponding to this particular value of the fractional solids con­
tent. The maximum normal stress applied is 5535 N/m2 (0.802 
psi). Higher normal stresses can be obtained, but this would 
cause greater wear on the test apparatus. The minimum nor­
mal stress applied is 1725 N/m2 (0.250 psi). Rotation rates 
possible for the apparatus are 0-375 RPM. The depth of the 
powder in the annular channel is controlled so as to study the 
effect of different shear-cell gap thicknesses. 

IV Measurement of Average Stresses, Shear-Rates and 
Fractional Solids Content 

The average shear-rate is determined by dividing the veloci­
ty of the lower disk, at the mean radius of the annular chan­
nel, by the height of the shear cell gap h (i.e., the distance be­
tween the top and bottom disks): 

h \ 60 / V 2h ) (1) 

In the above expression, TV is the rotation rate of the bottom 
disk (RPM), and Ri and R0 are the inner and outer radii of the 
annular channel. This shear-rate calculation assumes a no-slip 
velocity boundary condition on both the top and bottom shear 
surfaces of the test apparatus. Because of gravitational and 
rotational effects in the shear-cell, the fractional solids content 
may be nonuniformly distributed in both the radial and axial 
directions. For example, the value of the fractional solids con­
tent can be larger at the lower-outside radius. Likewise, it can 
be smallest at the upper-inside radius of the annular channel. 

The average normal stress applied to the top of the granular 
material is o = W/T(R2

0 — R2). The applied weight is W. The 
torque, T, is a result of the shear stresses developed on the up­
per disk. The torque is calculated from the measured force; 
this force is multiplied by the radius of the torque arm. The 
torque is related to the local value of the shear stress T at the 
upper surface by: 

T= rT(2irr)dr (2) 
J Rj 

If we assume T is uniform and independent of /', then: 
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2 ir(Ri-Rj) 

The increase in the shear surface speed at an increasing radius 
will cause the shear stresses on the upper transmission surface 
to increase with the radius. Therefore, the effective shear force 
on the upper transmission surface is located at a radius larger 
than the mean radius of the annular channel. This is because 
of the nonuniform, shear stress distribution. The largest possi­
ble variation will occur for an extreme case, when the shear 
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fable 1 (A, B) Values of the power-law exponents M and P are given for a range of the 
fractional solids content and the shear-cell gap thickness-to-bead diameter ratio: Table 1A 
shows the values for the exponent M, Table IB shows the values for the exponent P 

(•f: 

V 

(-7-: 

V 

/ A V G . 

0.559-0.561 

0.549-0.551 

0.539-0.541 

0.530-0.532 

0.521-0.523 

/ AVG. 

0.559-0.561 

0.549-0.551 

0.539-0.541 

0.530-0.532 

0.521-0.523 

3.70 

1.93 

1.90 

1.85 

1.83 

1.85 

3.70 

1.78 

1.75 

1.71 

1.69 

1.71 

Table 1A 

5.54 

2.02 

1.99 

1.96 

1.94 

1.98 

Table IB 

5.54 

1.92 

1.90 

1.86 

1.86 

1.89 

7.38 

2.04 

2.02 

2.01 

2.03 

2.00 

1 

7.38 

1.95 

1.94 

1.92 

1.93 

1.89 

9.23 

2.13 

2.08 

2.01 

2.01 

1.94 

9.23 

2.13 

2.10 

2.03 

2.01 

1.98 

11.07 

2.24 

2.13 

2.06 

2.02 

2.04 

11.07 

2.23 

2.12 

2.07 

2.05 

2.07 

12.90 

2.40 

2.20 

2.11 

2.11 

2.06 

12.90 

2.49 

2.29 

2.24 

2.21 

2.14 

stress is concentrated at the outer radius. The ratio of the ex­
treme to the average shear stress is calculated. The average 
stress for the extreme case is roughly 12.2 percent lower than 
the average stress obtained by neglecting this rotational effect. 
Rotational effects for the test apparatus are thus small. They 
tend to reduce the average shear stress (i.e., when the shear 
stress is assumed uniform) by only a few percent. Therefore, 
no rotational effect corrections are applied to the data 
reported in this paper. 

V Experimental Results and Discussion 

Experiments are conducted to measure both the normal and 
shear stresses averaged over one of the drive surfaces. These 
stresses are functions of: the shear-rate, the fractional solids 
content, and the shear-cell gap thickness. The stresses and 
shear-rate results are presented in their dimensional form; 
stresses are given in Newtons/meter2, and shear-rate is given 
in sec" ' . The shear-cell gap thickness is normalized by the 
average bead diameter. The fractional solids content is dimen-
sionless by definition. 

Six experiments for different shear-cell gap thicknesses were 
done. This was accomplished by using amounts of granular 
material from lOOg to 350g. The average values of the gap 
thicknesses are 3.70, 5.54, 7.38, 9.23, 11.07, and 12.90 bead 
diameters. The fractional solids content varies from 0.561 to 
0.521. At values of v>0.561 (i.e., low shear-rates) changing 
the normal load at a fixed rotation rate had only a small effect 
on the shear-cell gap thickness. Values of v&0.521 were not 
tested because of the test apparatus limitations. 

First, data is presented in dimensional form for the rapid 
shearing of 200 grams of carbon steel beads. A shear-cell gap 
thickness range of 7.12</z/c?<7.64 was used. Figures (2a, b, 
c) show the normal stress, shear stress and stress ratio as a 
function of the average shear-rate. The results are 
parameterized by the fractional solids content. We make the 
following observations regarding Figs. 2(a), 2(b), 2(c). 

The fractional solids content tends to decrease with increas­
ing shear-surface speed for a fixed value of the normal stress. 
This occurs because more momentum is imparted to the upper 
surface by the bead collisions. Consequently, the upper sur­

face tends to move upward. This displacement of the upper 
surface decreases the fractional solids content. 

For the range of v tested and at fixed value of the shear-rate 
there is a strong increase in stresses with only small increases in 
fractional solids content. As the fractional solids content in­
creases, multiple collisions and sliding friction between par­
ticles play an increasingly significant role in stress generation. 

At a constant fractional solids content, the stresses vary as 
the shear-rate raised to a power. This power law behavior be­
tween stress and average shear-rate is paraphrased in Table 1. 
In this table, M is the power for the shear stress T, 

and P is the power for the normal stress a, 
p 

••(-fy 
: normal t 

(4a) 

(4b) 

Shear-rate powers for both the normal and shear stress are 
near a value of two. A simple physical argument for this 
square shear-rate dependence is given (Bagnold, 1954). The 
stresses in a rapid granular shear flow are developed as a result 
of glancing particle collisions when particles in one layer over­
take those of an adjacent slower layer. Both the change in 
momentum during a single collision and the rate at which col­
lisions occur are proportional to the relative velocity of the 
two layers. Thus, it is not surprising that the stresses are pro­
portional to the square of the shear-rate. Savage and Sayed 
(1984) point out that departures from this square shear-rate 
dependence may result from the effects of enduring contacts 
beween particles, interparticle surface friction, interparticle 
locking, formation of rigid zones, gravitational effects and 
finite particle size effects. 

The stress ratio, K, is shown to be weakly dependent upon 
shear-rate for a constant value of the fractional solids content. 
This weak shear-rate dependence does vary with the depth of 
the granular material tested. The stress ratio increases with in­
creasing shear rate when the gap thickness to bead diameter 
ratio is equal to 3.70, 5.54, and 7.38. When the gap thickness 
to bead diameter is 9.13 and 11.03 the stress ratio is shown to 
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Fig. 3(a) Nondimensional normal stress as a function of unsealed frac­
tional solids content 

Fig. 3(b) Nondimensional shear stress as a function of unsealed frac­
tional solids content 

be independent of the shear rate. Finally, when 
(/J/COAVG. = 12.90 the stress ratio was found to decrease with 
increasing shear rate. A physical explanation for this relation­
ship between stress ratio and shear-rate is not evident. 

For a prescribed amount of test material and prescribed 
shear-rate, the stress ratio increases slightly with decreasing 
values of the fractional solids content. This behavior is op­
posite to that usually observed in quasi-static granular 
material testing at high stresses. Savage and Sayed (1984) and 
Campbell and Brennen (1985b) give a physical explanation for 
the increase in K as v decreases in continuous fully-developed 
shear flow experiments. 

The dependence of the stresses upon fractional solids con­
tent and shear-cell gap thickness is shown in Figs. 3(a), 3(6). 
The stresses have been nondimensionalized using the scaling 
pp(f (V/h)2 where pp is the mass density of the individual par­
ticles. Each data point represents the average of 5 to 8 ex­
perimental tests. The stresses are shown to be strongly depen­
dent on v. This dependence increases with shear-cell gap 
thickness. At a constant value of v, the stresses are also shown 
to increase with increasing shear-cell gap thickness. This 
observation is contrary to both intuition and the observations 
of Savage and Sayed (1984). We offer the following explana­
tions. At the conclusion of each test the bottom disk was 
gradually stopped and the gap thickness recorded. For a con­
stant amount of test material, this gap thickness never varied 
more than ±0.0005 in. for the entire range of fractional solids 
content. Table 2 shows the values of the corresponding frac­
tional solids content, vc. The precise value of vc should only 
depend on the bead characteristics. The differences are due to 
the effect of a finite-sized apparatus. The larger the shear-cell 
gap thickness, the greater the effect of the side walls on the 
flow field and the larger the reduction in the value of vc. We 

.620-

.600 

.580 

-br .560 

.540 

.520 

.500 

.520 .540 .560 

V 
Fig. 3(c) Ratio of shear stress to normal stress as a function of un­
sealed fractional solids content 
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Table 2 Values of the post-test fractional solids content, vc, 
are given for the six different ranges of h/d tested 

Mass Tested 
(Grams) 

100 

150 

200 

250 

300 

350 

Test Range 
of h/d 

3.57-3.83 

5.34-5.73 

7.12-7.64 

8.91-9.23 

10.68-11.07 

12.44-12.90 

Post-Test 
Value of h/d 

3.06 

4.80 

6.51 

8.26 

9.95 

11.65 

"c 

0.652 

0.623 

0.612 

0.603 

0.601 

0.599 

v =v (5) 
"c 

In this scaling the vc is the measured post-test fractional solids 
content for a prescribed amount of test material and v^ is the 
value vc would have without side-wall effects. We assume c„ 
to be approximately 0.66. A similar scaling procedure based 
on the maximum attainable value of v was used by Hanes and 
Inman (1985). The data shown in Figs. 3(a), 3(b) is now replot-
ted as shown in Figs. 4(a), 4(b). The abscissa is now the scaled 
fractional solids content. The stresses are now shown to in­
crease with increasing fractional solids content as expected. 

Figure 3(c) shows the stress-ratio as a function of the un­
sealed fractional solids content with the shear-cell gap 
thickness as the parameter. For a prescribed amount of test 
material, the stress ratio increases slightly as the fractional 

.620 

.600 

.580 

7" 
propose that results obtained from testing different amounts 
of the same material in the same apparatus cannot be directly -i=- .560 
compared. To compare this data the fractional solids content 
is scaled as follows: 

.540 

.520 
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i 
CAEB0N STEEL 1018 SPHERICAL PARTICLES 

7.86 g/oi 0.85 nun > DIAMETER > 0. 71 
O 3 . 5 7 < h / a m < 3.83 
A 5.34 < W\ < 5.73 
D 7.12 < h/dj^ < 7.64 
O S.lUh/^i. 9.23 
O 10.68 < h/<im £ 11.07 
V 12.44 < h/^ < 12.90 

.540 .580 .620 

V 
Fig. 4(c) Ratio of shear stress to normal stress as a function of scaled 
fractional solids content 
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solids content decreases. However when the stress ratio is plot­
ted as a function of the scaled fractional solids content, as 
done in Fig. 4(c), the stress ratio is still seen to increase with in­
creasing shear-cell gap thickness at a prescribed value of v'. 
As the shear-cell gap thickness is increased, the influence of 
the side walls on the material behavior is increased. The effect 
of the apparatus side walls on the measured fractional solids 
content has been approximately accounted for by scaling the 
measured fractional solids content. The side walls also affect 
the measured normal and shear stresses. Data has not been 
rescaled to include this latter effect. The side walls are hard-
coated for increased hardness and lubricity; the particles in 
contact with the side walls have a larger velocity than particles 
which are near the walls. This is especially true at the outer 
wall where centrifugal forces on the particles cause increased 
particle-wall friction. The effect of the side wall velocity is to 
increase the measured normal and shear stresses on the top 
surface. This effect on the shear stress is larger than on the 
normal stress. This accounts for the increasing stress ratio 
with increasing shear-cell gap thickness at a prescribed value 
of the scaled fractional solids content. 

Direct visual observation of the granular material during 
testing was not possible. Therefore, it is quite possible that as 
the shear-cell gap thickness increased (i.e., as more material 
was being tested), an internal boundary, separating a shearing 
region from a rigid region, is developed. This was directly 
observed by Hanes and Inman (1985). They deduce this 
phenomenon to be the result of both a momentum conserva­
tion in a gravity field and a Coulomb-type yield criterion. 
Hanes and Inman (1985) found that the stress ratios for the 
fully shearing experiments were significantly higher than those 
resulting from the partially shearing flows. A significant 
decrease in stress ratio with increasing shear-cell gap thickness 
was not observed in the present tests; on the contrary, the 
stress ratio continued to increase. This lends support to the 
assumption that all experiments reported here involved fully 
shearing conditions. However, there still remains some 
question regarding the side-wall effects and the remarkable 
dependence of stress ratio on shear-rate as the shear-cell gap 
thickness varies. 

Figures 5(a), 5(b) show comparisons of the nondimensional 
stresses and stress ratio. Results presented here are compared 
to those of Savage and Sayed and of Hanes and Inman. Both 
of the stresses and the stress ratio are shown as a function of 
unsealed fractional solids content. Savage and Sayed (1984) 
tested 1.80 mm diameter glass spheres. They used a shear cell 
with an annular channel 21 beads wide at a mean radius of 
12.7 cm. The shear-cell gap thickness for these tests was be­
tween 5.90 to 6.45 beads. They used sandpaper for the shear 
transmission surfaces. Hanes and Inman (1985) tested 1.85 
mm diameter glass spheres in a shear cell with an annular 
channel 24 beads wide at mean radius of 12.4 cm. The shear-
cell gap thickness for these tests was approximately 7 beads. 
The shear transmission surfaces were of the same material be­
ing tested, prepared in a manner similar to that of the present 
tests. The annular channel in the present tests is 25 beads wide 
at a mean radius of 6.83 cm. The data plotted in Figs. 5(a), 
5(b) from the present tests is for a shear-cell gap thickness 
range 7.12 to 7.64 beads. In all these tests it is certain that 
shearing is occurring over the full depth of the test material. 
The stress levels in the experiments of Hanes and Inman (1985) 
are greater than the stress levels in the experiments of Savage 
and Sayed (1984), at equivalent concentrations. Hanes and In­
man believe the differences are the result of the following: (a) 
The materials used for the shear transmission surfaces may act 
as sources or sinks of energy. The rigid bead boundaries of 
Hanes and Inman may have been more of an energy source 
than the sandpaper boundaries of Savage and Sayed. (b) The 
frictional nature (i.e., smooth or rough) of the test particles. 
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Fig. 5(a) Comparison of nondimensional stresses measured by Savage 
and Sayed (1984) and Hanes and Inman (1985) with present results. Frac­
tional solids content is unsealed. 
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Fig. 5(b) Comparison of the ratio of shear stress to normal stress 
measured by Savage and Sayed (1984) and Hanes and Inman (1985) with 
present results. Fractional solids content is unsealed. 

Recent microstructural theories for rapid granular flow show 
that the shearing of rough particles generates lower stresses 
than a similar shearing of smooth particles. The test particles 
used by Savage and Sayed are believed to have been roughened 
by the sandpaper shear-transmission surfaces. 

In addition to the effects of the finite-sized test apparatus, 
the differences between the boundary material properties and 
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the test material properties will contribute to differences in 
stress measurements between this paper and other published 
data. 

VI Conclusion 

The results presented in this paper show that the stress 
generated in a rapid shear flow of purely granular carbon-steel 
beads has a nearly quadratic dependence on the shear-rate. 
The stresses depend upon the fractional solids content. They 
increase with increasing values of the fractional solids content, 
when the shear rate is prescribed. 

The general trends observed here are consistent with the 
results reported by both Savage and Sayed (1984) and Hanes 
and Inman (1985). Although the general trends are similar the 
results of these three experiments have some differences. In 
these three experimental studies a large number of factors af­
fect the generation of stresses: shear-rate; fractional solids 
content; bead size and shape; bead material properties and the 
surface coefficient of friction, the bead density, and the bead 
coefficient of restitution; size of test apparatus; elastic and 
surface frictional properties of the boundaries of the flow; 
amount of material being tested and thickness of the shearing 
layer; oxidation of metal powders; and effects of temperature 
on the beads and test apparatus. It is often difficult to ex­
perimentally isolate each of the above effects. We are current­
ly exploring the effect of different particle sizes and materials 
in order to better understand material property effects. 
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A Similarity Solution for Flow in a 
Narrow Channel of Varying Gap 
A similarity solution may be obtained for the case of a narrow channel where the 
gap h varies, according to (a + bx)m. The lo wer surface may slide in either direction 
and there may be suction or injection at either surface which must vary as h ~'. 
Asymptotic solutions are found for large and small values of a modified Reynolds 
number which is based on the sliding velocity or the suction/injection rate. Boun­
dary layer behavior may be exhibited at high Reynolds number. The present solu­
tion, being "exact" for all Reynolds numbers once the thin film assumptions have 
been invoked, may be of value to hydrodynamic lubrication workers to test approx­
imations for the fluid inertia effect. 

Introduction 

The tribology literature contains many papers which ap­
proximately account for fluid inertia forces which are omitted 
in Reynolds' hydrodynamic lubrication theory. Such papers 
often use small Reynolds number perturbations, e.g., 
Reinhardt and Lund (1975) and Tichy and Winer (1970), or 
various cross-film averaging techniques (Szeri et al., 1983; 
Constantinescu and Galetuse, 1974), but questions often arise 
as to their accuracy and range of validity. 

Recently, an exact similarity solution for squeeze film flow 
between disks of long plates if the dimensionless film thickness 
varies by h = (a + bt)W2 was published (Wang, 1976). The 
authors have found Wang's paper valuable as a test case of in­
ertia approximations for the simple squeeze film bearing 
(Tichy and Bourgin, 1986; Bourgin and Tichy, 1985). Further, 
we have noted the lack of a comparable test for the 
presumably simpler case of the steady slider bearing. 

Fortunately such a similarity solution does exist for steady 
thin film flows where the film thickness variation is h = 
(a + bx)m where a, b and m are constants. The analogy to 
Wang's solution is obviously strong but there is at least one 
important difference. Wang's solution is exact in the sense 
that all terms of the Navier-Stokes equation are retained. In 
the present case, the thin film lubrication assumptions must be 
used. The present solution is "exact" for the limiting case of a 
narrow channel far downstream of the inlet. 

The present problem, which may involve suction or injec­
tion at the surfaces, is similar to the well-known problem for 
suction or injection in a straight channel, studied by Berman 
(1953), Terrill and Shrestha (1965), Terrill (1965), Yuan 
(1956), and others. 
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Fig. 1 Channel geometry 
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Analysis 

Consider the steady, two-dimensional, laminar incompressi­
ble flow of a Newtonian fluid in a long, narrow channel of 
slowly varying height as shown in Fig. 1. All symbols represent 
dimensionless variables. The coordinates x andy as shown are 
scaled to a reference film thickness, and the velocities u and v 
are scaled to a reference sliding speed, thus we have x > > \,y 
~ \, u ~ I, v << \. The lower surface may slide along its 
length at varying speed and there may be spatially varying suc­
tion or injection at either surface. The channel arbitrarily 
begins at x = 0 but we are concerned with the region x > > 1 
and h > 0. 

Under these conditions the Navier Stokes equations can be 
written in terms of the stream function as 

(1) Re(y/_1,i/'w - i/x4/m) = i*yyyr 

The no-slip boundary conditions are 

^ = 0 u=U0(x) u=V0(x) 

y = h(x): u = Q v=Vx(x) 

The Reynolds number Re is the reference sliding velocity times 
film thickness divided by kinematic viscosity. Introducing the 
transformation 

(2) 

v=-
y 

£ = X ^ = /!c($)/( l?) (3) 
h(x) 

the differential equation (1) becomes 

f» + Retfh' [(2-c)/ ' /" + off" ] = 0 (4) 

where the prime (') superscript represents differentiation with 
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respect to the appropriate independent variable. An ordinary 
differential equation is obtained when we set 

hch'=a. (5) 

which gives 
i 

h = [hc
0
+l+a(c+l)x]c+i (6) 

using h = h0 when x = 0. The resulting differential equation 
is 

f + aRelf'f* (2 - c) + cff" ] = 0 (7) 

where a is a measure of the slope h' and the parameter aRe is 
analogous to the modified or reduced Reynolds number com­
monly used in lubrication analysis (Szeri, 1980). In this case 
the velocities become 

u = hc-if'(v), v=-h'hc''(cf-nf'). (8) 

We can find a similarity solution if we choose appropriate 
functions for U0, V0, and K,, namely, 

U0W=h?-lU0, V0(.x) = -ch'/f-lV0, 

Vi(x) = -ch'hc-1Vl. 

Thus, the boundary conditions on / c a n be obtained: 

7(0) =V0 / (1)=K, 

/ ' ( 0 ) = & o / ' (1 ) = 0. 

Equation (6) can be integrated once to yield 

/ ' " + «Re[(l - c)f 2 + cff"] = B 

where B is an integration constant. 
The dimensionless flow rate is given by 

Q=\j udy = ^(.x,h)-^(x,0) = hc[V1-Vo] 

while the dimensionless pressure gradient is 

dp d2u ( 3u du 

dx ~~df 

(9) 

(10) 

(11) 

(12) 

-Re(w • + v-
) dx dy 

= h^ If" + «Re[(l -c)f'2 + cff" ]) 

which can be integrated to obtain 

1-x 
p^Btn x> > 1 

(13) 

(14) 
Ay-

using p = 0 at the film exit x = Xf. 
The present configuration is not really a bearing in the con­

ventional sense where fluid is drawn into the gap from am­
bient conditions. Assuming fluid exits the channel at ambient 
conditions, it must be injected into the channel at a prescribed 
pressure. 

The flow described above is analogous to Falkner-Skan 
flow (White, 1974), for flow past a wedge for the case h(x = 
0) = h0 = 0, c.f. equation (6). The solid wedge surface is 
represented by JJ = 1 where U = V = 0, while r\ = 0 
represents a horizontal surface in the flow where U = bxm. 

In the calculations and discussion which follow, let us con­
fine ourselves to the case when h0 = 1, i.e., 

A = ( l+2ax) 1 / 2 (15) 

and 

U0 = U0 V0 = -h'V0 Vx=-h'K (16) 

The analogy to Wang's problem is now stronger and the flow 
is more realistic since these are the fluid boundary velocities 
which would be achieved by a sliding horizontal solid surface 
and a stationary curved porous surface with a constant (nor­
mal) suction or ejection velocity. 

Let us confine our further attention to four cases which il­
lustrate many interesting features of this flow. For a widening 
gap (a>0) with no suction or injection at the lower surface 
(V0 = 0) they are: 

aRe= 
aRe= 
aRe= 
aRe= 

i 

50 — 
25 
10 — 
0 —» 

1 

0.2-

r l .O 

^0.8 

-0.6 

-0.4 

i " • 

V, 
uo 

= 0 
=+i 

a > o 

= — _ j 

1.0 -0.5 0.5 1.0 

Velocity f' 
Fig. 2 Velocity profiles, Case (a); no suction or injection, sliding 
toward a widening gap 

1.0-, 

0.8-

0.6-
V 

1 — " ^ " ^ 1 

-0.2 

+— aRe=50 
J>p-aRe=25 
^2_aRe= 10 
I—aRe=0 

i i 

V,=0 

D0=-i 
a > 0 

-1.0 -0.5 0.5 

Velocity f' 
i.o 

Fig. 3 Velocity profiles, Case (b); no suction or injection, sliding 
toward a widening gap 

I.O-i 
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0.6-

0.4-
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i i i . 

V 

\ ^ a R e 

—~r̂  

=0 V, * 1 

u0=o 
,aRe=IO a " " ° 

v*aRe=25 

"*^--aRe=50 
i ' 

-3.0 -2.0 -1.0 1.0 2.0 3.0 

Velocity f' 

Fig. 4 Velocity profiles, Case (c); net suction, no sliding 

-3.0 -2.0 -1.0 1.0 2.0 3.0 

Velocity f' 
Fig. 5 Velocity profiles, Case (d); net suction, no sliding 

(a),(b) Positive/negative sliding with no suction or injec­
tion: 

/ ( 0 ) = / d ) = / ' ( i ) = o / ' (0)=£/ O = ± i , 

(c),(d) Suction/injection on the upper surface with no 
sliding: 

/ ( 0 ) = / ' ( 0 ) = / ' ( l ) = 0 / ( 1 ) = F , = ± 1 . 

Small aRe Solution 

We assume a regular perturbation solution of the form 

f=f0 + aRef 

B = B„ + aReB, 
(17) 

and substitute into equations (10) and (11) in the conventional 
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Completed Results 

Eqs. (17)-(20), aRe < < 1 

Large aRe Solution 

Outer Solution. The large aRe limit of equation (7) is 
singular because the highest derivative is lost as aRe — oo. The 
first term outer solution, denoted f0 (TJ), must satisfy (for c = 
1) 

/X+/X'=o> 
which can be integrated once to yield 

fJo=D{. 

The first integral of equation (22) is 

f'0=±[2DM0+D2}^ 

and the formula for/0 is 
[So df 

(21) 

(22) 

(23) 

- = ± 7 ) . (24) 
J/o(0) ( 2 Z W + D2Y 

We drop the boundary condition / ' (0) = U0 and retain the 
boundary conditions/'(l) = 0,/(0) = 0, /( l) = Vx. Using the 
latter two boundary conditions we obtain 

•?> df 
Jo (2DM+D2Y 

± 1 . (25) 

Pressure constant versus modified Reynolds number 

To illustrate some interesting properties of this flow, let us 
confine ourselves to the cases (a) and (b), where Vx = 0. 
Clearly the denominator of the integrand is zero hence Dx = 
D2 = 0. From equation (23) , / ' = 0, and therefore/ = const. 
But since/(0) = / ( l ) = 0, therefore 

/ o = / o = 0 , (26) 

which is clearly an in viscid flow. 
To match this outer solution, aboundary layer must form 

on the lower surface where /„ = U0 = ± 1. 

manner. The results are obtained by gathering coefficients 
(cxR)0, (aR)> . . . . : 

f0 = Car,i + Cbr,2 + Ccr,+ V0 

Ca={U0-2V{i Cb=(-2U0 + 3Vi) CC = U0 (18) 

fi=KW+K67)
6+ . . . .Krf 

K7 = 
Cl cacb K, 

C2b + ^ ^ = ^ 1 ( 1 9 ) 
35 ° 15 ' ~ J 30 10 " H 12 

K3=- 5K7 - 4K6 - 3K5 - 2K4 K2 = 4K7 + 3K6 + 2K5 +K4 

B„ = 6C„ B, =6K-, (20) 

Computed Results 

A NAG, "Numerical Algorithms Group" (1982), FOR­
TRAN Library routine for solving two-point boundary value 
systems of ordinary differential equations (D02RAF) was 
used to obtain the present solution. The D02RAF subroutine 
uses a finite difference technique with Newton iteration, in­
cluding a "continuation" feature where a simple problem 
solution is provided (aRe = 0) and a sequence of problems is 
solved leading up to the desired case (aRe = 10, 25, 50). Con­
vergence was obtained in all cases with mesh sizes between A?y 
= 0.02 and A?j = 0.002. The algorithm selects an optimum 
mesh size at least as fine as the user's initial estimate and 
distributes errors over the mesh until they are everywhere less 
than the user's selected tolerance (in this case 0.1%). 

Figures 2-5 depict the velocity profiles/ '(r/) of the four 
cases for different Reynolds numbers. 

Figure 6 portrays the variations of the constant B with 
Reynolds number for the various cases. Recall that B 
( =/ '" (0)) is proportional to the pressure and pressure gra­
dient, equations (13) and (14). The small Reynolds number 
asymptotic behavior is also shown. For cases (b) and (c), the 
pressure gradient is favorable to the flow direction. 

Inner Solution. We search for a solution in the form 

y i /~e 1 / 2F,(f)+e.F 2 + f=- 1/2 e = - - < < 1 , (27) 

(29) 

e ' " aRe 
valid near y = 0 where the F 's and f are a (1). Substituting in 
equation (11), the leading term in powers of e is 

2F'" +FiFl"=B, (28) 

which is the same as the Blasius boundary layer equation. 
The matching condition is that the first term inner expan­

sion of/0 must equal the first term outer expansion of F , , i.e., 

f0(y-Q)=F{(^^), 

from which one obtains 

f = 0 F=Q,F' = U0=±\ 

f=oo F'=0 

and 5 = 0, i.e., pressure gradient is zero. 
It is well known that a solution to equations (28)-(29) results 

only if U0 = + 1, hence case (b) does not appear to have a 
large aRe asymptotic solution. 

Discussion 

Each of the four sets of boundary conditions used seems to 
generate a separate special case, The flow may be in either or 
both directions, boundary layers may or may not be present, 
and the pressure gradient may be positive or negative. Results 
have been shown for the widening channel only (a > 0). For a 
< 0, the solutions are identical other than the fact that case (a) 
behaves like case (b) (and vice versa) wi th /and its derivatives 
multiplied by minus one. Similarly, case (c) behaves like case 
{d) for a < 0. 

The present results have some qualitative similarities to 
those found in squeeze film flow by Wang (1976) and in other 
references cited. In these cases the flow is symmetric about the 
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midplane. During the fast squeezing case of Wang or injection 

due to Berman (1953), boundary layers form in both walls and 

the core becomes inviscid. In Wang's study, for the case of 

reverse squeezing, complicated flow reversals occur at large 

Reynolds number and boundary layers do not develop. In the 

analysis of suction due to Terrill (1965), a singular shear layer 

occurs at the channel midplane. Thus there exists a boundary 

layer of sorts, but not at a wall. 

As stated above, the authors believe this result will be useful 

to test approximations used in lubrication to account for fluid 

inertia. In fact from Fig. 6 we can assess the range of validity 

of the small Reynolds number perturbation. The approxima­

tion may be very good for modified Reynolds numbers (aRe) 

up to one hundred, or very poor at aRe = 10, depending on 

the specific case. There is no apparent a priori reason why one 

approximation is good and the other bad. Strictly speaking, 

the approximation need only be valid for I aRe I < < 1 in all 

cases. 
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On the Two-Dimensional Theory of 
Incompressible Flow Over Inlets 
The linearized solution for the two-dimensional flow over an inlet of general form 
has been derived, assuming incompressible potential flow. With this theory suction 
forces at sharp inlet lips can be estimated and ideal inlets can be designed. 

1 Introduction 

The interest of studying the suction forces at the sharp lips 
of an air inlet has been pointed out by Huang (1982). This 
kind of inlet is used on supersonic aircraft to reduce the wave 
drag at supersonic speeds. However, sharp lips produce flow 
separation at subsonic speeds and that is the reason why 
rounded noses are preferred in this regime to obtain maximum 
thrust over the cowl (Donovan and Lawrence, 1957). In the 
case of an idealized intake of infinite length of general cross 
section, the thrust Fis given by (Kuchemann and Weber, 1953) 

CF = -
qAj 

= (\-af (1) 

where q is the dynamic pressure of the free stream, A{ the inlet 
duct area, a = Uj/U„ the inlet duct to the free stream velocity 
ratio, and CF the force coefficient. At a rounded nose this 
force can be efficiently distributed, e.g., optimum intake con­
tours are designed to obtain an uniform pressure distribution 
over the suction part of the intake (Ruden, 1941). 

In the case of sharp lips, the suction localized just at the lip 
should substantially contribute the total thrust, but, unfor­
tunately, that force is almost lost due to the flow separation. 

It is of interest to estimate the suction force and also to 
design the so called "ideal" inlets in which there exits smooth 
flow without separation at the sharp lip, so that the localized 
force is redistributed avoiding the abovementioned thrust loss. 

A simple method to estimate the suction force of a two-
dimensional inlet of general shape has recently appeared 
(Huang, 1982). This author utilizes a conformal mapping 
which preserves the complex velocity in the transformation. 
His solution can be considered as the superposition of those of 
the following two problems: an almost-straight inlet with a = 1 
and a straight inlet with a ̂  1. However, the first solution is 
only valid for a = 0(1) because it is obtained by a linearization 
process with respect to the free stream velocity £/„, so that no 
real influence of a in the first problem is considered. 

The contribution here presented solves the problem of the 
inlet flow by linearizing with respect to the solution of the 
straight inlet with a ̂  1, thus the influence of a in the almost-
straight inlet problem is retained, avoiding restrictions in the 
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Fig. 1 Typical two-dimensional inlet 

value of a. It should be pointed out that the zone which has 
more influence in the calculation of the suction force is the 
neighborhood of the inlet lip, and it is also where boundary 
conditions are more affected by the flow with respect to which 
linearizations are made. Furthermore, a different approach 
conserving the complex potential function is employed. In this 
way singularities are clearly identified although the relation 
between boundary conditions in both planes requires some 
manipulation. 

In the Huang's approach (derived from Lissaman, 1968) 
boundary conditions are conserved because they are stated in 
terms of velocity although appropriate singularities should be 
added. Anyway, it can be demonstrated that the solutions of 
the problems derived from both approaches coincide. 

One interesting point in this kind of problem is that before 
linearization is made the boundary condition only gives a rela­
tionship between velocity components. Over the inlet contour 
in the transformed half plane, which is a horizontal straight 
line, the horizontal component of the velocity can be written 
as a function of both the vertical component and the velocity 
generated by a discrete singularity. The combination of both 
expressions gives raise to an integral equation whose 
simplification is based on the small slopes of the inlet. 

The method followed here, which is applicable to two-
dimensional, almost-straight inlets consists mainly of three 
steps: first, finding a suitable conformal mapping which 
transforms the "skeleton" of the intake in the real axis; se­
cond, identifying and taking into account the singularities of 
the transformation which occur at the inlet lip and at the in­
finity inside the inlet; and third, calculating the velocity at the 
mapped plane. Thus, design criteria for ideal inlets are ob­
tained and validation of the expressions derived is performed 
by checking against the exact solution of a simple problem ob-
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tained by a Schwarz-Christoffel transformation. Finally a 
comparison is made with Huang's results showing a 20 percent 
differences although both results match for a - 1, as expected. 

2 Problem Definition 

Let us consider a two-dimensional inlet with a ramp as 
shown in Fig. 1, in which BL, CK, and FK are straight lines 
parallel to the x axis. Assume that the flow is incompressible, 
inviscid, and irrotational. Thus, the solution can be expressed 
as an analytical function of a complex variable. Also, the 
deformations of the inlet with respect to straight horizontal 
lines are supposed to be so small that the boundary conditions 
can be transferred to the cut LBACK and x axis, as shown in 
Fig. 2(a), where speeds are made dimensionless with [/„ and 
lengths with a characteristic length, L = H/w (His the capture 
height). Boundary conditions are 

v 

u dx 

= 0 

-F(x) on BAC and EF, 

on CKF and ELB. (2) 

W= u — iv is the complex velocity in the z plane andyc(x) is the 
equation of the nonstraight surfaces of the inlet. Let M be the 
contour BAC and EF. 

3 Conformal Mapping 

To solve the problem we use the conformal mapping 
(Lissaman, 1968; Huang, 1982) 

Z—iir = T— 1 — Irir (3) 

which transforms the interior of the region shown in Fig. 2(a) 
in the interior of the transformed boundary (Fig. 2(b)). In par­
ticular, the boundary of the inlet is defined by 
. * : = £ - l - / n l £ I . £ < 0 corresponds to the x axis, £ > 0 to the 
cowl (£ > 1, J < 1 the upper and lower surfaces, respectively), 
as shown in Figs. 2(a) and 3. Conserving the complex potential 
function, we should consider the derivative of equation (3) 

-10 

K' 

F/ 

/ E 

K-

>C 

A 

/ * B 

10 0 10 

Fig. 3 Mapping of the x coordinate of the inlet contour into the jj axis in 
the T plane. £<0, x axis; 0 < f <1 and f >1 lower and upper surfaces of 
the cowl, respectively. Points corresponds to the example in Fig. 4. 

dz 

~dT 
• • ! • (4) 

in order to analyze the characteristics of the transformation. 
The complex velocity in the T plane, W = u' - iv', is related 
to W(z) by the expression 

W(Z) = W'(T)/(\-1/T). (5) 

At the infinity in the r-plane (T— OO) which corresponds to 
the infinity outside of the inlet in z plane, the transformation 
is an identity. Thus, the free stream velocities are identically in 
both planes. The critical points of the mapping are K'(T = 0) 
and A'(T=1), close to which the transformation should be 
carefully studied. In the neighborhood of K (splitted into K+ 

mdK~) 

r ~ 0 , z— —lnr~ + oo, (6) 

which shows that in this region the mapping is similar to the 
classical one transforming a strip on a half plane. The finite 
segment K~ K+ (inlet duct) is transformed in the semicircle 
K~ K+', of vanishing radius, centered at the origin K' of the 
r-plane. In this region the complex velocities are related by 

W'=*-W/T=-U/T, (7) 

where it has been taken into account that in the inlet duct 
(T—-0) the velocity W~a. Equation (7) shows that near K' the 
flow field is like that induced by a sink of strength 2ira, which 
accounts for the flux through both K~ K+ and their image in 
the symmetric half plane. 

Concerning the other critical point, let T= 1 +e, le 1—0 in 
the neighborhood of A'. Then the transformation can be ap­
proximated by 

z — iir = £ —/n(l + e) = 
1 

(8) 

which shows that the arguments of straight lines passing 
through A' are multiplied by 2. The derivative of the transfor­
mation is dz/dr — e and velocities are related through the ex­
pression 

W'(\) W'(\) 
W=^- (9) 

2"\z-h)xn' 
If W(1)^0, oo, equation (9) represents, as expected, the flat-
plate leading edge singularity. In conserving the complex 
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velocity, Huang and Lissaman introduce a singularity in point 
A' to model the velocity at the leading edge. If the complex 
potential function is conserved the velocity singularities ap­
pear in a straightforward way. However, in this case the cor­
respondence of boundary conditions requires some 
elaboration. 

4 Boundary Conditions 

The velocities in both planes are related by the expression 
(5), that can be written as 

U-W=A(T)(U' -iv'), (10) 

where A(r) = dr/dz is in general complex. Fortunately, in this 
problem both r = £ and A(£) are real-valued over the contour 
so that the velocity components are decoupled 

uc=A{%)K (11) 
vc = A(g)v'c, 

where subscript c indicates values over the contour. If A(%) 
were complex, uc and vc in both planes would appear 
coupled. In r plane conditions (2) become 

- A - = -F [*(£)]=/(£) on C'A'B' and E'F', 

v' = 0 on C'K'F' and 
E'L'B'. (12) 

The segments C'K'F' and E'L 'B' are streamlines and a rela­
tion between t>c' and u'c is specified over the segments E'F' and 
C'A'B'. 

By adding the image of the flow formed in the other half-
plane we obtain a problem for the whole T plane which is sym­
metrical with respect to the £ axis. Boundaries E'F' and 
C'A 'B' can be regarded as a distributed array of sources with 
the appropriate intensity to fulfil the boundary conditions in 
these segments. Based on the symmetry of the flow, the 
strength of each source is twice the value of yc' at that point, as 
it occurs for instance in the symmetric thin airfoil theory 
(Ashley and Landahl, 1965), and the condition over C'K'F' 
and E'L'B' is automatically fulfilled. Therefore, the velocity 
in the whole T-plane is generated by superposition of the nor­
malized free stream velocity, a sink at K'(r = 0) of strength 
lira and the source distribution of intensity 2v'c over E'F' and 
C'A 'B'. That is 

>F'(r)=l--SU-LL-2%U0, d3) 
T -K JM' T—l-0 

where M' represents both the segments C'A'B' and E'F'. 
The Cauchy value of the integral should be taken in the seg­
ment where £0 = T. Over the boundary the imaginary part of 
equation (13) is an identity and the real part expresses u'c as a 
function of v'c. At this stage uc' is not known because boundary 
conditions (12) only states a relation between u'c and v'c. 
Calculating u'c by using equation (13), and substituting in the 
first of conditions (12) we obtain 

(14) 

This equation relates /(£) and t>c'(£) over M. Once t>c'(£) is 
calculated, the solution for the complex velocity in the whole 
r-plane is given by equation (13). 

As in the thin wing section theory, three kinds of problems 
can be considered. First, the direct problem where the inlet 
shape/(£) is known and we look for the pressure distribution. 
This problem is easily solved by using Bernoulli's equation, 
once v'c{£) is obtained from the integral equation (14). The se­
cond is the inverse problem in which the pressure distribution 
cp{x) is fixed and the shape/(£) is sought. In this case 

)»c'2[l+^rl- (15) cp[x^)] = l - A ^ ) i 
f2m 

With equations (14) and (15) the shape of the inlet /(£) can be 
calculated. The third is the mixed problem in which a com­
bination of both previous conditions applies over different 
parts of the boundary. In what follows we will deal with the 
direct problem by introducing additional simplifications. 

5 Direct Problem 

The integral equation (14), which resembles that appearing 
in the Lanchester - Prandtl finite airfoil theory, has to be solv­
ed to determine yc'(£) once/(£) is given. However, if /(£) is a 
C function as it happens in supersonic inlets (not in subsonic 
ones) and/(£) < < 1, we can use the expansion 

v'M) = 5^(£) + 0(S2), 

M) = to (i6) 
where 6 is a small parameter of the order of the maximum 
slope of the inlet shape. Introducing equation (16) into (14) 
and retaining first order terms we obtain 

fc'(S)=/«)[l- (17) 

This is the approximate solution of integral equation (14). In 
the following we drop the bars. 

6 Forces Over the Inlet 

The total thrust over the inlet is given by equation (1). The 
suction force coefficient Cs is calculated in the same way as 
the leading edge suction in the thin wing theory (Milne-
Thompson, 1952) 

C,=-
irpUlLB2 H 

W'(\)\ (18) 
qA, 2qAt A-t 

where B is obtained from the approximate expression of W 
nearyl in the form W=2"~U2B/(z — iir)U2. From equation (9), 
B=W'{\). Equation (18) shows that Cs depends on the veloci­
ty generated at A' by the singularities. 

In the case of a straight inlet W = 1 — a/ r , so that 

Q = ( l - a ) 2 (19) 

since H=Aj and W'(Y)=\-<x. Expression (19) compared 
with equation (1) shows that all the thrust over the inlet is con­
centrated in the lip suction. The stagnation point position over 
t h e c o w l is g i v e n by T = a , t h a t i s , zsp-iir 
= a - 1 - / « a = l / 2 ( a — l)2 in the case a = 0(1). 

To calculate the suction in a general case, we bring the value 
of v',. given by equation (17) to equation (13) reaching 

IT JM l - £ 0 L £„J 

- 0 ( 1 + 7 , - / 2 ) , (20) 

where 

W 

•K JM 

/(U dt„, h-
•w JM' 

Mo) d£B. (21) 
l-f0 " " ' 7T JM' t0 

The main contribution to the suction force is 1 + / , if a is small 
and I2 if a = 0(1). Ix and I2 are, respectively, the velocities 
generated at the points A' and K' by the distribution of the 
physical slopes /(£). With this idea, it is easy to estimate the 
variation of the suction force due to the change of the slope in 
a given part of the inlet surface. For instance, increasing the 
slope of the ramp {E'F') or of the cowl (C'B1) has opposite 
influence in I2, because these segments are symmetrically 
placed with respect to K'. 

The integral I2 can be transformed in a more convenient ex­
pression. To this aim lets write down the differential relation­
ship (4) over the x axis and his transformed £ axis 
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dx 

~df 
= 1 (22) 

h-—15-

in the form d!-0/£0 = d%0— dx0. By substitution of equation 
(22) in I2 we obtain 

/ 2 = — ( F(x)dx - [ ,M0Wo. (23) 

and thence 

1 I f 
h = {yc(xF) - yc(xE) + yc(xB) - yc(xc)] , M 0)d£ 0. 

IT W JM 

(24) 

If the lip has not width yc(xB) =yc(xc). 
As in the thin wing section theory, an ideal configuration 

with smooth flow without separation at the sharp lip is ob­
tained if W (1) = 0, or a = a,-

1 + / , 

1 + 7 , - / 2 
•i+h (25) 

giving a thrust 

C„ =(1-«,)*=• Q 
a+h-hf 

(26) 

Thus, for a fixed geometry we can determine the ideal velocity 
ratio and the associated thrust. The approximations in equa­
tions (25) and (26) are made considering that both I{ and 72 are 
small as a consequence of the assumptions made in Section 5. 
The main contribution to CF. is produced by I2. 

7 Example 

In trying to check the approximate linearized method 
presented here, lets consider the problem of a straight inlet 
with a ramp of constant slope tan </> placed between points E 
andF . 

The Schwarz-Christoffel mapping which transforms this in­
let in a half plane T ' (similar to r plane) is given by 

dr> r' U'-fJ ' ( ' 
As in the previous section, a sink of strength 2ir/3 should 

exits in the origin K' of r' plane, where %P is the flow crossing 
the inlet duct (line K"K + ). Equation (27) defines a normal­
ized transformation since at the infinity (T ' — oo) dz/dr' = 1. 
In the T ' plane the velocity is generated by the free stream and 
the sink, so that 

W'(.T')=1-P/T'. 

Dividing by equation (27) we obtain the complex velocity in 
the z plane 

T'-l V T'-k'F ) 
(28) 

In the section K~K+ ( T ' ^ 0 ) the velocity should be a, thus 
from equation (28) in this limit 

(29) 

By substituting /3 from equation (29) into equation (28) the 
complex velocity is fully determined. The suction force is pro­
portional to the coefficient of the sharp lip singularity in A 
(r ' — 1) which, with the notation introduced in Section 6, is 

£ = lim ( , ' - 1 W ) = [l - * ( - § - ) * " ] [ - j ^ f f ] * " .(30) 

As 4> is small the angle can be substituted by the tangent so 
that <j> has either meaning. Furthermore, the 0 / T powered 
terms can be expanded to obtain 

6T 

15 

5° 

12° 

4Z b 
a 

1—15^ 
30 — 

Fig. 4 Examples of inlets studied in Huang (1982): (a) ramp surface of 
slope 5 deg; (b) ramps surface divided in two parts with slope 5 and 12 
deg, respectively. 

"{'-['^m^>-m- i + / , 

- « ( ! + / , -72) + 0 m (31) 

which clearly match with the value given in equation (20) after 
calculation of It and I2 in equation (21) for/(£) = <£. A point 
should be made concerning i-'E and £'P. They are not the same 
as those obtained from transformation (3). However, for 
small 4> the difference between them should be 0(</>/TT) and the 
contribution of these corrections to equation (31) should be 
0[(«/ir)2]. 

8 Discussion and Conclusions 

For a = 1, which is the common range of validity, equation 
(20) gives W(l) = I2, which expressed as in equation (24) coin­
cides with the result of Huang. It can be shown that by perfor­
ming a similar approximation process like that explained in 
Sections 4 and 5, using the complex velocity conservation 
method, the same solution as in equation (20) would be 
obtained. 

In what follows we consider the examples studied by Huang 
(1982) and sketched in Fig. 4. The ramp surfaces of the inlet 
has constant slope, simplifying the integrations in equation 
(21). However, it raises a problem because /(£) is not a C 
function. It experiences jumps at the ramp ends that generate 
singularities at F and B of the type appearing in equation (28). 
Nevertheless, following the approach explained in Section 5 
these singularities would be neglected in deriving equation (17) 
as long as £ is far enough from the singularities (in this case, 
£ = 1). Anyway, the effect of each jump is retained, and it ap­
pears in the form of a logarithmic singularity when perform­
ing integration of 7, and 72. For the suction in the cases ex­
plained in Fig. 4 we obtain the following results: 

Csa= 1.08(0.99- 1.11a)2, Csb= 1.23(1.01- 1.07a)2, 

which compared with those obtained by Huang (1982) 

Csa = 1.08(0.83 -0 .93a) 2 , Csb = 1.23(0.74 -0.81a) 2 , 

indicate that there exists differences in coefficients of some 20 
percent although the values coincide for a = 0(1), as men­
tioned above. 

We should remark that in the formulation in Section 4, the 
only simplification is the transference of boundary conditions, 
which only implies proximity of the inlet surfaces to the 
skeleton, although /(£) is allowed to be discontinuous except 
at point A in which it should be continuous. Otherwise the 
suction force calculation method should change because the 
sharp lip singularity changes. Obviously, to solve the non-
simplified problem, even without singularities, is far more 
complicated and requires additional effort. 

Concerning the comments of Huang on the small influence 
of the inside wall of the inlet, it is true as far as the second 
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term of I2 is concerned but it is not for the first term, which re­
presents the asymptotic width of the ramp. Additionally, it 
could be shown that, if a ^ l , /, has a significant influence, 
and therefore the effect of both the external and internal sur­
faces are of the same order. As Fig. 3 shows, this occurs 
because the inside upper wall of the inlet maps close to the lip 
A', thus appreciably contributing to the velocity at this point. 

In Huang's example Ii~(l/3)I2 over the cowl and 
/[ — (l/2)/2 over the ramp. 
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Dynamic Plastic Response of Circular 
Plates With Transverse Shear 

A. Kumar1 and V. V. Krishna Reddy2 

Introduction 
In this brief note, the motion of a simply supported circular 

plate, made of rigid-plastic material, is studied. The plate 
material is assumed to obey the Tresca yield criterion which re­
tains the transverse shear force; the resulting yield criterion is 
of the form proposed by Sawczuk and Duszek (1963) and 
adopted, for example, by Jones and Gomes de Oliveira (1980). 
The plate is subjected to a uniformly distributed load which is 
applied suddenly at time r = 0, kept constant at an intensity p 
during Q<t<T and suddenly removed at t = T. 

In a similar study undertaken by Jones and Gomes de 
Oliveira (1980) for circular plates subjectd to blast loading 
idealized by an instantaneous uniform velocity, it was con­
cluded that the pattern of velocity profile depends on a dimen­
sionless parameter v = RQ0/2M0 (i.e., the relative importance 
of the product of the radius of the plate and the shear capacity 
per unit length over the moment capacity per unit length). Ac­
cordingly, the plates have been classified into three categories, 
Class I being in the range 0 < c <1.5, Class II in the range 
1.5 < <p < 2, and Class III in the range v> 2. It is found that the 
shear sliding at the supports is possible only when 

Po 

6M0 

R2 (D 

for Class II plates, and 

P 2v Po 

p0 {l-p0/R)(2 + Po/R) ' R 
= [(4i>2-8r+l)Yl-l]/2i> 

(2) 

for Class III plates. If these conditions are not satisfied, the 
problem has the bending solution only which is similar to the 
one presented by Hopkins and Prager (1954), and, also, by 
Kumar and Hegde (1982). 
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BENDING SOLUTION 

Fig. 1 Variation of dimensionless shear forces (Q,/Q0) with dimen­
sionless radius (r/fl) for different values of v and pressure intensity ratio 
(P/Po) 

- l . O 

-0.8 

2 -0.6 

Fig. 2 Variation of dimensionless radial moment (7W,//W0) with dimen­
sionless radius (r/fl) for different values of v and pressure intensity ratio 
(P/Po) 

Results 
Following a procedure similar to the one adopted by Jones 

and Gomes de Oliveira (1980), the expressions for shear force, 
bending moment, and the plate deflection are obtained 
analytically and, wherever necessary, numerically. Relations 
between the radius of the plate and the shear force as well as 
between the radius and the radial bending moment (all in non-
dimensional forms) are plotted in Figs. 1 and 2, respectively. 
The solution of the problem including shear in the yield 
criterion shows smaller shear forces in the inner regions of the 
plate and larger in outer regions and the radial moments are 
greater throughout the plate, when compared with the bending 
solution. In Fig. 3, for a given ratio of p/p0, the variation of 
dimensionless deflections (with respect to a standard deflec­
tion of 10 p„T2/n) with radius is plotted. It can be observed 
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Fig. 4 Variation of dimensionless central, edge deflections of plate 
with j-, for different load intensities 

that as the value of v increases the shear deformations are less. 
It is interesting to note that, for a givenp/p0 ratio, there exists 
a value of the dimensionless radius at which the deflections are 
more or less the same, irrespective of the value of v, for Class 
III plates. Figure 4 shows the variation in the dimensionless 
central w(0,/y) and edge (W{) deflections (with respect to a 
standard deflection of 16.25 p„72/\x) with v. It is observed that 

if v is decreased from 1.5 to some lower values, the plate will 
yield at the support indefinitely. This figure also represents the 
variation in deflection with the ratio p/p0. 
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Note on Southwell's Method for Buckling 
Tests of Struts 

W.-T. Tsai3 

Introduction 
Southwell (1931) devised a method by which linear elastic 

test data from a strut with initial curvature could be analyzed 
to determine the buckling capacity which the strut would have 
if it were perfectly straight. The capacity is estimated from the 
measured lateral deflection and the applied axial force. The 
method proved to be very practical and efficient in most ap­
plications (Donnell, 1938; Horton, et al., 1971). It is especially 
useful in nondestructive testing to demonstrate strength and 
stiffness properties of an actual structural component since 
the strut would be required to be loaded within the elastic 
limit. However, the accuracy of the predicted buckling capaci­
ty and the associated stiffness properties become poor if the 
initial curvature is small. The reason, among others, is that the 
actual deflection dwells within the deviation range of the 
employed gauges. Errors introduced by the uncertainties in 
gauge measurements become the dominating factor of the 
measurements taken during the test. This should not be sur­
prising since the method is not applicable to a perfectly 
straight strut. The difficulty in obtaining an accurate result for 
a strut of small initial bow was also recognized by Donnell 
(1938). 

Due to improvements in manufacturing control nowadays, 
a strut can be made with very little initial imperfection. The 
buckling capacity of such a strut becomes hard to estimate 
without loaded into yield range. In order to obtain an accurate 
buckling capacity for the strut to remain within the elastic 
limit at low axial force, an alternate method of testing is pro­
posed. This method introduces an eccentricity at both ends of 
the strut (Fig. 1). Such eccentricity, together with any existing 
initial bow, produces a moment which in turn induces a lateral 
deflection in the strut. The magnitude of the lateral deflection 
is directly influenced by the magnitude of introduced eccen­
tricity. It can be made large enough to overcome the difficulty 
of measurement error. Although the same idea was briefly 
discussed by Donnell (1938), he did not pursue it further since 
he anticipated difficulties in using harmonic series to treat the 
eccentricity. In this note, a closed-form solution is obtained to 
relate the introduced eccentricity to the lateral deflection of a 
strut. 

Governing Differential Equation and the Solution 
Accounting for the effect of an initial bow and an eccen­

tricity, the governing differential equation of a strut is 

EI(y"-y0") + P(y + e)=Q (1) 
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that as the value of v increases the shear deformations are less. 
It is interesting to note that, for a givenp/p0 ratio, there exists 
a value of the dimensionless radius at which the deflections are 
more or less the same, irrespective of the value of v, for Class 
III plates. Figure 4 shows the variation in the dimensionless 
central w(0,/y) and edge (W{) deflections (with respect to a 
standard deflection of 16.25 p„72/\x) with v. It is observed that 

if v is decreased from 1.5 to some lower values, the plate will 
yield at the support indefinitely. This figure also represents the 
variation in deflection with the ratio p/p0. 
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Tests of Struts 
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Introduction 
Southwell (1931) devised a method by which linear elastic 

test data from a strut with initial curvature could be analyzed 
to determine the buckling capacity which the strut would have 
if it were perfectly straight. The capacity is estimated from the 
measured lateral deflection and the applied axial force. The 
method proved to be very practical and efficient in most ap­
plications (Donnell, 1938; Horton, et al., 1971). It is especially 
useful in nondestructive testing to demonstrate strength and 
stiffness properties of an actual structural component since 
the strut would be required to be loaded within the elastic 
limit. However, the accuracy of the predicted buckling capaci­
ty and the associated stiffness properties become poor if the 
initial curvature is small. The reason, among others, is that the 
actual deflection dwells within the deviation range of the 
employed gauges. Errors introduced by the uncertainties in 
gauge measurements become the dominating factor of the 
measurements taken during the test. This should not be sur­
prising since the method is not applicable to a perfectly 
straight strut. The difficulty in obtaining an accurate result for 
a strut of small initial bow was also recognized by Donnell 
(1938). 

Due to improvements in manufacturing control nowadays, 
a strut can be made with very little initial imperfection. The 
buckling capacity of such a strut becomes hard to estimate 
without loaded into yield range. In order to obtain an accurate 
buckling capacity for the strut to remain within the elastic 
limit at low axial force, an alternate method of testing is pro­
posed. This method introduces an eccentricity at both ends of 
the strut (Fig. 1). Such eccentricity, together with any existing 
initial bow, produces a moment which in turn induces a lateral 
deflection in the strut. The magnitude of the lateral deflection 
is directly influenced by the magnitude of introduced eccen­
tricity. It can be made large enough to overcome the difficulty 
of measurement error. Although the same idea was briefly 
discussed by Donnell (1938), he did not pursue it further since 
he anticipated difficulties in using harmonic series to treat the 
eccentricity. In this note, a closed-form solution is obtained to 
relate the introduced eccentricity to the lateral deflection of a 
strut. 

Governing Differential Equation and the Solution 
Accounting for the effect of an initial bow and an eccen­

tricity, the governing differential equation of a strut is 

EI(y"-y0") + P(y + e)=Q (1) 
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Fig. 1 Geometry of a strut 

where EI is the bending rigidity of the strut, e the eccentricity, 
P the axial force, y the total deflection, and y0 the initial bow. 
In order to simplify the analysis, the initial bow is assumed to 
be a simple sine function 

y0 = a sin 
wx (2) 

This was shown by Southwell to be a good approximation for 
determination of the lateral deflection. Upon introduction of 
equation (2) and the boundary conditions, y = 0 at x = 0 and 
x = L, into equation (1), the total deflection is given by Tsai 
(1977) 

y=-
a 

sin 
•KX Tcos X (L/2-

- + e\ 
•x) 

- 1 (3) 
\-P/Pcr"" L "L cos (XL/2) 

where Pcr = ir2EI/L2 is the buckling capacity of the strut if it 
were perfectly straight, and X = -JP/EI = ~JP/Pcrir/L. 

Application of Southwell's Method 
To apply equation (3) to Southwell's test, the net deflection 

at the middle point is to be measured. By introducing x = L/2 
into equation (3), the net deflection, d = y—y0, is given by 

d= a
 +e\ l l l (4) 

Pcr/P-\ Lcos(XL/2) J 
This expression may be rewritten into an alternate form upon 
multiplying equation (4) by a factor, P„/P- 1, and defining v 
= d/P, the result reads 

Prrv — d-a + e\ 
1 ](£-') (4') 

. cos(XL/2) 

The left-hand side together with the first term of the right-
hand side of equation (4') is the typical form of Southwell's 
approach. By plotting v as the abscissa and d as the ordinate, a 
straight line is obtained. The slope of this straight line is the 
buckling capacity and the negative intercept of the d axis is the 
initial bow at the mid-span. It can be seen from this relation 
that the buckling capacity cannot be obtained at a testing load 
level below Pcr if there is no initial bow since a perfectly 
straight strut would not show any lateral deflection until the 
strut collapses at P = Pcr. 

With an eccentricity added to the possible initial bow, the 
entire right-hand side of equation (4') would be applied. The 
effect of eccentricity appears to be coupled with XL and P/Pcr 

in a form much more complicated than that of an initial bow 
alone. Actually, a simplified approximation as elegant as that 
of an initial bow can be obtained. The simplification starts 
with a series expansion of the cosine function. It is then 
followed by a series inversion and a multiplication. The final 
results of equation (4'), with the help of XL = ir-JP/Pcr, 
becomes 

Pcrv-d = a + e 1+ ( 1 
8 L V 48 / P„ 

Sir1 

48 •(-w-0(£)V-] 

--a+ 1.234e|"l + 0.028( ) + 0 . 0 0 4 ( \ +. . .1 (5) 

An examination of the coefficients indicates that the max­
imum contribution of the P/Pcr term is less than three percent 
of P/Pcr. By neglecting the effect of P/P„ in the right-hand 
side of equation (5), one obtains a form of first order approx­
imation 

Prrv-d = a+1.234e (6) 

Therefore, the effect of load eccentricity correlates to the 
critical buckling load in the same fashion as of the initial bow 
except that the negative intercept is now the sum of the initial 
bow and 1.234 times of the eccentricity. Explicitly, with a 
larger eccentricity, the buckling capacity can be estimated at a 
larger lateral deflection for the same axial force. In other 
words, it can be estimated at the same deflection with a 
smaller axial force. Effectively, the result would have less er­
ror introduced by measuring gauges for a larger eccentricity. 
The initial bow would be the negative intercept of the d axis 
subtracted by 1.234e. 

Conclusion 
The buckling capacity and the associated stiffness proper­

ties of a strut can be accurately estimated at tests of low axial 
forces if the strut is loaded with an eccentricity. The initial 
bow is obtained by subtracting a factor of the eccentricity 
from the negative intercept of d axis. 
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Mode II Loading of a Cracked Strip 

D. M. Parks4 

Energy methods have been widely used in the analysis of 
fracture mechanics problems, making use of the equivalence 
of compliance (stiffness) changes with respect to crack length 
and the energy release rate, J (Rice, 1968). One approach to 
the analysis of certain configurations, such as the double can­
tilever beam, has been to idealize the total compliance of the 
body using, e.g., assumptions of beam theory in relatively 
compliant portions of the body and of rigid bodies in relative­
ly stiffer regions. Most analyses of this sort have been applied 
to Mode I problems. The purpose of this note is to present an 
elementary energy analysis of a Mode II problem which seems 
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Therefore, the effect of load eccentricity correlates to the 
critical buckling load in the same fashion as of the initial bow 
except that the negative intercept is now the sum of the initial 
bow and 1.234 times of the eccentricity. Explicitly, with a 
larger eccentricity, the buckling capacity can be estimated at a 
larger lateral deflection for the same axial force. In other 
words, it can be estimated at the same deflection with a 
smaller axial force. Effectively, the result would have less er­
ror introduced by measuring gauges for a larger eccentricity. 
The initial bow would be the negative intercept of the d axis 
subtracted by 1.234e. 

Conclusion 
The buckling capacity and the associated stiffness proper­

ties of a strut can be accurately estimated at tests of low axial 
forces if the strut is loaded with an eccentricity. The initial 
bow is obtained by subtracting a factor of the eccentricity 
from the negative intercept of d axis. 
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end displacement of magnitude A 
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Fig. 2 Idealized model consisting of beam/column kinematics 

to have been inappropriately analyzed in a well-known com­
pendium of stress intensity factors (Tada et al., 1985). 

Consider in Fig. 1 the long strip of unit thickness and height 
It containing a crack of length a>>t which divides a portion 
of the body into two strips, each of height t. Ahead of the 
crack tip is an uncracked ligament of length I, which is also 
much greater than /. Loading is imposed at the end of the 
body by uniform displacements parallel to the crack. On the 
upper strip, the displacement is positive, of magnitude A/2, 
while on the lower strip, a displacement of equal magnitude, 
but opposite sign, is imposed. The relative offset of the ends 
of the two strips is A. Such loading nominally places the upper 
strip in compression and the lower strip in tension. A closer 
examination, however, reveals additional complexity. For ex­
ample, if the resultant forces in the two strips are =FP, we note 
that since they are offset by a distance t, bending moments 
must also be sustained in each strip. 

Figure 2 presents an idealized kinematical model of the 
deformation in the two strips which allows for an effective 
rigid body rotation of angle 8 in the ligament material far 
ahead of the tip. In the general case of unequal strips, the 
"base" at the crack tip should also be permitted a free 
displacement 5 in the crack direction, but in the present case, 
symmetry considerations show that 5 = 0. 

We see from Fig. 2 that each strip is in combined bending 
and tension (bottom) or compression (top). The mid-section 
strain, e, in the bottom strip is: 

e = (A/2-6't/2)/a (1) 

while the curvature is: 

K = 6/a. (2) 

The top strip has the same curvature and midsection strain 
equal to — e. 

In this displacement-loaded problem, the potential energy, 
•?r, per unit thickness is the strain energy, W. For isotropic 
elastic response, the total strain energy in the two strips is 

W=2-[l/2E'-ta'e2 + l/2E'I'K2'a] 

= E't/4a-[(t6-A)2 + 82/3]. (3) 

In equation (3), / = t3/12 is the strip section moment of iner­
tia per unit thickness, E' is the Young's modulus, E, for 
generalized plane stress, and E/{\ - v2), where v is Poisson's 
ratio, for plane strain. Evidently, W depends on the 
kinematical parameters A and 8. Since no external moment is 

applied to the ligament region, Castigliano's theorem requires 
dW/d6 = 0, furnishing 

8 = 3A/4t. (4) 
When equation (4) is substituted into equation (5), the strain 

energy becomes 

Tr=W=E''t-A2/16a (5) 

and the energy release rate is 

J=-dir/da = E'-t>A2/l6a2. (6) 

From the symmetry of the problem, only Mode II is present 
so J= = Kn

2/E' and thus 

Kn=A/4a'E'<t. (7) 

Tada's result can be obtained by setting 8 = 0, with resulting 
Wand J values four times that of equations (5), (6) and thus 
Ku values twice that of equation (7). 

By permitting the additional kinematic freedom corres­
ponding to nonzero 8, a decidedly lower strain energy is ob­
tained, so presumably equations (6) and (7) are more correct. 
This has been verified numerically by Sharpies (1985), who 
analyzed this problem in a strip with a/* = 36.5 and (/t=3.5 
using the virtual crack extension (VCE) capabilities of the 
ABAQUS finite element program (Hibbitt, et al., 1982). His 
numerical results for / on each of several VCE contours were 
in excellent agreement with equation (6). 

The methodology of beam/columns applied in this example 
could be straightforwardly generalized to include strips of 
unequal section area and moment of inertia. In addition, 
analysis for nonlinear material response could be accom­
modated by using standard nonlinear models of cylinders 
under combined bending and axial load. 
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Proof of a Conjecture in Elastic Membrane 
Theory 

D. J. Steigmann5 

Analyses of problems in elastic membrane theory usually 
employ the ad hoc assumption that an equilibrium configura­
tion cannot be stable or neutrally stable unless the principal 
stresses are everywhere nonnegative (e.g., Kydoniefs and 
Spencer, 1969). We show that this result follows directly from 
the principle of minimum potential energy, where the poten­
tial energy E[x] is given by 

E[x]=[ <l>(x,aa)yjAcl81cJ82-\ £(x)ds. (1) 
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pendium of stress intensity factors (Tada et al., 1985). 

Consider in Fig. 1 the long strip of unit thickness and height 
It containing a crack of length a>>t which divides a portion 
of the body into two strips, each of height t. Ahead of the 
crack tip is an uncracked ligament of length I, which is also 
much greater than /. Loading is imposed at the end of the 
body by uniform displacements parallel to the crack. On the 
upper strip, the displacement is positive, of magnitude A/2, 
while on the lower strip, a displacement of equal magnitude, 
but opposite sign, is imposed. The relative offset of the ends 
of the two strips is A. Such loading nominally places the upper 
strip in compression and the lower strip in tension. A closer 
examination, however, reveals additional complexity. For ex­
ample, if the resultant forces in the two strips are =FP, we note 
that since they are offset by a distance t, bending moments 
must also be sustained in each strip. 

Figure 2 presents an idealized kinematical model of the 
deformation in the two strips which allows for an effective 
rigid body rotation of angle 8 in the ligament material far 
ahead of the tip. In the general case of unequal strips, the 
"base" at the crack tip should also be permitted a free 
displacement 5 in the crack direction, but in the present case, 
symmetry considerations show that 5 = 0. 
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tained, so presumably equations (6) and (7) are more correct. 
This has been verified numerically by Sharpies (1985), who 
analyzed this problem in a strip with a/* = 36.5 and (/t=3.5 
using the virtual crack extension (VCE) capabilities of the 
ABAQUS finite element program (Hibbitt, et al., 1982). His 
numerical results for / on each of several VCE contours were 
in excellent agreement with equation (6). 

The methodology of beam/columns applied in this example 
could be straightforwardly generalized to include strips of 
unequal section area and moment of inertia. In addition, 
analysis for nonlinear material response could be accom­
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Here da(a=l,2) are embedded coordinates of a material 
point on the membrane surface, x(0',02) is the position, 
aa = dx/dda span the tangent plane at x, A = det(/4a/3), Aag = 
Aa • Ap, A„ = dX/dd01, X (0! ,62) is the position on the reference 
surface, £"(x) is a potential for the force t ( = f x ) per unit 
reference arc length s applied to the edge dQt of the reference 
surface 0, and 

< M x , a a ) = w ( a J - i H x , a a ) , (2)2 

where w is the strain energy and \j/ is a load potential. 
We adopt the energy criterion of elastic stability, according 

to which a stable or neutrally stable configuration x is a strong 
relative minimizer of E[x]. Following Graves (1939), we con­
clude that <Mx,aa) must be rank-one convex in aa: 

(Mx.a^+frtp) -</>(x,ap) -nj-4>aa (x,a0)>O (3)3 

for all vectors f = /*a a -(- / a 3 and n = naA
a, where A" is the 

dual basis on the reference surface: A a • A^ = 5$. We con­
sider load potentials \j/ which are rank-one af fine in aa: 

^(x,a / 3+f« / 3)-i/ '(x,a l3)-n„f«i/ 'ac ((x,a /3)=0. (4) 

An important example is uniform lateral pressure loading of 
constant intensity p. For a closed membrane we have 
\ip\lAdd1 dd2 = pV, where the enclosed volume is V = (l/3)jx 
• sk3~Jaddldd2; a = det(aaff),aaji = a„ • a^, and a3 = eaPaa x 
ap/2\la is the unit normal to the deformed surface. ea® is the 
two-dimensional alternator taking values 1 , - 1 according as 
(a,i3) = (1,2), (2,1), respectively, and zero otherwise. The load 
potential is 

i/-(x,aa) = ( p / 6 ) ^ x . a „ x a ^ ; ^=^I^A. (5) 

Then iptt = (p/3)^,a/5 a^ x x, and after some calculation we 
find " 

«af-i/'a = (p/3)naP n& x • aa x f andi^(x,a7 + fn7) 

= $(x,a7) + ( p / 3 V % x . a a x f, 

so that (4) is identically satisfied. Then (2) and (4) require that 
w be rank-one convex: 

w(a(3 + f « / , ) - w ( a / 3 ) - « a f . w a a ( a / 3 ) > 0 , Vfn„. (6) 

According to the principle of material frame indifference, 
the strain energy must be insensitive to transformations 
a a ^ Q a a for all proper orthogonal Q. Then Cauchy's theorem 
on isotropic functions (Truesdell and Noll, 1965) requires that 
w be a function of the metric components «a/3, so that 

waa=2(9w/dac, /3)a0. (7) 

From (6), (7) and the mean value theorem, we derive the 
Legendre-Ffadamard condition: 

f-E"*3(a7)rtart0.f>O; aT = a7 + /f«T, /6(0,1), (8) 

where 

E"" (a7) = 4(d2 w/daay 3 ^ ) a7 <g) a£ + 2(dw/daafi) 1 (9) 

and 1 = a„ (x) a™ + a3 ® a3 is the unit tensor. The choice/51 

= 0 in (8) gives 

nanpdw/da^>0. (10) 

Let na be the unit normal to a curve in the reference surface. 
The unit normal v = paa

a to the image of the curve in the 
deformed surface is given by va - V (a /A )n a / \ , where X is 
the stretch of the curve (Naghdi, 1972). Then (10) is equivalent 
to 

N*vav^0, (11) 

<t> may depend on 6a explicitly, as in the case of nonhomogeneous material, 
for example. 

Graves considered functionals of the form (1) without the boundary integral. 
In arriving at (3), he employed variations in x which vanish on the boundary, so 
the result is unaffected by the presence of the extra term. 

where Na0 = 2sl (A/a) dw/daag are the Cauchy stresses. Thus 
an equilibrium configuration of a membrane subjected to con­
servative loading is stable or neutrally stable only if the prin­
cipal Cauchy tensions are pointwise nonnegative. The choice/ 
= f «a3 = 0 in (8) gives the two-dimensional analogue of the 
classical Legendre-Ffadamard condition: 

4/J aVY / e(a2w/a« a Taaw) +sl{a/A)N^nanlipf1>0, V / % . 

(12) 

Pipkin (1985) has derived conditions equivalent to (11) and 
(12) for the special case of an initially plane isotropic mem­
brane with fixed edges and \p = 0, and has shown that the 
classical Baker-Ericksen inequality (Baker and Ericksen, 1954) 
is implied by (12). 
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1 Introduction 
This note examines the nature of nonlinearities associated 

with a closed pneumatic chamber coupled to a linear 
mechanical system as shown in Fig. 1. This simple model 
could represent several practical applications dealing with 
passive vibration isolators, shock absorbers, and cushioning 
type actuators. The feasibility of finding an approximate 
analytical solution for such systems using perturbation tech­
niques has not been investigated, with the exception of a paper 
by Chen (1977), who analyzed a symmetric, double-sided 
closed pneumatic chamber system coupled to a cam-actuated 
mechanism. His study considered only the nonlinearity in­
duced by the gas compressibility; the dynmic response was ob­
tained by the Krylov-Bogoliubov method of slowly varying 
parameters. Even though no numerical or experimental 
validation was given, his analysis found that the resonant peak 
shifted toward a lower frequency as the excitation amplitude 
was increased. However, he did not examine some of the 
critical issues dealing with singularities, mean value shifting, 
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Here da(a=l,2) are embedded coordinates of a material 
point on the membrane surface, x(0',02) is the position, 
aa = dx/dda span the tangent plane at x, A = det(/4a/3), Aag = 
Aa • Ap, A„ = dX/dd01, X (0! ,62) is the position on the reference 
surface, £"(x) is a potential for the force t ( = f x ) per unit 
reference arc length s applied to the edge dQt of the reference 
surface 0, and 

< M x , a a ) = w ( a J - i H x , a a ) , (2)2 

where w is the strain energy and \j/ is a load potential. 
We adopt the energy criterion of elastic stability, according 

to which a stable or neutrally stable configuration x is a strong 
relative minimizer of E[x]. Following Graves (1939), we con­
clude that <Mx,aa) must be rank-one convex in aa: 

(Mx.a^+frtp) -</>(x,ap) -nj-4>aa (x,a0)>O (3)3 

for all vectors f = /*a a -(- / a 3 and n = naA
a, where A" is the 

dual basis on the reference surface: A a • A^ = 5$. We con­
sider load potentials \j/ which are rank-one af fine in aa: 

^(x,a / 3+f« / 3)-i/ '(x,a l3)-n„f«i/ 'ac ((x,a /3)=0. (4) 

An important example is uniform lateral pressure loading of 
constant intensity p. For a closed membrane we have 
\ip\lAdd1 dd2 = pV, where the enclosed volume is V = (l/3)jx 
• sk3~Jaddldd2; a = det(aaff),aaji = a„ • a^, and a3 = eaPaa x 
ap/2\la is the unit normal to the deformed surface. ea® is the 
two-dimensional alternator taking values 1 , - 1 according as 
(a,i3) = (1,2), (2,1), respectively, and zero otherwise. The load 
potential is 

i/-(x,aa) = ( p / 6 ) ^ x . a „ x a ^ ; ^=^I^A. (5) 

Then iptt = (p/3)^,a/5 a^ x x, and after some calculation we 
find " 

«af-i/'a = (p/3)naP n& x • aa x f andi^(x,a7 + fn7) 

= $(x,a7) + ( p / 3 V % x . a a x f, 

so that (4) is identically satisfied. Then (2) and (4) require that 
w be rank-one convex: 

w(a(3 + f « / , ) - w ( a / 3 ) - « a f . w a a ( a / 3 ) > 0 , Vfn„. (6) 

According to the principle of material frame indifference, 
the strain energy must be insensitive to transformations 
a a ^ Q a a for all proper orthogonal Q. Then Cauchy's theorem 
on isotropic functions (Truesdell and Noll, 1965) requires that 
w be a function of the metric components «a/3, so that 

waa=2(9w/dac, /3)a0. (7) 

From (6), (7) and the mean value theorem, we derive the 
Legendre-Ffadamard condition: 

f-E"*3(a7)rtart0.f>O; aT = a7 + /f«T, /6(0,1), (8) 

where 

E"" (a7) = 4(d2 w/daay 3 ^ ) a7 <g) a£ + 2(dw/daafi) 1 (9) 

and 1 = a„ (x) a™ + a3 ® a3 is the unit tensor. The choice/51 

= 0 in (8) gives 

nanpdw/da^>0. (10) 

Let na be the unit normal to a curve in the reference surface. 
The unit normal v = paa

a to the image of the curve in the 
deformed surface is given by va - V (a /A )n a / \ , where X is 
the stretch of the curve (Naghdi, 1972). Then (10) is equivalent 
to 

N*vav^0, (11) 

<t> may depend on 6a explicitly, as in the case of nonhomogeneous material, 
for example. 

Graves considered functionals of the form (1) without the boundary integral. 
In arriving at (3), he employed variations in x which vanish on the boundary, so 
the result is unaffected by the presence of the extra term. 

where Na0 = 2sl (A/a) dw/daag are the Cauchy stresses. Thus 
an equilibrium configuration of a membrane subjected to con­
servative loading is stable or neutrally stable only if the prin­
cipal Cauchy tensions are pointwise nonnegative. The choice/ 
= f «a3 = 0 in (8) gives the two-dimensional analogue of the 
classical Legendre-Ffadamard condition: 

4/J aVY / e(a2w/a« a Taaw) +sl{a/A)N^nanlipf1>0, V / % . 

(12) 

Pipkin (1985) has derived conditions equivalent to (11) and 
(12) for the special case of an initially plane isotropic mem­
brane with fixed edges and \p = 0, and has shown that the 
classical Baker-Ericksen inequality (Baker and Ericksen, 1954) 
is implied by (12). 
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1 Introduction 
This note examines the nature of nonlinearities associated 

with a closed pneumatic chamber coupled to a linear 
mechanical system as shown in Fig. 1. This simple model 
could represent several practical applications dealing with 
passive vibration isolators, shock absorbers, and cushioning 
type actuators. The feasibility of finding an approximate 
analytical solution for such systems using perturbation tech­
niques has not been investigated, with the exception of a paper 
by Chen (1977), who analyzed a symmetric, double-sided 
closed pneumatic chamber system coupled to a cam-actuated 
mechanism. His study considered only the nonlinearity in­
duced by the gas compressibility; the dynmic response was ob­
tained by the Krylov-Bogoliubov method of slowly varying 
parameters. Even though no numerical or experimental 
validation was given, his analysis found that the resonant peak 
shifted toward a lower frequency as the excitation amplitude 
was increased. However, he did not examine some of the 
critical issues dealing with singularities, mean value shifting, 
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L-X(t) 

Table 1 Comparison of results at/i = 0.6 and a = 2.09 

P(t) 
V(t) 

Fig. 1 Schematic of an example case: closed pneumatic chamber 

Fig. 2 Magnitude frequency response for various nonlinearities at 
fl = 0.6: pure mechanical system (H = 0); compressibility; 
• • • • compressibility and sliding friction effects; all 
nonlinearities included 

role of nonlinear damping (only the viscous damping was con­
sidered), and the justification of the selection of his perturba­
tion method. Some of these issues will be discussed here. 

2 Mathematical Formulation 
For the thermodynamic compression process, we assume a 

polytropic model 

P(t)[V(t)]"=P(.0)[V(0)]"; V(0) 

=ApL and V(t) =Ap (Z, -X(t)) (1) 

where n denotes the polytropic constant, P is the absolute 
pressure, V is the gas volume, Ap is the chamber or piston 
area, L is the initial height of the chamber, and X indicates the 
piston displacement from the initial point. The equation of 
motion is given as 
MTX{t) + BX(t) + KX(t) =F(t) +MTg 

+ (Patm-P(t))Ap-FD(t) (2) 

where MT is the total mass, B is the linear mechanical damping 
coefficient, AT is the linear mechanical spring stiffness, F(t) is 
the external force, Patm is the atmosphere pressure, and FD (t) 
is the total damping force which is assumed to be of the 
following form: FD = iikX+ iipP11 +/ng[sign(X)], where 

Harmonic Numerical 
coefficient integration 

The method of 
harmonic balance 

Xm /X\ Pk/Pi 

OS 
1 
2 
3 
4 
5 

-0.261 
1 
0.088 
0.019 
0.005 
0.002 

0.019 
1 
0.356 
0.135 
0.052 
0.019 

-2 .60 
1 
0.094 
0 
0 
0 

0.021 
1 
0.371 
0 
0 
0 

Reference 
values 

= 0.464 p, = 0.637 x{ = 0.468 p{ = 0.656 

sign(X) - 1 for X> 0, sign(X) = 0 for X= 0 and sign(X) = - 1 
for X<0, and ^ is the viscous friction coefficient (in 
force/velocity unit), np is the scaled sliding friction coefficient 
(in force/pressure unit) to account for Patm, q is the friction 
exponent, and ixg is the dry (Coulomb) friction coefficient (in 
force unit). Note that /x ,̂ np, q, and ng are unique to the 
physical system chosen. 

From the initial point (r = 0), we define the excitation F(t) 
and responses X(t) and P(t) as F(t) =f0+f(t), 
X(t) =x0+x(t), and P(t)=p0+p(t), where f0 is the time-
averaged value of F(t). Now, define response operating 
points x0 andp 0 corresponding t o / 0 . Using equations (1) and 
(2), we get 

K(L-xor"+i+(f0+PalmAp+MTg-KL)(L-Xor" 

-P(0)ApL" (L-xoyi-n -UpPWL1"! = 0 (3) 

We find that equation (3) has unique solution at any / 0 , i.e., 
x0 =x0Wo) andP0=Po(fo)> providedx0 <L. Note that L = x0 

indicates that the piston will compress the gas down to zero 
volume—an impossible condition to achieve. However, x0 

could approach L which is somewhat realistic for the cushion­
ing type actuation and isolation cases. 

3 Nature of Nonlinearity 
First, define dimensionless parameters and variables as 

follows. 

f=f/[P0Ap], P=p/p0, x = x/[L-x0], fip = ^pp0
q/\p0Ap\, 

»g=»g/\PoAp\> K=K(L-x0)/\p0Ap], 

o>„=\fK/M~T, o> = a>/co„, ? = [fi + ^]/[2VAMj-] 

where OJ is the excitation frequency and co„ is the undamped 
natural frequency of the mechanical system. The governing 
equations, equations (1) and (2), are reduced to the following 
dimensionless form: 

p ( r ) = ( l - i ( r ) ) - " - l 

x(t) +2iwnx(t) +o>2
nxU) =~f(t) ~H(x(t), Ht)), 

A 

w2 

where H(x,x) =—?-{p + jxp[{\ +p)"- 1] + iXg[sign(x)]} 
K 

[ [ ( l - i ) - " - l ] + A / , [ ( l - x ) - " " - l ] + ^[sign(i)]) 

(4) 

(5) 

K 

Note that the system is completely described by equation (5) 
in terms of x which is related to p through equation (4). The 
nonlinear function H(x,x) consists of the following terms: (/) 
nonlinearity induced by the gas compressibility; (ii) 
nonlinearity induced by the sliding friction model; and (Hi) 
nonlinearity induced by the dry (Coulomb) friction. For both 
compressibility and sliding friction effects, we note that //— oo 
as x—1.0, 7 /=0 at x = 0 and H is unsymmetrical about i = 0. 
The unbounded behavior of H close to x— 1.0 indicates that 
the nonlinearities are very large. The nature of such a 
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singularity can be termed as "hard"—as defined by Bota and 
Mickens (1984). The unsymmetrical behavior about i = 0 is 
somewhat similar to Mahaffey's problem (1976) on plasma 
oscillations—he called such oscillations "anharmonic". 

For weakly nonlinear systems, many perturbation methods 
(Mickens, 1981; Nayfeh and Mook, 1979; and Siljak, 1969) 
may work. But for those cases where nonlinear effects are 
large, it is not clear which method will work. However, 
Mickens (1984) claims that the method of harmonic balance 
can be applied to such problems. Also, Bota and Mickens 
(1984) claim that only the method of harmonic balance will 
work for "hard" singularity type, one-dimensional oscillatory 
problems. Since our example case fits into such a description, 
the method of harmonic balance seems to be the most logical 
technique that can be applied. 

4 Results 
Now, we apply the method of harmonic balance to evaluate 

the frequency response. Since the nonlinear function His not 
symmetric about x = 0, the mean value shift must be con­
sidered even though the excitation f(t) may have a zero mean 
value. The excitation f(t) and responses x(t) and p(t) are 
assumed to be given as follows: 

/ (0=/ icos(wf) , 

x( t) ~xos + xxcos(atf + 6xl) + x2cos(2co/ + 6^) and 

p(t)=pos+picos(oit+epl)+p2cos(2c1>t + ep2) 

where xos/Xi=x2/xl=xl=0{e), pos/py=P2/pl=pl=0(e) 
and the subscript os denotes the mean value shift or zeroth 
harmonic. Since lower frequencies are of interest in practical 
pneumatic systems, the series solution is limited here up to the 
second harmonic. Numerical parameters used to illustrate this 
example case are: ^ = 0.511, ji.p=0.2, q = 2, £ = 0.5, jj.g = 0.07, 
and u„ =0.5 (see Wang, 1986, for more details). 

Figure 2 shows frequency response curves, the magnitude of 
the first harmonic versus the dimensionless frequency 
o) = co/co„, for various values of H(x,x). Note that the overall 
system with all nonlinearities included is still a second order 
system, but the resonant frequency is shifted to w = 2.09 as 

Readers Of 
The Journal Of Applied Mechanics 
Will Be Interested In: 

Computers In Engineering—1985 

The papers in these three volumes were presented at the 1985 International Computers In Engineering 
Conference and Exhibit in Boston, Massachusetts, August 4-8,1985. 

Volume One: Computer-Aided Design, Computer-Aided Manufacturing, Robotics, Computer Graphics 
1985 Book Number G0286A List Price: $100.00 ASME Members: $50.00 

Volume Two: Finite Element Methods, Expert Systems, Simulation, Education 
1985 Book Number G0286B List Price: $100.00 ASME Members: $50.00 

Volume Three: Applications, Software and Hardware, Computer Methods, Special Topics 
1985 Book Number G0286C List Price: $100.00 ASME Members: $50.00 

COMPLETE SET: Computers In Engineering—1985 
Book Number G0286S List Price: $270.00 ASME Members: $135.00 

Descriptions of other volumes of interest appear on pages 784, 797, 806, 830, 833, 863, 896, 934, and 946. 

Address Orders To: A r 

ASME Order Department/22 Law Drive/Box 2300/Fairfield, NJ 07007-2300 

958 / Vol. 53, DECEMBER 1986 Transactions of the ASME 

shown in Fig. 2. It is apparent that the compressibility term is 
the most dominant, followed by the sliding friction term 
which is also related to the pressure (per our assumption). 
Both of these nonlinear effects increase stiffness as well as 
damping. Conversely, the dry friction is influential only at the 
resonance, thereby adding only to the damping, as one would 
expect. We must caution that in a practical system the real 
damping mechanism could dictate the response. 

In order to validate the results obtained by the method of 
harmonic balance, we compare these with the results yielded 
by the numerical integration of equations (4) and (5). In Table 
1, the zeroth and first five harmonics are examined for both x 
and p at the resonant frequency (d> = 2.09); an order analysis 
has been performed using the first harmonic results as 
reference values. We find that some of the harmonic coeffi­
cients as predicted by the numerical integration are higher 
than those assumed for the method of harmonic balance. 
Hence, there is some ambiguity regarding our order approx­
imation! Nonetheless, we still obtain very accurate results with 
considerably less computer time. 
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Stability of a Clamped-Free Rotor Partially 
Filled With Liquid' 

F. G. Kollmann.2 A problem very similar to that treated 
in this paper has been solved by the discusser's former assis­
tant G. Lichtenberg [1]. The author states that the in viscid 
analysis presented in the main body of his paper is unable to 
predict the stability of the rotating system since the rotor is 
unstable at any speed. Clearly this instability is due to the ex­
ternal damper. However, external damping seems to be a 
secondary effect in this analysis which deals mainly with the 
three-dimensional motion of the trapped fluid. 

Lichtenberg analyzed the motion of an overhung rotor par­
tially filled with an inviscid fluid. External damping of this 
rotor was not considered. He derived analytical expressions 
for the characteristic equation of the rotor motion. For the 
three-dimensional motion of the trapped fluid this solution 
contains Bessel functions of the first and second kind. The 
Bessel functions lead to dense sequences of singularities in a 
certain region of the Q — T — plane (Q = nondimensional 
angular speed, T = eigenvalue). Therefore, it would be in­
teresting if the author could comment in some more detail on 
his remark, that "the common Bessel functions are not 
numerically independent in the range of interest." 

Due to the mathematical difficulties mentioned, 
Lichtenberg confined his numerical analysis to the planar mo­
tion of the enclosed fluid. His computed stability diagram for 
one rotor showed very good correspondence with experimen­
tal results. For the rotor investigated by Lichtenberg, the 
"planar" theory predicts all measured effects with sufficient 
accuracy. For completeness it is mentioned that the discusser's 
former assistant R. Wohlbriick [2] solved a more general pro­
blem. He considered again an overhung rotor. However, the 
cavity of this rotor was not formed by a cylinder—as in 
Lichtenberg's analysis—but by an arbitrary surface of revolu­
tion. Again external rotor damping was not included and the 
fluid was considered as inviscid. Due to the more complex 
shape of the interior surface of the rotor, no analytical solu­
tion could be derived. Therefore, Wohlbriick used the Finite 
Element Method. His numerically computed stability 
diagrams for two different rotors (ellipsoidal and doubly con­
ical interior surface) again showed very good correspondence 
with experimental results. 
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Author's Closure 
The author appreciates Professor Kollman's interest in the 

paper and the additional references. The paper by Lichtenberg 
should have been included in the references. The fact that it 
was not cited is an oversight for which I apologize. The paper 
by Wohlbruck appeared after the present paper was submitted 
for publication. 

While damping was not highlighted in this paper, the 
calculations did include the effect of the external damper. The 
damping made it necessary to use Bessel Functions with com­
plex argument. In order to solve the equations numerically it 
was necessary to use Hankel functions (which are simply linear 
combinations of the Bessel Functions J„ and Y„). This was 
necessary because the more common Bessel Functions were 
not numerically independent in the range of interest. This is 
analogous to the situation which occurs in the solution of 
x—x=0. The solution may be written in terms of cosh(xr) and 
sinh(jr), however these are not numerically different for large 
values of x. This lack of independence of the fundamental 
solutions leads to numerical singularities in the solution pro­
cess. For large x it is necessary to write the solution in terms of 
e* and e~x (which are just linear combinations of cosh(x) and 
sinh(x)) in order to have two independent fundamental solu­
tions to the differential equation. 

Hydrodynamic Lubrication in Hemispher­
ical Punch Stretch Forming3 

W. R. D. Wilson4 and L. Hector5. The authors are to be 
congratulated for an interesting paper which couples, for the 
first time, a sophisticated finite-element plasticity model with 
a hydrodynamic lubrication model. This approach will even­
tually provide computer models of forming processes which 
will accurately reflect the complex interactions between metal 
deformation, lubrication and friction. 

However, we believe that there is a serious flaw in the 

By S. L. Hendricks and published in the March 1986 issue of the ASME 
JOURNAL OF APPLIED MECHANICS, Vol. 53, pp. 166-172. 

Professor, Technische Hochschule Darmstadt, Fachgebiet Maschin-
enelemente und Getriebe, Magdalenenstr. 8-10, Germany. 

3By Kuo-Kuang Chen and D. C. Sun, and published in the June 1986 issue of 
the ASME JOURNAL OF APPLIED MECHANICS, Vol. 53, pp. 440-449. 

^Professor and Director of the Center for Manufacturing Engineering, 
Northwestern University, Evanston, IL 60201. 

Graduate Research Student, Northwestern University, Evanston, IL 60201. 
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Finite Element Methods in Structural Mechanics, by C. T. F. 
Ross. Ellis Horwood Limited, West Sussex, England, 1985. 
319 pages. Price: $33.95/paperback; $61.95/hardcover. 

REVIEWED BY W. K. LIU1 

Fenner and "Concepts and Applications of Finite Element 
Analysis," by R. D. Cook, to name a few. In total, this book 
is suitable as a matrix approach to finite element primer. 

This book is indeed an introductory text for undergraduate 
students and practicing engineers. The emphasis is on the 
simplicity of procedures, and mathematical details are kept to 
the minimum. Several examples are worked out and the ade­
quacy of current micro-computers for most applications is em­
phasized. Static analysis and vibrations are the two main 
topics covered. Matrix displacement methods and the energy 
methods are used to derive the element stiffness and mass 
matrices. Vibration analysis is performed by modal analysis 
techniques (nothing is mentioned on direct time integration). 
Structural elements such as bars, torque bars, beams, frames, 
grillages, plates and quadrilateral continuum elements are 
described. The book concludes with a brief chapter on 
nonlinear structural mechanics. 

A separate chapter is devoted to grillages, which seems quite 
unnecessary as a grillage is merely a combination of a beam 
and a torque bar. The reviewer feels that this material can be 
distributed in Chapters 4 and 7. 

The sections on plate/shell finite elements are out of date. 
In present day finite element plate/shell analysis, C° elements 
are rapidly supplanting C1 elements because of their superior 
performance and versatility. 

A few words of caution should be included regarding the 
limitations of some finite elements; for example, locking 
phenomena in an incompressible continuum, shear and mem­
brane locking in plate/shell elements, and numerical instabili­
ty arising from spurious modes. More up-to-date references 
should also be included. 

The author defines material nonlinearity, in Chapter 9, as 
"the material undergoing plastic deformation." Certainly, 
this is just an example of material nonlinearities and there are 
other nonlinearities such as the more elementary nonlinear 
elasticity. 

The author mentions in the preface that "the book would 
fill the gap between the numerous texts on traditional Strength 
of Material and the postgraduate books that have been recent­
ly written on Finite Element Methods." This is a questionable 
statement as there are numerous introductory texts such as 
"Introduction to Matrix Structural Analysis," by H. C. Mar­
tin, "Theory of Matrix Structural Analysis," by J. S. Prze-
mieniecki, "Applied Finite Element Analysis," by L. J. 
Segerlind, "Finite Element Methods for Engineers," by R. T. 

Computerized Buckling Analysis of Shells, by D. Bushnell. 
Martinus Nijhoff Publishers, The Netherlands, 1985. 423 
pages. Price: $85. 

REVIEWED BY J. ARBOCZ2 

The publication of Dave Bushnell's book could not have 
happened at a better moment. It is the reviewers opinion that 
with the large scale introduction of computerized structural 
analysis in the practice and lately also at many technical 
schools, the teaching of and the approach to solving technical 
problems has been shifting in the wrong direction. 

Twenty-five years ago it was so, that numerical results were 
looked upon with a certain amount of distrust and they were 
only accepted if supported by experimental results or some 
other facts. Today, as the older generation of engineers (the 
ones who obtained their degrees before the advent of com­
puters) retire and the younger ones with extensive training in 
the ever-so-popular finite element technique take over, one 
begins to encounter in technical discussions a new mentality; 
the insight of how structures behave under loading of the older 
generation is being replaced more and more by the nearly 
religious faith of the younger ones in the predictions of their 
favorite computer codes. This is especially true when making 
buckling predictions for complex structures. 

Bushnell's book represents a very important contribution to 
the discussion of how one should introduce computers when 
one is teaching or performing structural analysis of buckling 
sensitive thin-walled shells. On hand from many practical ex­
amples Bushnell shows that a shell design specialist, who is 
aware of the latest theoretical developments and who is 
familiar with the theories upon which the nonlinear structural 
analysis codes he uses are based, can achieve very accurate 
modeling of the collapse behavior of complex structures. On 
the other hand, he also demonstrates the danger that can arise 
by the use of sophisticated computational tools by persons of 
inadequate theoretical background. It is to be hoped that the 
failures because of unexpected buckling of the large, expensive 
shell structures described in the text will convince all people 
that contrary to the beliefs of some, computer codes are no 
replacements for engineering know-how and engineering 
expertise. 

'Associate Professor, Department of Mechanical and Nuclear Engineering, 
Northwestern University, Evanston, 111. 60201. Mem. ASME. 

Professor of Aircraft Structures, Delft University of Technology, Depart­
ment of Aerospace Engineering, The Netherlands. 
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The book is divided into nine chapters. In Chapter One the 
author initially presents examples of catastrophic failure of 
several large, expensive structures followed by a discussion of 
what is buckling. The difference between the various types of 
bifurcation buckling and nonlinear collapse is particularly well 
documented. The chapter concludes with a richly illustrated 
discussion of "classical" buckling of cylindrical and spherical 
shells, whereby experimental results are used for comparison 
with theoretical predictions. 

Chapter Two deals with nonlinear collapse and its relation­
ship to bifurcation buckling models. The following examples 
are treated: the elastic-plastic axisymmetric creep collapse of 
axially compressed monocoque cylinders and the creep col­
lapse of ring-stiffened cylinders under external hydrostatic 
pressure; the general collapse of curved and straight pipes 
under uniform bending and external pressure; the collapse of 
cylindrical panels and shells with concentrated loads and cut­
outs and the collapse of axially compressed noncircular 
cylinders. The chapter closes with the axisymmetric collapse of 
a complex rocket interstage, where the local load-path eccen­
tricity of the axial compression gives rise to concentrated 
bending and local plastic flow. 

In Chapter Three the author discusses bifurcation buckling 
cases where nonuniformity or nonlinearity of the prebuckling 
state is important. Initially nonsymmetric bifurcation buck­
ling in the neighborhood of an edge is illustrated on a cylin­
drical shell under axial compression and on externally 
pressurized spherical caps with end rings. Next buckling due to 
localized hoop compression caused by prebuckling shape 
changes is discussed. Three examples are treated: an "in­
finite" cylinder heated uniformly over half its length, a 
clamped cylinder with an axial thermal gradient near the edge 
and the buckling of an internally pressurized rocket fuel tank. 
In the following examples of nonsymmetric bifurcation buckl­
ing of shells of revolution in which meridional tension is com­
bined with circumferential compression are presented. Besides 
the buckling of complete spheres and of truncated spherical 
shell segments subjected to axial tension, particular emphasis 
is given to the elastic-plastic bifurcation buckling of internally 
pressurized torispherical shells. The chapter closes with the 
presentation of a detailed simulation study of the failure of a 
large steel water tower, whereby a complex elastic-plastic 
model is used which includes the effects of certain fabrication 
processes such as cold bending and welding. 

Chapter Four deals with the effect of boundary conditions 
and eccentric loading and is devoted mostly to cylindrical 
shells. Inextensional buckling results are presented for an ax­
ially compressed 5 deg cone and for a spherical shell under ex­
ternal pressure both supported at the edges by rings of square 
cross section. The simulation of local plastic flow by ap­
propriate constraint condition is illustrated for a cone-cylinder 
specimen under external pressure. 

Chapter Five describes the buckling of shells of revolution 
subjected to combined uniform loadings and to nonsymmetric 
loads. Interaction curves are presented for isotropic and for 
anisotropic shells under combined axial compression and in­
ternal or external pressure and under combined torsion and 
external pressure. Modeling consideration for shells of revolu­
tion under nonsymmetric static or dynamic loading are 
discussed. Especially interesting are the examples in which 
buckling under nonsymmetric loading is estimated by a one-
dimensional numerical analysis. Also included are thermal 
buckling problems of nonsymmetrically heated shells. The' 
chapter closes with buckling estimates for a nuclear contain­
ment vessel due to ground motion during an earthquake. 

Chapter Six deals with the buckling of ring-stiffened shells. 
Initially the effect of boundary conditions on the elastic buck­
ling of ring-stiffened cylinders under external hydrostatic 
pressure is treated. This is followed by elastic-plastic buckling 
results. Comparisons between theory and tests are included. 

Next the effects of residual stresses and deformations on 
plastic buckling of ring-stiffened shells of revolution are 
discussed. Modeling tips for using BOSOR 5 to calculate the 
buckling loads including residual effects due to cold bending 
and welding are presented. The chapter closes with a section 
dealing with the effect on buckling of deformations of the ring 
cross sections. General and local instability and modal interac­
tion are discussed and comparisons with tests in which local 
ring deformations are important are presented. 

In Chapter Seven Dave Bushnell presents a method to use a 
computer code for shells of revolution to predict buckling 
loads of prismatic shells and panels. The author has pioneered 
this method and demonstrates its validity by analyzing a cir­
cular cylinder under external pressure as a portion of a torus. 
Next the method is applied to obtain predictions of bifurca­
tion buckling loads of noncircular cylindrical shells under ax­
ial compression or external pressure and failure loads of cor­
rugated and beaded panels under axial compression. The 
chapter closes with a long section on the modal interaction and 
imperfection sensitivity of axially compressed prismatic 
structures. 

Chapter Eight contains a very concise and readable presen­
tation of the imperfection sensitivity theory by Koiter and the 
Harvard school under Budiansky and Hutchinson. The author 
presents the most important results of twenty-five years of in­
tensive research by many investigators in a single chapter that 
excels in clarity and readability. 

In Chapter Nine the buckling of hybrid bodies of revolution 
is discussed, that is of shells that contain combinations of one 
and two-dimensionally discretized domains, another method 
where the author has made pioneering contributions. The 
following examples are treated: buckling of ring-stiffened 
cylindrical shells under uniform hydrostatic pressure in which 
each ring and small regions on either side are modeled with 
8-mode quadrilaterals of revolution, spherical shells embed­
ded in structural foam and the elastic-plastic instability of an 
axially compressed shell of revolution with axisymmetric 
frangible joints. 

Most of the numerical results in this excellent book have 
been obtained with one of the well known computer codes of 
the BOSOR or STAGS family. What makes this book unique 
is that the author has succeeded in providing a "feel" for shell 
buckling based on a careful mixture of theoretical, analytical, 
and numerical procedures. Many of the richly illustrated ex­
amples are written in a tutorial form, a guide-by-example for 
the modeling and solving of complex nonlinear problems. It 
shows convincingly that the modern structural engineer must 
have a very thorough understanding of how structures behave 
if he is to use the advanced computational tools successfully. 
This book is a must for all those who work in the field of shell 
stability. 

Linear Variations, by P. C. Miiller and W. O. Schiehlen. Mar-
tinus Nijhoff Publishers, The Netherlands, 1985. 327 pages. 
Price: $65.50. 

REVIEWED BY R. ABEYARATNE3 

This book is concerned with the vibrations of discrete, 
linearized systems with many degrees of freedom. The primary 
aim of the authors in writing this book was to present the sub-

Associate Professor, Department of Mechanical Engineering, Massachusetts 
Institute of Technology, Cambridge, Mass. 02139. Assoc. Mem. ASME. 
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ject in a form "allowing the use of computers for finding solu­
tions." The book consists of four parts: Mathematical 
Description of Vibrating Systems (56 pages), Time-Invariant 
Vibrating Systems (200. pages), Time-Variant Vibrating 
Systems (33 pages), and Mathematical Background (30 pages). 

Part I begins with an introductory discussion of the various 
classifications of vibrations. This is followed by a very brief 
review of kinematics, Lagrange's equations, and the momen­
tum principles. The section closes with a chapter on the 
linearization of the equations of motion and their state-space 
representation. 

Part II is devoted to the study of autonomous systems. It 
begins with a chapter on the fundamental matrix of the system 
and its use in generating the general solution of the equations 
of motion. A chapter on stability and boundedness follows. 
Here, stability criteria based on the characteristic equation as 
well as on Liapunov's matrix equation are discussed. This is 
followed by chapters on free vibrations, forced vibrations, 
and resonance. Mode shapes, lightly damped systems, 
periodic excitation, vibration absorption, and parameter iden­
tification are some of the topics explored. The final chapter of 
this section is devoted to random vibrations. 

Part III consists of two chapters: the first is concerned with 
the solution of the (nonautonomous) equations of motion and 
its stability, while the second addresses parametrically excited 
and forced vibrations. The final part of the book presents 
background material on matrix algebra-one chapter on its 
analytical aspects and a second on its numerical aspects. It 
also has a brief chapter on controllability and observability. 

I beleive the authors do achieve their aim of presenting the 
results in a form convenient for computer implementation. 
The results are presented in such a way that when analyzing a 
given system, one merely needs to select a set of generalized 
coordinates and write down the position vectors of the various 
particles in terms of these coordinates. It is then a matter of 
"substituting into a sequence of appropriate formulas". In 
fact, even the simplest of examples (e.g., the double pen­
dulum) is worked out in the book in this mechanistic manner. 

This book is concerned with the mathematical results 
associated with various aspects of linear vibration theory. The 
physics of the subject is underplayed. My primary criticism of 
the book is that I found it to be extremely concise; often, the 
authors simply state results (both elementary and advanced) 
without explanation, e.g., the section on Floquet Theory in 
Chapter 10. 

On the positive side, this book is a comprehensive source for 
mathematical results in linear vibration theory of discrete 
systems. It discusses the subject through both a state-space 
formulation as well as directly through the equations of mo­
tion. This is a useful feature, since it helps link the traditional 
mechanical engineering approach to vibrations with the more 
modern literature. A second attractive feature is that in order 
to illustrate the theory, the authors repeatedly use the same 
four mechanical systems throughout the text, thereby giving 
the book additional coherence. 

Parametric Random Vibration, by R. A. Ibrahim, Wiley, 
New York, 1985. 342 pages. Price: $59.95. 

REVIEWED BY T. FANG4 AND E. H. DOWELL5 

This is the first book devoted to parametric random vibra­
tions. It systematically presents the methods and recent results 

Visiting Professor on leave from Northwestern Polytechnical University, 
Xian, China. 

5 J . A. Jones Professor, Dean, School of Engineering, Duke University, 
Durham, North Carolina 27706. 

on the subject. The book is really a summary of the state-of-
the-art culled from hundreds of published papers and 
technical reports. It consists of nine chapters, dealing with the 
mathematical basis, analytical techniques, and theoretical and 
experimental results for the behavior of random parametric 
systems. 

The first chapter is an introduction, in which different kinds 
of motions, i.e., chaotic responses, random responses due to 
pseudo-random excitations or random initial conditions, and 
parametric random vibrations, are briefly reviewed. 

The next four chapters introduce the related mathematics of 
stochastic analysis. Fundamental concepts of random pro­
cesses and elements of stochastic calculus are outlined in 
Chapters 2 and 3, respectively. Chapters 4 and 5 contain the 
essential tools for modeling and analyzing random parametric 
systems, i.e., the Ito and Stratonovich stochastic calculus, the 
Wong-Zakai and Khas'miniskii Limit theorems, the Fokker-
Planck-Kolmogorov equation and its applications, and the 
moment equation method. The latter two chapters are par­
ticularly well written with an emphasis on clarifying the con­
troversies and disputes which occurred in the 1960's. 

The last four chapters discuss parametric random vibrations 
per se. Chapter 6 describes various stochastic averaging 
methods, together with their applications to the study of 
stochastic behavior of linear or nonlinear systems. The recent­
ly developed method of stochastic averaging of the energy 
envelope appears to be very useful for "quasi-conservative" 
nonlinear systems. Chapter 7 is devoted to parametric 
stochastic stability. Various types of stochastic stability are 
summarized. Two of them, i.e., the stability of moments and 
almost sure stability, are discussed in some detail. Stability 
boundaries obtained by different theorems for typical prob­
lems are compared. Parametric random responses are con­
sidered in Chapter 8. A number of techniques are presented 
here to determine the random responses of linear and 
nonlinear dynamic systems, including helicopter rotor blades 
in atmospheric turbulent flow, liquid sloshing under 
parametric random excitations, and coupled beams with 
autoparametric resonance. Special attention is given to the 
moment equation method. Both Gaussian and non-Gaussian 
closure techniques are used and the corresponding results are 
compared with each other and also compared with those ob­
tained by stochastic averaging methods. It appears that non-
Gaussian closure schemes are more reasonable for nonlinear 
systems. The last chapter compiles the experimental results 
reported in the literature. 

Historical reviews of the techniques, theories, and their ap­
plications are distributed in related chapters. An extensive list 
of references is appended. Among the total of 545 references, 
408 of them are cited explicitly. 

The book is of a graduate level, well written, and useful to 
engineering researchers and scientists working in those fields 
involving parametric random vibrations. 

Numerical Simulation of Fluid Flow and Heat/Mass Transfer 
Processes (Lecture Notes in Engineering), edited by N. C. 
Markatos, D. G. Tatchell, M. Cross, and N. Rhodes. 
Springer-Verlag, New York, 1986. 482 pages. Price: $36.00. 

REVIEWED BY P. D. RICHARDSON6 

The first decision one faces in implementing numerical 
studies in applied mechanics is whether to generate one's own 

Professor of Engineering and Physiology, Brown University, Providence, RI 
02912. Fellow ASME. 
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ject in a form "allowing the use of computers for finding solu­
tions." The book consists of four parts: Mathematical 
Description of Vibrating Systems (56 pages), Time-Invariant 
Vibrating Systems (200. pages), Time-Variant Vibrating 
Systems (33 pages), and Mathematical Background (30 pages). 

Part I begins with an introductory discussion of the various 
classifications of vibrations. This is followed by a very brief 
review of kinematics, Lagrange's equations, and the momen­
tum principles. The section closes with a chapter on the 
linearization of the equations of motion and their state-space 
representation. 

Part II is devoted to the study of autonomous systems. It 
begins with a chapter on the fundamental matrix of the system 
and its use in generating the general solution of the equations 
of motion. A chapter on stability and boundedness follows. 
Here, stability criteria based on the characteristic equation as 
well as on Liapunov's matrix equation are discussed. This is 
followed by chapters on free vibrations, forced vibrations, 
and resonance. Mode shapes, lightly damped systems, 
periodic excitation, vibration absorption, and parameter iden­
tification are some of the topics explored. The final chapter of 
this section is devoted to random vibrations. 

Part III consists of two chapters: the first is concerned with 
the solution of the (nonautonomous) equations of motion and 
its stability, while the second addresses parametrically excited 
and forced vibrations. The final part of the book presents 
background material on matrix algebra-one chapter on its 
analytical aspects and a second on its numerical aspects. It 
also has a brief chapter on controllability and observability. 

I beleive the authors do achieve their aim of presenting the 
results in a form convenient for computer implementation. 
The results are presented in such a way that when analyzing a 
given system, one merely needs to select a set of generalized 
coordinates and write down the position vectors of the various 
particles in terms of these coordinates. It is then a matter of 
"substituting into a sequence of appropriate formulas". In 
fact, even the simplest of examples (e.g., the double pen­
dulum) is worked out in the book in this mechanistic manner. 

This book is concerned with the mathematical results 
associated with various aspects of linear vibration theory. The 
physics of the subject is underplayed. My primary criticism of 
the book is that I found it to be extremely concise; often, the 
authors simply state results (both elementary and advanced) 
without explanation, e.g., the section on Floquet Theory in 
Chapter 10. 

On the positive side, this book is a comprehensive source for 
mathematical results in linear vibration theory of discrete 
systems. It discusses the subject through both a state-space 
formulation as well as directly through the equations of mo­
tion. This is a useful feature, since it helps link the traditional 
mechanical engineering approach to vibrations with the more 
modern literature. A second attractive feature is that in order 
to illustrate the theory, the authors repeatedly use the same 
four mechanical systems throughout the text, thereby giving 
the book additional coherence. 

Parametric Random Vibration, by R. A. Ibrahim, Wiley, 
New York, 1985. 342 pages. Price: $59.95. 

REVIEWED BY T. FANG4 AND E. H. DOWELL5 

This is the first book devoted to parametric random vibra­
tions. It systematically presents the methods and recent results 

Visiting Professor on leave from Northwestern Polytechnical University, 
Xian, China. 

5 J . A. Jones Professor, Dean, School of Engineering, Duke University, 
Durham, North Carolina 27706. 

on the subject. The book is really a summary of the state-of-
the-art culled from hundreds of published papers and 
technical reports. It consists of nine chapters, dealing with the 
mathematical basis, analytical techniques, and theoretical and 
experimental results for the behavior of random parametric 
systems. 

The first chapter is an introduction, in which different kinds 
of motions, i.e., chaotic responses, random responses due to 
pseudo-random excitations or random initial conditions, and 
parametric random vibrations, are briefly reviewed. 

The next four chapters introduce the related mathematics of 
stochastic analysis. Fundamental concepts of random pro­
cesses and elements of stochastic calculus are outlined in 
Chapters 2 and 3, respectively. Chapters 4 and 5 contain the 
essential tools for modeling and analyzing random parametric 
systems, i.e., the Ito and Stratonovich stochastic calculus, the 
Wong-Zakai and Khas'miniskii Limit theorems, the Fokker-
Planck-Kolmogorov equation and its applications, and the 
moment equation method. The latter two chapters are par­
ticularly well written with an emphasis on clarifying the con­
troversies and disputes which occurred in the 1960's. 

The last four chapters discuss parametric random vibrations 
per se. Chapter 6 describes various stochastic averaging 
methods, together with their applications to the study of 
stochastic behavior of linear or nonlinear systems. The recent­
ly developed method of stochastic averaging of the energy 
envelope appears to be very useful for "quasi-conservative" 
nonlinear systems. Chapter 7 is devoted to parametric 
stochastic stability. Various types of stochastic stability are 
summarized. Two of them, i.e., the stability of moments and 
almost sure stability, are discussed in some detail. Stability 
boundaries obtained by different theorems for typical prob­
lems are compared. Parametric random responses are con­
sidered in Chapter 8. A number of techniques are presented 
here to determine the random responses of linear and 
nonlinear dynamic systems, including helicopter rotor blades 
in atmospheric turbulent flow, liquid sloshing under 
parametric random excitations, and coupled beams with 
autoparametric resonance. Special attention is given to the 
moment equation method. Both Gaussian and non-Gaussian 
closure techniques are used and the corresponding results are 
compared with each other and also compared with those ob­
tained by stochastic averaging methods. It appears that non-
Gaussian closure schemes are more reasonable for nonlinear 
systems. The last chapter compiles the experimental results 
reported in the literature. 

Historical reviews of the techniques, theories, and their ap­
plications are distributed in related chapters. An extensive list 
of references is appended. Among the total of 545 references, 
408 of them are cited explicitly. 

The book is of a graduate level, well written, and useful to 
engineering researchers and scientists working in those fields 
involving parametric random vibrations. 

Numerical Simulation of Fluid Flow and Heat/Mass Transfer 
Processes (Lecture Notes in Engineering), edited by N. C. 
Markatos, D. G. Tatchell, M. Cross, and N. Rhodes. 
Springer-Verlag, New York, 1986. 482 pages. Price: $36.00. 
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